[8484] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8484] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[8562] | 23 | using System.Collections.Generic;
|
---|
[8484] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8582] | 27 | using HeuristicLab.Data;
|
---|
[8982] | 28 | using HeuristicLab.Parameters;
|
---|
[8484] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item(Name = "CovarianceLinearArd",
|
---|
| 34 | Description = "Linear covariance function with automatic relevance determination for Gaussian processes.")]
|
---|
[8612] | 35 | public sealed class CovarianceLinearArd : ParameterizedNamedItem, ICovarianceFunction {
|
---|
[8582] | 36 | public IValueParameter<DoubleArray> InverseLengthParameter {
|
---|
[8982] | 37 | get { return (IValueParameter<DoubleArray>)Parameters["InverseLength"]; }
|
---|
[8582] | 38 | }
|
---|
[10489] | 39 | private bool HasFixedInverseLengthParameter {
|
---|
| 40 | get { return InverseLengthParameter.Value != null; }
|
---|
| 41 | }
|
---|
[8582] | 42 |
|
---|
[8484] | 43 | [StorableConstructor]
|
---|
[8612] | 44 | private CovarianceLinearArd(bool deserializing) : base(deserializing) { }
|
---|
| 45 | private CovarianceLinearArd(CovarianceLinearArd original, Cloner cloner)
|
---|
[8484] | 46 | : base(original, cloner) {
|
---|
| 47 | }
|
---|
| 48 | public CovarianceLinearArd()
|
---|
| 49 | : base() {
|
---|
[8612] | 50 | Name = ItemName;
|
---|
| 51 | Description = ItemDescription;
|
---|
| 52 |
|
---|
[8982] | 53 | Parameters.Add(new OptionalValueParameter<DoubleArray>("InverseLength",
|
---|
| 54 | "The inverse length parameter for ARD."));
|
---|
[8484] | 55 | }
|
---|
| 56 |
|
---|
| 57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 58 | return new CovarianceLinearArd(this, cloner);
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[8612] | 61 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[10489] | 62 | if (HasFixedInverseLengthParameter)
|
---|
| 63 | return 0;
|
---|
| 64 | else
|
---|
[8582] | 65 | return numberOfVariables;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
[8982] | 68 | public void SetParameter(double[] p) {
|
---|
| 69 | double[] inverseLength;
|
---|
| 70 | GetParameterValues(p, out inverseLength);
|
---|
| 71 | InverseLengthParameter.Value = new DoubleArray(inverseLength);
|
---|
[8582] | 72 | }
|
---|
| 73 |
|
---|
[8982] | 74 | private void GetParameterValues(double[] p, out double[] inverseLength) {
|
---|
| 75 | // gather parameter values
|
---|
[10489] | 76 | if (HasFixedInverseLengthParameter) {
|
---|
[8982] | 77 | inverseLength = InverseLengthParameter.Value.ToArray();
|
---|
| 78 | } else {
|
---|
| 79 | inverseLength = p.Select(e => 1.0 / Math.Exp(e)).ToArray();
|
---|
| 80 | }
|
---|
[8484] | 81 | }
|
---|
| 82 |
|
---|
[13721] | 83 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
[8982] | 84 | double[] inverseLength;
|
---|
| 85 | GetParameterValues(p, out inverseLength);
|
---|
[10489] | 86 | var fixedInverseLength = HasFixedInverseLengthParameter;
|
---|
[8982] | 87 | // create functions
|
---|
| 88 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 89 | cov.Covariance = (x, i, j) => Util.ScalarProd(x, i, j, inverseLength, columnIndices);
|
---|
| 90 | cov.CrossCovariance = (x, xt, i, j) => Util.ScalarProd(x, i, xt, j, inverseLength, columnIndices);
|
---|
[10489] | 91 | if (fixedInverseLength)
|
---|
[13784] | 92 | cov.CovarianceGradient = (x, i, j) => new double[0];
|
---|
[10489] | 93 | else
|
---|
| 94 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, inverseLength, columnIndices);
|
---|
[8982] | 95 | return cov;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
[13784] | 98 | private static IList<double> GetGradient(double[,] x, int i, int j, double[] inverseLength, int[] columnIndices) {
|
---|
[8933] | 99 | int k = 0;
|
---|
[13784] | 100 | var g = new List<double>(columnIndices.Length);
|
---|
[13721] | 101 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 102 | var columnIndex = columnIndices[c];
|
---|
[13784] | 103 | g.Add(-2.0 * x[i, columnIndex] * x[j, columnIndex] * inverseLength[k] * inverseLength[k]);
|
---|
[8933] | 104 | k++;
|
---|
[8562] | 105 | }
|
---|
[13784] | 106 | return g;
|
---|
[8484] | 107 | }
|
---|
| 108 | }
|
---|
| 109 | }
|
---|