1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | [Item(Name = "CovarianceLinearArd",
|
---|
33 | Description = "Linear covariance function with automatic relevance determination for Gaussian processes.")]
|
---|
34 | public sealed class CovarianceLinearArd : ParameterizedNamedItem, ICovarianceFunction {
|
---|
35 | [Storable]
|
---|
36 | private double[] inverseLength;
|
---|
37 | [Storable]
|
---|
38 | private readonly HyperParameter<DoubleArray> inverseLengthParameter;
|
---|
39 | public IValueParameter<DoubleArray> InverseLengthParameter {
|
---|
40 | get { return inverseLengthParameter; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | [StorableConstructor]
|
---|
44 | private CovarianceLinearArd(bool deserializing) : base(deserializing) { }
|
---|
45 | private CovarianceLinearArd(CovarianceLinearArd original, Cloner cloner)
|
---|
46 | : base(original, cloner) {
|
---|
47 | inverseLengthParameter = cloner.Clone(original.inverseLengthParameter);
|
---|
48 | if (original.inverseLength != null) {
|
---|
49 | this.inverseLength = new double[original.inverseLength.Length];
|
---|
50 | Array.Copy(original.inverseLength, inverseLength, inverseLength.Length);
|
---|
51 | }
|
---|
52 |
|
---|
53 | RegisterEvents();
|
---|
54 | }
|
---|
55 | public CovarianceLinearArd()
|
---|
56 | : base() {
|
---|
57 | Name = ItemName;
|
---|
58 | Description = ItemDescription;
|
---|
59 |
|
---|
60 | inverseLengthParameter = new HyperParameter<DoubleArray>("InverseLength",
|
---|
61 | "The inverse length parameter for ARD.");
|
---|
62 | Parameters.Add(inverseLengthParameter);
|
---|
63 | RegisterEvents();
|
---|
64 | }
|
---|
65 |
|
---|
66 | [StorableHook(HookType.AfterDeserialization)]
|
---|
67 | private void AfterDeserialization() {
|
---|
68 | RegisterEvents();
|
---|
69 | }
|
---|
70 |
|
---|
71 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
72 | return new CovarianceLinearArd(this, cloner);
|
---|
73 | }
|
---|
74 |
|
---|
75 | // caching
|
---|
76 | private void RegisterEvents() {
|
---|
77 | Util.AttachArrayChangeHandler<DoubleArray, double>(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.ToArray(); });
|
---|
78 | }
|
---|
79 |
|
---|
80 |
|
---|
81 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
82 | if (!inverseLengthParameter.Fixed)
|
---|
83 | return numberOfVariables;
|
---|
84 | else
|
---|
85 | return 0;
|
---|
86 | }
|
---|
87 |
|
---|
88 | public void SetParameter(double[] hyp) {
|
---|
89 | if (!inverseLengthParameter.Fixed && hyp.Length > 0) {
|
---|
90 | inverseLengthParameter.SetValue(new DoubleArray(hyp.Select(e => 1.0 / Math.Exp(e)).ToArray()));
|
---|
91 | } else throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceLinearArd", "hyp");
|
---|
92 | }
|
---|
93 |
|
---|
94 | public double GetCovariance(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
95 | return Util.ScalarProd(x, i, j, inverseLength, columnIndices);
|
---|
96 | }
|
---|
97 |
|
---|
98 | public IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
99 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
100 |
|
---|
101 | int k = 0;
|
---|
102 | foreach (int columnIndex in columnIndices) {
|
---|
103 | yield return -2.0 * x[i, columnIndex] * x[j, columnIndex] * inverseLength[k] * inverseLength[k];
|
---|
104 | k++;
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j, IEnumerable<int> columnIndices) {
|
---|
109 | return Util.ScalarProd(x, i, xt, j, inverseLength, columnIndices);
|
---|
110 | }
|
---|
111 | }
|
---|
112 | }
|
---|