[10569] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[10569] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
[14523] | 24 | using System.Threading;
|
---|
[10569] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// 1R classification algorithm.
|
---|
| 36 | /// </summary>
|
---|
[13090] | 37 | [Item("OneR Classification", "A simple classification algorithm the searches the best single-variable split (does not support categorical features correctly). See R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91.")]
|
---|
[10569] | 38 | [StorableClass]
|
---|
[13090] | 39 | public sealed class OneR : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
[10569] | 40 |
|
---|
| 41 | public IValueParameter<IntValue> MinBucketSizeParameter {
|
---|
| 42 | get { return (IValueParameter<IntValue>)Parameters["MinBucketSize"]; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | [StorableConstructor]
|
---|
[13090] | 46 | private OneR(bool deserializing) : base(deserializing) { }
|
---|
[10569] | 47 |
|
---|
[13090] | 48 | private OneR(OneR original, Cloner cloner)
|
---|
[10569] | 49 | : base(original, cloner) { }
|
---|
| 50 |
|
---|
[13090] | 51 | public OneR()
|
---|
[10569] | 52 | : base() {
|
---|
| 53 | Parameters.Add(new ValueParameter<IntValue>("MinBucketSize", "Minimum size of a bucket for numerical values. (Except for the rightmost bucket)", new IntValue(6)));
|
---|
| 54 | Problem = new ClassificationProblem();
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[13090] | 58 | return new OneR(this, cloner);
|
---|
[10569] | 59 | }
|
---|
| 60 |
|
---|
[14523] | 61 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[10569] | 62 | var solution = CreateOneRSolution(Problem.ProblemData, MinBucketSizeParameter.Value.Value);
|
---|
| 63 | Results.Add(new Result("OneR solution", "The 1R classifier.", solution));
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[13089] | 66 | public static IClassificationSolution CreateOneRSolution(IClassificationProblemData problemData, int minBucketSize = 6) {
|
---|
[10569] | 67 | var bestClassified = 0;
|
---|
| 68 | List<Split> bestSplits = null;
|
---|
| 69 | string bestVariable = string.Empty;
|
---|
[10570] | 70 | double bestMissingValuesClass = double.NaN;
|
---|
| 71 | var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
|
---|
[10569] | 72 |
|
---|
| 73 | foreach (var variable in problemData.AllowedInputVariables) {
|
---|
| 74 | var inputValues = problemData.Dataset.GetDoubleValues(variable, problemData.TrainingIndices);
|
---|
| 75 | var samples = inputValues.Zip(classValues, (i, v) => new Sample(i, v)).OrderBy(s => s.inputValue);
|
---|
| 76 |
|
---|
[10570] | 77 | var missingValuesDistribution = samples.Where(s => double.IsNaN(s.inputValue)).GroupBy(s => s.classValue).ToDictionary(s => s.Key, s => s.Count()).MaxItems(s => s.Value).FirstOrDefault();
|
---|
| 78 |
|
---|
[10569] | 79 | //calculate class distributions for all distinct inputValues
|
---|
| 80 | List<Dictionary<double, int>> classDistributions = new List<Dictionary<double, int>>();
|
---|
| 81 | List<double> thresholds = new List<double>();
|
---|
| 82 | double lastValue = double.NaN;
|
---|
[10570] | 83 | foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) {
|
---|
[10569] | 84 | if (sample.inputValue > lastValue || double.IsNaN(lastValue)) {
|
---|
| 85 | if (!double.IsNaN(lastValue)) thresholds.Add((lastValue + sample.inputValue) / 2);
|
---|
| 86 | lastValue = sample.inputValue;
|
---|
| 87 | classDistributions.Add(new Dictionary<double, int>());
|
---|
| 88 | foreach (var classValue in problemData.ClassValues)
|
---|
| 89 | classDistributions[classDistributions.Count - 1][classValue] = 0;
|
---|
| 90 |
|
---|
| 91 | }
|
---|
| 92 | classDistributions[classDistributions.Count - 1][sample.classValue]++;
|
---|
| 93 | }
|
---|
| 94 | thresholds.Add(double.PositiveInfinity);
|
---|
| 95 |
|
---|
| 96 | var distribution = classDistributions[0];
|
---|
| 97 | var threshold = thresholds[0];
|
---|
| 98 | var splits = new List<Split>();
|
---|
| 99 |
|
---|
| 100 | for (int i = 1; i < classDistributions.Count; i++) {
|
---|
| 101 | var samplesInSplit = distribution.Max(d => d.Value);
|
---|
[10570] | 102 | //join splits if there are too few samples in the split or the distributions has the same maximum class value as the current split
|
---|
[10569] | 103 | if (samplesInSplit < minBucketSize ||
|
---|
| 104 | classDistributions[i].MaxItems(d => d.Value).Select(d => d.Key).Contains(
|
---|
| 105 | distribution.MaxItems(d => d.Value).Select(d => d.Key).First())) {
|
---|
| 106 | foreach (var classValue in classDistributions[i])
|
---|
| 107 | distribution[classValue.Key] += classValue.Value;
|
---|
| 108 | threshold = thresholds[i];
|
---|
| 109 | } else {
|
---|
| 110 | splits.Add(new Split(threshold, distribution.MaxItems(d => d.Value).Select(d => d.Key).First()));
|
---|
| 111 | distribution = classDistributions[i];
|
---|
| 112 | threshold = thresholds[i];
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 | splits.Add(new Split(double.PositiveInfinity, distribution.MaxItems(d => d.Value).Select(d => d.Key).First()));
|
---|
| 116 |
|
---|
| 117 | int correctClassified = 0;
|
---|
| 118 | int splitIndex = 0;
|
---|
[10570] | 119 | foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) {
|
---|
[10569] | 120 | while (sample.inputValue >= splits[splitIndex].thresholdValue)
|
---|
| 121 | splitIndex++;
|
---|
| 122 | correctClassified += sample.classValue == splits[splitIndex].classValue ? 1 : 0;
|
---|
| 123 | }
|
---|
[10570] | 124 | correctClassified += missingValuesDistribution.Value;
|
---|
[10569] | 125 |
|
---|
| 126 | if (correctClassified > bestClassified) {
|
---|
| 127 | bestClassified = correctClassified;
|
---|
| 128 | bestSplits = splits;
|
---|
| 129 | bestVariable = variable;
|
---|
[10570] | 130 | bestMissingValuesClass = missingValuesDistribution.Value == 0 ? double.NaN : missingValuesDistribution.Key;
|
---|
[10569] | 131 | }
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | //remove neighboring splits with the same class value
|
---|
| 135 | for (int i = 0; i < bestSplits.Count - 1; i++) {
|
---|
| 136 | if (bestSplits[i].classValue == bestSplits[i + 1].classValue) {
|
---|
| 137 | bestSplits.Remove(bestSplits[i]);
|
---|
| 138 | i--;
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 |
|
---|
[13941] | 142 | var model = new OneRClassificationModel(problemData.TargetVariable, bestVariable, bestSplits.Select(s => s.thresholdValue).ToArray(), bestSplits.Select(s => s.classValue).ToArray(), bestMissingValuesClass);
|
---|
[10569] | 143 | var solution = new OneRClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
|
---|
| 144 |
|
---|
| 145 | return solution;
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | #region helper classes
|
---|
| 149 | private class Split {
|
---|
| 150 | public double thresholdValue;
|
---|
| 151 | public double classValue;
|
---|
| 152 |
|
---|
| 153 | public Split(double thresholdValue, double classValue) {
|
---|
| 154 | this.thresholdValue = thresholdValue;
|
---|
| 155 | this.classValue = classValue;
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | private class Sample {
|
---|
| 160 | public double inputValue;
|
---|
| 161 | public double classValue;
|
---|
| 162 |
|
---|
| 163 | public Sample(double inputValue, double classValue) {
|
---|
| 164 | this.inputValue = inputValue;
|
---|
| 165 | this.classValue = classValue;
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 | #endregion
|
---|
| 169 | }
|
---|
| 170 | }
|
---|