[14242] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | [Item("OneFactor Classification Model", "A model that uses only one categorical feature (factor) to determine the class.")]
|
---|
[14615] | 33 | public sealed class OneFactorClassificationModel : ClassificationModel {
|
---|
[14242] | 34 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 35 | get { return new[] { Variable }; }
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | [Storable]
|
---|
[14615] | 39 | private string variable;
|
---|
[14242] | 40 | public string Variable {
|
---|
| 41 | get { return variable; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | [Storable]
|
---|
[14615] | 45 | private string[] variableValues;
|
---|
[14242] | 46 | public string[] VariableValues {
|
---|
| 47 | get { return variableValues; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | [Storable]
|
---|
[14615] | 51 | private double[] classes;
|
---|
[14242] | 52 | public double[] Classes {
|
---|
| 53 | get { return classes; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | [Storable]
|
---|
[14615] | 57 | private double defaultClass;
|
---|
[14242] | 58 | public double DefaultClass {
|
---|
| 59 | get { return defaultClass; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | [StorableConstructor]
|
---|
[14615] | 63 | private OneFactorClassificationModel(bool deserializing) : base(deserializing) { }
|
---|
| 64 | private OneFactorClassificationModel(OneFactorClassificationModel original, Cloner cloner)
|
---|
[14242] | 65 | : base(original, cloner) {
|
---|
| 66 | this.variable = (string)original.variable;
|
---|
| 67 | this.variableValues = (string[])original.variableValues.Clone();
|
---|
| 68 | this.classes = (double[])original.classes.Clone();
|
---|
| 69 | this.defaultClass = original.defaultClass;
|
---|
| 70 | }
|
---|
| 71 | public override IDeepCloneable Clone(Cloner cloner) { return new OneFactorClassificationModel(this, cloner); }
|
---|
| 72 |
|
---|
| 73 | public OneFactorClassificationModel(string targetVariable, string variable, string[] variableValues, double[] classes, double defaultClass = double.NaN)
|
---|
| 74 | : base(targetVariable) {
|
---|
| 75 | if (variableValues.Length != classes.Length) {
|
---|
| 76 | throw new ArgumentException("Number of variable values and classes has to be equal.");
|
---|
| 77 | }
|
---|
| 78 | this.name = ItemName;
|
---|
| 79 | this.description = ItemDescription;
|
---|
| 80 | this.variable = variable;
|
---|
| 81 | this.variableValues = variableValues;
|
---|
| 82 | this.classes = classes;
|
---|
| 83 | this.defaultClass = double.IsNaN(defaultClass) ? classes.First() : defaultClass;
|
---|
| 84 | Array.Sort(variableValues, classes);
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 88 | return dataset.GetStringValues(Variable, rows)
|
---|
| 89 | .Select(GetPredictedValueForInput);
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | private double GetPredictedValueForInput(string val) {
|
---|
| 93 | var matchingIdx = Array.BinarySearch(variableValues, val);
|
---|
| 94 | if (matchingIdx >= 0) return classes[matchingIdx];
|
---|
| 95 | else return DefaultClass;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 99 | return new OneFactorClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | }
|
---|
| 103 | }
|
---|