[3877] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.PluginInfrastructure;
|
---|
| 33 | using HeuristicLab.Random;
|
---|
| 34 | using HeuristicLab.Analysis;
|
---|
| 35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 36 | using HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression;
|
---|
| 37 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
| 38 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
| 39 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
|
---|
| 40 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 41 |
|
---|
| 42 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 43 | /// <summary>
|
---|
| 44 | /// Linear regression data analysis algorithm.
|
---|
| 45 | /// </summary>
|
---|
| 46 | [Item("Linear Regression", "Linear regression data analysis algorithm.")]
|
---|
| 47 | [Creatable("Data Analysis")]
|
---|
| 48 | [StorableClass]
|
---|
| 49 | public sealed class LinearRegression : EngineAlgorithm {
|
---|
| 50 | private const string TrainingSamplesStartParameterName = "Training start";
|
---|
| 51 | private const string TrainingSamplesEndParameterName = "Training end";
|
---|
| 52 | private const string LinearRegressionModelParameterName = "LinearRegressionModel";
|
---|
| 53 | private const string ModelInterpreterParameterName = "Model interpreter";
|
---|
| 54 |
|
---|
| 55 |
|
---|
| 56 | #region Problem Properties
|
---|
| 57 | public override Type ProblemType {
|
---|
| 58 | get { return typeof(DataAnalysisProblem); }
|
---|
| 59 | }
|
---|
| 60 | public new DataAnalysisProblem Problem {
|
---|
| 61 | get { return (DataAnalysisProblem)base.Problem; }
|
---|
| 62 | set { base.Problem = value; }
|
---|
| 63 | }
|
---|
| 64 | #endregion
|
---|
| 65 |
|
---|
| 66 | #region parameter properties
|
---|
| 67 | public IValueParameter<IntValue> TrainingSamplesStartParameter {
|
---|
| 68 | get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesStartParameterName]; }
|
---|
| 69 | }
|
---|
| 70 | public IValueParameter<IntValue> TrainingSamplesEndParameter {
|
---|
| 71 | get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesEndParameterName]; }
|
---|
| 72 | }
|
---|
| 73 | public IValueParameter<ISymbolicExpressionTreeInterpreter> ModelInterpreterParameter {
|
---|
| 74 | get { return (IValueParameter<ISymbolicExpressionTreeInterpreter>)Parameters[ModelInterpreterParameterName]; }
|
---|
| 75 | }
|
---|
| 76 | #endregion
|
---|
| 77 |
|
---|
| 78 | [Storable]
|
---|
| 79 | private LinearRegressionSolutionCreator solutionCreator;
|
---|
| 80 | [Storable]
|
---|
| 81 | private SimpleSymbolicRegressionEvaluator evaluator;
|
---|
| 82 | [Storable]
|
---|
| 83 | private SimpleMSEEvaluator mseEvaluator;
|
---|
| 84 | [Storable]
|
---|
| 85 | private BestSymbolicRegressionSolutionAnalyzer analyzer;
|
---|
| 86 | public LinearRegression()
|
---|
| 87 | : base() {
|
---|
| 88 | Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesStartParameterName, "The first index of the data set partition to use for training."));
|
---|
| 89 | Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesEndParameterName, "The last index of the data set partition to use for training."));
|
---|
| 90 | Parameters.Add(new ValueParameter<ISymbolicExpressionTreeInterpreter>(ModelInterpreterParameterName, "The interpreter to use for evaluation of the model.", new SimpleArithmeticExpressionInterpreter()));
|
---|
| 91 |
|
---|
| 92 | solutionCreator = new LinearRegressionSolutionCreator();
|
---|
| 93 | evaluator = new SimpleSymbolicRegressionEvaluator();
|
---|
| 94 | mseEvaluator = new SimpleMSEEvaluator();
|
---|
| 95 | analyzer = new BestSymbolicRegressionSolutionAnalyzer();
|
---|
| 96 |
|
---|
| 97 | OperatorGraph.InitialOperator = solutionCreator;
|
---|
| 98 | solutionCreator.Successor = evaluator;
|
---|
| 99 | evaluator.Successor = mseEvaluator;
|
---|
| 100 | mseEvaluator.Successor = analyzer;
|
---|
| 101 |
|
---|
| 102 | Initialize();
|
---|
| 103 | }
|
---|
| 104 | [StorableConstructor]
|
---|
| 105 | private LinearRegression(bool deserializing) : base(deserializing) { }
|
---|
| 106 |
|
---|
| 107 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 108 | LinearRegression clone = (LinearRegression)base.Clone(cloner);
|
---|
| 109 | clone.solutionCreator = (LinearRegressionSolutionCreator)cloner.Clone(solutionCreator);
|
---|
| 110 | clone.evaluator = (SimpleSymbolicRegressionEvaluator)cloner.Clone(evaluator);
|
---|
| 111 | clone.mseEvaluator = (SimpleMSEEvaluator)cloner.Clone(mseEvaluator);
|
---|
| 112 | clone.analyzer = (BestSymbolicRegressionSolutionAnalyzer)cloner.Clone(analyzer);
|
---|
| 113 | clone.Initialize();
|
---|
| 114 | return clone;
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | public override void Prepare() {
|
---|
| 118 | if (Problem != null) base.Prepare();
|
---|
| 119 | }
|
---|
| 120 |
|
---|
[3886] | 121 | protected override void Problem_Reset(object sender, EventArgs e) {
|
---|
[3892] | 122 | UpdateAlgorithmParameterValues();
|
---|
[3886] | 123 | base.Problem_Reset(sender, e);
|
---|
| 124 | }
|
---|
| 125 |
|
---|
[3877] | 126 | #region Events
|
---|
| 127 | protected override void OnProblemChanged() {
|
---|
| 128 | solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 129 | evaluator.RegressionProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
[3892] | 130 | analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 131 | UpdateAlgorithmParameterValues();
|
---|
[3886] | 132 | Problem.Reset += new EventHandler(Problem_Reset);
|
---|
[3877] | 133 | base.OnProblemChanged();
|
---|
| 134 | }
|
---|
| 135 |
|
---|
[3892] | 136 |
|
---|
[3877] | 137 | #endregion
|
---|
| 138 |
|
---|
| 139 | #region Helpers
|
---|
| 140 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 141 | private void Initialize() {
|
---|
| 142 | solutionCreator.SamplesStartParameter.ActualName = TrainingSamplesStartParameter.Name;
|
---|
| 143 | solutionCreator.SamplesEndParameter.ActualName = TrainingSamplesEndParameter.Name;
|
---|
| 144 | solutionCreator.SymbolicExpressionTreeParameter.ActualName = LinearRegressionModelParameterName;
|
---|
| 145 |
|
---|
| 146 | evaluator.SymbolicExpressionTreeParameter.ActualName = solutionCreator.SymbolicExpressionTreeParameter.ActualName;
|
---|
| 147 | evaluator.SymbolicExpressionTreeInterpreterParameter.ActualName = ModelInterpreterParameter.Name;
|
---|
| 148 | evaluator.ValuesParameter.ActualName = "Training values";
|
---|
| 149 | evaluator.SamplesStartParameter.ActualName = TrainingSamplesStartParameterName;
|
---|
| 150 | evaluator.SamplesEndParameter.ActualName = TrainingSamplesEndParameterName;
|
---|
| 151 |
|
---|
| 152 | mseEvaluator.ValuesParameter.ActualName = "Training values";
|
---|
| 153 | mseEvaluator.MeanSquaredErrorParameter.ActualName = "Training MSE";
|
---|
| 154 |
|
---|
| 155 | analyzer.SymbolicExpressionTreeParameter.ActualName = solutionCreator.SymbolicExpressionTreeParameter.ActualName;
|
---|
| 156 | analyzer.SymbolicExpressionTreeParameter.Depth = 0;
|
---|
| 157 | analyzer.QualityParameter.ActualName = mseEvaluator.MeanSquaredErrorParameter.ActualName;
|
---|
| 158 | analyzer.QualityParameter.Depth = 0;
|
---|
| 159 | analyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = ModelInterpreterParameter.Name;
|
---|
| 160 |
|
---|
| 161 | if (Problem != null) {
|
---|
| 162 | solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 163 | evaluator.RegressionProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
| 164 | analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
|
---|
[3886] | 165 | Problem.Reset += new EventHandler(Problem_Reset);
|
---|
[3877] | 166 | }
|
---|
| 167 | }
|
---|
[3892] | 168 |
|
---|
| 169 | private void UpdateAlgorithmParameterValues() {
|
---|
| 170 | TrainingSamplesStartParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesStart;
|
---|
| 171 | TrainingSamplesEndParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesEnd;
|
---|
| 172 | //var targetValues =
|
---|
| 173 | // Problem.DataAnalysisProblemData.Dataset.GetVariableValues(Problem.DataAnalysisProblemData.TargetVariable.Value,
|
---|
| 174 | // TrainingSamplesStartParameter.Value.Value, TrainingSamplesEndParameter.Value.Value);
|
---|
| 175 | //double range = targetValues.Max() - targetValues.Min();
|
---|
| 176 | //double lowerEstimationLimit = targetValues.Average() - 10.0 * range;
|
---|
| 177 | //double upperEstimationLimit = targetValues.Average() + 10.0 * range;
|
---|
| 178 | //evaluator.LowerEstimationLimitParameter.Value = new DoubleValue(lowerEstimationLimit);
|
---|
| 179 | //evaluator.UpperEstimationLimitParameter.Value = new DoubleValue(upperEstimationLimit);
|
---|
| 180 | //analyzer.LowerEstimationLimitParameter.Value = new DoubleValue(lowerEstimationLimit);
|
---|
| 181 | //analyzer.UpperEstimationLimitParameter.Value = new DoubleValue(upperEstimationLimit);
|
---|
| 182 | }
|
---|
[3877] | 183 | #endregion
|
---|
| 184 | }
|
---|
| 185 | }
|
---|