[3877] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.PluginInfrastructure;
|
---|
| 33 | using HeuristicLab.Random;
|
---|
| 34 | using HeuristicLab.Analysis;
|
---|
| 35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 36 | using HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression;
|
---|
| 37 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
| 38 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
| 39 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
|
---|
| 40 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 41 | using HeuristicLab.Problems.DataAnalysis.SupportVectorMachine;
|
---|
| 42 | using HeuristicLab.Problems.DataAnalysis.Regression.SupportVectorRegression;
|
---|
| 43 |
|
---|
| 44 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 45 | /// <summary>
|
---|
| 46 | /// A support vector machine.
|
---|
| 47 | /// </summary>
|
---|
| 48 | [Item("Support Vector Machine", "Support vector machine data analysis algorithm.")]
|
---|
| 49 | [Creatable("Data Analysis")]
|
---|
| 50 | [StorableClass]
|
---|
| 51 | public sealed class SupportVectorMachine : EngineAlgorithm {
|
---|
| 52 | private const string TrainingSamplesStartParameterName = "Training start";
|
---|
| 53 | private const string TrainingSamplesEndParameterName = "Training end";
|
---|
| 54 | private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
|
---|
| 55 | private const string SvmTypeParameterName = "SvmType";
|
---|
| 56 | private const string KernelTypeParameterName = "KernelType";
|
---|
| 57 | private const string CostParameterName = "Cost";
|
---|
| 58 | private const string NuParameterName = "Nu";
|
---|
| 59 | private const string GammaParameterName = "Gamma";
|
---|
| 60 | private const string EpsilonParameterName = "Epsilon";
|
---|
| 61 |
|
---|
| 62 | private const string ModelParameterName = "SupportVectorMachineModel";
|
---|
| 63 | #region Problem Properties
|
---|
| 64 | public override Type ProblemType {
|
---|
| 65 | get { return typeof(DataAnalysisProblem); }
|
---|
| 66 | }
|
---|
| 67 | public new DataAnalysisProblem Problem {
|
---|
| 68 | get { return (DataAnalysisProblem)base.Problem; }
|
---|
| 69 | set { base.Problem = value; }
|
---|
| 70 | }
|
---|
| 71 | #endregion
|
---|
| 72 |
|
---|
| 73 | #region parameter properties
|
---|
| 74 | public IValueParameter<IntValue> TrainingSamplesStartParameter {
|
---|
| 75 | get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesStartParameterName]; }
|
---|
| 76 | }
|
---|
| 77 | public IValueParameter<IntValue> TrainingSamplesEndParameter {
|
---|
| 78 | get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesEndParameterName]; }
|
---|
| 79 | }
|
---|
| 80 | public IValueParameter<StringValue> SvmTypeParameter {
|
---|
| 81 | get { return (IValueParameter<StringValue>)Parameters[SvmTypeParameterName]; }
|
---|
| 82 | }
|
---|
| 83 | public IValueParameter<StringValue> KernelTypeParameter {
|
---|
| 84 | get { return (IValueParameter<StringValue>)Parameters[KernelTypeParameterName]; }
|
---|
| 85 | }
|
---|
| 86 | public IValueParameter<DoubleValue> NuParameter {
|
---|
| 87 | get { return (IValueParameter<DoubleValue>)Parameters[NuParameterName]; }
|
---|
| 88 | }
|
---|
| 89 | public IValueParameter<DoubleValue> CostParameter {
|
---|
| 90 | get { return (IValueParameter<DoubleValue>)Parameters[CostParameterName]; }
|
---|
| 91 | }
|
---|
| 92 | public IValueParameter<DoubleValue> GammaParameter {
|
---|
| 93 | get { return (IValueParameter<DoubleValue>)Parameters[GammaParameterName]; }
|
---|
| 94 | }
|
---|
| 95 | public IValueParameter<DoubleValue> EpsilonParameter {
|
---|
| 96 | get { return (IValueParameter<DoubleValue>)Parameters[EpsilonParameterName]; }
|
---|
| 97 | }
|
---|
| 98 | #endregion
|
---|
| 99 |
|
---|
| 100 | [Storable]
|
---|
| 101 | private SupportVectorMachineModelCreator solutionCreator;
|
---|
| 102 | [Storable]
|
---|
| 103 | private SupportVectorMachineModelEvaluator evaluator;
|
---|
| 104 | [Storable]
|
---|
| 105 | private SimpleMSEEvaluator mseEvaluator;
|
---|
| 106 | [Storable]
|
---|
| 107 | private BestSupportVectorRegressionSolutionAnalyzer analyzer;
|
---|
| 108 | public SupportVectorMachine()
|
---|
| 109 | : base() {
|
---|
| 110 | #region svm types
|
---|
| 111 | StringValue cSvcType = new StringValue("C_SVC").AsReadOnly();
|
---|
| 112 | StringValue nuSvcType = new StringValue("NU_SVC").AsReadOnly();
|
---|
| 113 | StringValue eSvrType = new StringValue("EPSILON_SVR").AsReadOnly();
|
---|
| 114 | StringValue nuSvrType = new StringValue("NU_SVR").AsReadOnly();
|
---|
| 115 | ItemSet<StringValue> allowedSvmTypes = new ItemSet<StringValue>();
|
---|
| 116 | allowedSvmTypes.Add(cSvcType);
|
---|
| 117 | allowedSvmTypes.Add(nuSvcType);
|
---|
| 118 | allowedSvmTypes.Add(eSvrType);
|
---|
| 119 | allowedSvmTypes.Add(nuSvrType);
|
---|
| 120 | #endregion
|
---|
| 121 | #region kernel types
|
---|
| 122 | StringValue rbfKernelType = new StringValue("RBF").AsReadOnly();
|
---|
| 123 | StringValue linearKernelType = new StringValue("LINEAR").AsReadOnly();
|
---|
| 124 | StringValue polynomialKernelType = new StringValue("POLY").AsReadOnly();
|
---|
| 125 | StringValue sigmoidKernelType = new StringValue("SIGMOID").AsReadOnly();
|
---|
| 126 | ItemSet<StringValue> allowedKernelTypes = new ItemSet<StringValue>();
|
---|
| 127 | allowedKernelTypes.Add(rbfKernelType);
|
---|
| 128 | allowedKernelTypes.Add(linearKernelType);
|
---|
| 129 | allowedKernelTypes.Add(polynomialKernelType);
|
---|
| 130 | allowedKernelTypes.Add(sigmoidKernelType);
|
---|
| 131 | #endregion
|
---|
| 132 | Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesStartParameterName, "The first index of the data set partition to use for training."));
|
---|
| 133 | Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesEndParameterName, "The last index of the data set partition to use for training."));
|
---|
| 134 | Parameters.Add(new ConstrainedValueParameter<StringValue>(SvmTypeParameterName, "The type of SVM to use.", allowedSvmTypes, nuSvrType));
|
---|
| 135 | Parameters.Add(new ConstrainedValueParameter<StringValue>(KernelTypeParameterName, "The kernel type to use for the SVM.", allowedKernelTypes, rbfKernelType));
|
---|
| 136 | Parameters.Add(new ValueParameter<DoubleValue>(NuParameterName, "The value of the nu parameter nu-SVC, one-class SVM and nu-SVR.", new DoubleValue(0.5)));
|
---|
| 137 | Parameters.Add(new ValueParameter<DoubleValue>(CostParameterName, "The value of the C (cost) parameter of C-SVC, epsilon-SVR and nu-SVR.", new DoubleValue(1.0)));
|
---|
| 138 | Parameters.Add(new ValueParameter<DoubleValue>(GammaParameterName, "The value of the gamma parameter in the kernel function.", new DoubleValue(1.0)));
|
---|
| 139 | Parameters.Add(new ValueLookupParameter<DoubleValue>(EpsilonParameterName, "The value of the epsilon parameter (only for epsilon-SVR).", new DoubleValue(1.0)));
|
---|
| 140 |
|
---|
| 141 | solutionCreator = new SupportVectorMachineModelCreator();
|
---|
| 142 | evaluator = new SupportVectorMachineModelEvaluator();
|
---|
| 143 | mseEvaluator = new SimpleMSEEvaluator();
|
---|
| 144 | analyzer = new BestSupportVectorRegressionSolutionAnalyzer();
|
---|
| 145 |
|
---|
| 146 | OperatorGraph.InitialOperator = solutionCreator;
|
---|
| 147 | solutionCreator.Successor = evaluator;
|
---|
| 148 | evaluator.Successor = mseEvaluator;
|
---|
| 149 | mseEvaluator.Successor = analyzer;
|
---|
| 150 |
|
---|
| 151 | Initialize();
|
---|
| 152 | }
|
---|
| 153 | [StorableConstructor]
|
---|
| 154 | private SupportVectorMachine(bool deserializing) : base(deserializing) { }
|
---|
| 155 |
|
---|
| 156 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 157 | SupportVectorMachine clone = (SupportVectorMachine)base.Clone(cloner);
|
---|
| 158 | clone.solutionCreator = (SupportVectorMachineModelCreator)cloner.Clone(solutionCreator);
|
---|
| 159 | clone.evaluator = (SupportVectorMachineModelEvaluator)cloner.Clone(evaluator);
|
---|
| 160 | clone.mseEvaluator = (SimpleMSEEvaluator)cloner.Clone(mseEvaluator);
|
---|
| 161 | clone.analyzer = (BestSupportVectorRegressionSolutionAnalyzer)cloner.Clone(analyzer);
|
---|
| 162 | clone.Initialize();
|
---|
| 163 | return clone;
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | public override void Prepare() {
|
---|
| 167 | if (Problem != null) base.Prepare();
|
---|
| 168 | }
|
---|
| 169 |
|
---|
[3884] | 170 | protected override void Problem_Reset(object sender, EventArgs e) {
|
---|
[3892] | 171 | UpdateAlgorithmParameters();
|
---|
[3884] | 172 | base.Problem_Reset(sender, e);
|
---|
| 173 | }
|
---|
| 174 |
|
---|
[3877] | 175 | #region Events
|
---|
| 176 | protected override void OnProblemChanged() {
|
---|
| 177 | solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 178 | evaluator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 179 | analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
[3892] | 180 | UpdateAlgorithmParameters();
|
---|
[3884] | 181 | Problem.Reset += new EventHandler(Problem_Reset);
|
---|
[3877] | 182 | base.OnProblemChanged();
|
---|
| 183 | }
|
---|
| 184 |
|
---|
| 185 | #endregion
|
---|
| 186 |
|
---|
| 187 | #region Helpers
|
---|
| 188 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 189 | private void Initialize() {
|
---|
| 190 | solutionCreator.SvmTypeParameter.ActualName = SvmTypeParameter.Name;
|
---|
| 191 | solutionCreator.KernelTypeParameter.ActualName = KernelTypeParameter.Name;
|
---|
| 192 | solutionCreator.CostParameter.ActualName = CostParameter.Name;
|
---|
| 193 | solutionCreator.GammaParameter.ActualName = GammaParameter.Name;
|
---|
| 194 | solutionCreator.NuParameter.ActualName = NuParameter.Name;
|
---|
| 195 | solutionCreator.SamplesStartParameter.ActualName = TrainingSamplesStartParameter.Name;
|
---|
| 196 | solutionCreator.SamplesEndParameter.ActualName = TrainingSamplesEndParameter.Name;
|
---|
| 197 |
|
---|
| 198 | evaluator.SamplesStartParameter.ActualName = TrainingSamplesStartParameter.Name;
|
---|
| 199 | evaluator.SamplesEndParameter.ActualName = TrainingSamplesEndParameter.Name;
|
---|
| 200 | evaluator.SupportVectorMachineModelParameter.ActualName = solutionCreator.SupportVectorMachineModelParameter.ActualName;
|
---|
| 201 | evaluator.ValuesParameter.ActualName = "Training values";
|
---|
| 202 |
|
---|
| 203 | mseEvaluator.ValuesParameter.ActualName = "Training values";
|
---|
| 204 | mseEvaluator.MeanSquaredErrorParameter.ActualName = "Training MSE";
|
---|
| 205 |
|
---|
| 206 | analyzer.SupportVectorRegressionModelParameter.ActualName = solutionCreator.SupportVectorMachineModelParameter.ActualName;
|
---|
| 207 | analyzer.SupportVectorRegressionModelParameter.Depth = 0;
|
---|
| 208 | analyzer.QualityParameter.ActualName = mseEvaluator.MeanSquaredErrorParameter.ActualName;
|
---|
| 209 | analyzer.QualityParameter.Depth = 0;
|
---|
| 210 |
|
---|
| 211 | if (Problem != null) {
|
---|
| 212 | solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 213 | evaluator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 214 | analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
[3884] | 215 | Problem.Reset += new EventHandler(Problem_Reset);
|
---|
[3877] | 216 | }
|
---|
| 217 | }
|
---|
[3892] | 218 |
|
---|
| 219 | private void UpdateAlgorithmParameters() {
|
---|
| 220 | TrainingSamplesStartParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesStart;
|
---|
| 221 | TrainingSamplesEndParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesEnd;
|
---|
| 222 | }
|
---|
[3877] | 223 | #endregion
|
---|
| 224 | }
|
---|
| 225 | }
|
---|