[8473] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9456] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8473] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Drawing;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Windows.Forms;
|
---|
| 26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
| 27 | using HeuristicLab.MainForm;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis.Views;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis.Views {
|
---|
[8678] | 31 | [View("Line Chart (95% confidence interval)")]
|
---|
[8473] | 32 | [Content(typeof(GaussianProcessRegressionSolution))]
|
---|
| 33 | public partial class GaussianProcessRegressionSolutionLineChartView : DataAnalysisSolutionEvaluationView {
|
---|
| 34 | private const string TARGETVARIABLE_SERIES_NAME = "Target Variable";
|
---|
| 35 | private const string ESTIMATEDVALUES_TRAINING_SERIES_NAME = "Estimated Values (training)";
|
---|
| 36 | private const string ESTIMATEDVALUES_TEST_SERIES_NAME = "Estimated Values (test)";
|
---|
| 37 | private const string ESTIMATEDVALUES_ALL_SERIES_NAME = "Estimated Values (all samples)";
|
---|
| 38 |
|
---|
| 39 | public new GaussianProcessRegressionSolution Content {
|
---|
| 40 | get { return (GaussianProcessRegressionSolution)base.Content; }
|
---|
| 41 | set { base.Content = value; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public GaussianProcessRegressionSolutionLineChartView()
|
---|
| 45 | : base() {
|
---|
| 46 | InitializeComponent();
|
---|
| 47 | //configure axis
|
---|
| 48 | this.chart.CustomizeAllChartAreas();
|
---|
| 49 | this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
|
---|
| 50 | this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
|
---|
| 51 | this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true;
|
---|
| 52 | this.chart.ChartAreas[0].CursorX.Interval = 1;
|
---|
| 53 |
|
---|
| 54 | this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
|
---|
| 55 | this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
|
---|
| 56 | this.chart.ChartAreas[0].CursorY.Interval = 0;
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | private void RedrawChart() {
|
---|
| 60 | this.chart.Series.Clear();
|
---|
| 61 | if (Content != null) {
|
---|
| 62 | this.chart.ChartAreas[0].AxisX.Minimum = 0;
|
---|
| 63 | this.chart.ChartAreas[0].AxisX.Maximum = Content.ProblemData.Dataset.Rows - 1;
|
---|
| 64 |
|
---|
| 65 | // training series
|
---|
| 66 | this.chart.Series.Add(ESTIMATEDVALUES_TRAINING_SERIES_NAME);
|
---|
| 67 | this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].LegendText = ESTIMATEDVALUES_TRAINING_SERIES_NAME;
|
---|
| 68 | this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].ChartType = SeriesChartType.Range;
|
---|
| 69 | this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].EmptyPointStyle.Color = this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Color;
|
---|
| 70 | var mean = Content.EstimatedTrainingValues.ToArray();
|
---|
| 71 | var s2 = Content.EstimatedTrainingVariance.ToArray();
|
---|
[8475] | 72 | var lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
|
---|
| 73 | var upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
|
---|
[8473] | 74 | this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TrainingIndices.ToArray(), lower, upper);
|
---|
| 75 | this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME]);
|
---|
| 76 | this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Tag = Content;
|
---|
[8475] | 77 |
|
---|
[8473] | 78 | // test series
|
---|
| 79 | this.chart.Series.Add(ESTIMATEDVALUES_TEST_SERIES_NAME);
|
---|
| 80 | this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].LegendText = ESTIMATEDVALUES_TEST_SERIES_NAME;
|
---|
| 81 | this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].ChartType = SeriesChartType.Range;
|
---|
| 82 |
|
---|
| 83 | mean = Content.EstimatedTestValues.ToArray();
|
---|
| 84 | s2 = Content.EstimatedTestVariance.ToArray();
|
---|
[8475] | 85 | lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
|
---|
| 86 | upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
|
---|
[8473] | 87 | this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TestIndices.ToArray(), lower, upper);
|
---|
| 88 | this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME]);
|
---|
| 89 | this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Tag = Content;
|
---|
[8475] | 90 |
|
---|
[8473] | 91 | // series of remaining points
|
---|
| 92 | int[] allIndices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndices).Except(Content.ProblemData.TestIndices).ToArray();
|
---|
[8484] | 93 | mean = Content.EstimatedValues.ToArray();
|
---|
| 94 | s2 = Content.EstimatedVariance.ToArray();
|
---|
| 95 | lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
|
---|
| 96 | upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
|
---|
| 97 | List<double> allLower = allIndices.Select(index => lower[index]).ToList();
|
---|
| 98 | List<double> allUpper = allIndices.Select(index => upper[index]).ToList();
|
---|
[8473] | 99 | this.chart.Series.Add(ESTIMATEDVALUES_ALL_SERIES_NAME);
|
---|
| 100 | this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].LegendText = ESTIMATEDVALUES_ALL_SERIES_NAME;
|
---|
| 101 | this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].ChartType = SeriesChartType.Range;
|
---|
[8484] | 102 | if (allIndices.Count() > 0) {
|
---|
| 103 | this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Points.DataBindXY(allIndices, allLower, allUpper);
|
---|
| 104 | this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME]);
|
---|
| 105 | }
|
---|
[8473] | 106 | this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Tag = Content;
|
---|
[8475] | 107 |
|
---|
| 108 | // target
|
---|
| 109 | this.chart.Series.Add(TARGETVARIABLE_SERIES_NAME);
|
---|
| 110 | this.chart.Series[TARGETVARIABLE_SERIES_NAME].LegendText = Content.ProblemData.TargetVariable;
|
---|
| 111 | this.chart.Series[TARGETVARIABLE_SERIES_NAME].ChartType = SeriesChartType.FastLine;
|
---|
| 112 | this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.DataBindXY(Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray(),
|
---|
| 113 | Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray());
|
---|
| 114 |
|
---|
[8473] | 115 | this.ToggleSeriesData(this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME]);
|
---|
| 116 |
|
---|
[8580] | 117 |
|
---|
[8562] | 118 | // the series have been added in different order than in the normal line chart
|
---|
| 119 | // --> adapt coloring;
|
---|
[8580] | 120 | chart.ApplyPaletteColors();
|
---|
| 121 | this.chart.Palette = ChartColorPalette.None;
|
---|
| 122 | var s0Color = chart.Series[0].Color;
|
---|
| 123 | var s1Color = chart.Series[1].Color;
|
---|
| 124 | var s2Color = chart.Series[2].Color;
|
---|
| 125 | var s3Color = chart.Series[3].Color;
|
---|
| 126 | this.chart.PaletteCustomColors = new Color[] { s1Color, s2Color, s3Color, s0Color };
|
---|
[8562] | 127 |
|
---|
[8473] | 128 | UpdateCursorInterval();
|
---|
| 129 | this.UpdateStripLines();
|
---|
| 130 | }
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | private void InsertEmptyPoints(Series series) {
|
---|
| 134 | int i = 0;
|
---|
| 135 | while (i < series.Points.Count - 1) {
|
---|
| 136 | if (series.Points[i].IsEmpty) {
|
---|
| 137 | ++i;
|
---|
| 138 | continue;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | var p1 = series.Points[i];
|
---|
| 142 | var p2 = series.Points[i + 1];
|
---|
| 143 | // check for consecutive indices
|
---|
| 144 | if ((int)p2.XValue - (int)p1.XValue != 1) {
|
---|
| 145 | // insert an empty point between p1 and p2 so that the line will be invisible (transparent)
|
---|
[8484] | 146 | var p = new DataPoint((int)((p1.XValue + p2.XValue) / 2), new double[] { 0.0, 0.0 }) { IsEmpty = true };
|
---|
| 147 | // insert
|
---|
[8473] | 148 | series.Points.Insert(i + 1, p);
|
---|
| 149 | }
|
---|
| 150 | ++i;
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | private void UpdateCursorInterval() {
|
---|
| 155 | var estimatedValues = this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.Select(x => x.YValues[0]).DefaultIfEmpty(1.0);
|
---|
| 156 | var targetValues = this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.Select(x => x.YValues[0]).DefaultIfEmpty(1.0);
|
---|
| 157 | double estimatedValuesRange = estimatedValues.Max() - estimatedValues.Min();
|
---|
| 158 | double targetValuesRange = targetValues.Max() - targetValues.Min();
|
---|
| 159 | double interestingValuesRange = Math.Min(Math.Max(targetValuesRange, 1.0), Math.Max(estimatedValuesRange, 1.0));
|
---|
| 160 | double digits = (int)Math.Log10(interestingValuesRange) - 3;
|
---|
| 161 | double yZoomInterval = Math.Max(Math.Pow(10, digits), 10E-5);
|
---|
| 162 | this.chart.ChartAreas[0].CursorY.Interval = yZoomInterval;
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | #region events
|
---|
| 166 | protected override void RegisterContentEvents() {
|
---|
| 167 | base.RegisterContentEvents();
|
---|
| 168 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
| 169 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 170 | }
|
---|
| 171 | protected override void DeregisterContentEvents() {
|
---|
| 172 | base.DeregisterContentEvents();
|
---|
| 173 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
| 174 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | protected override void OnContentChanged() {
|
---|
| 178 | base.OnContentChanged();
|
---|
| 179 | RedrawChart();
|
---|
| 180 | }
|
---|
| 181 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 182 | RedrawChart();
|
---|
| 183 | }
|
---|
| 184 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 185 | RedrawChart();
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 |
|
---|
| 189 |
|
---|
| 190 | private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) {
|
---|
| 191 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
| 192 | if (result.ChartArea != null && (result.ChartElementType == ChartElementType.PlottingArea ||
|
---|
| 193 | result.ChartElementType == ChartElementType.Gridlines) ||
|
---|
| 194 | result.ChartElementType == ChartElementType.StripLines) {
|
---|
| 195 | foreach (var axis in result.ChartArea.Axes)
|
---|
| 196 | axis.ScaleView.ZoomReset(int.MaxValue);
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 | #endregion
|
---|
| 200 |
|
---|
| 201 | private void UpdateStripLines() {
|
---|
| 202 | this.chart.ChartAreas[0].AxisX.StripLines.Clear();
|
---|
| 203 |
|
---|
| 204 | int[] attr = new int[Content.ProblemData.Dataset.Rows + 1]; // add a virtual last row that is again empty to simplify loop further down
|
---|
| 205 | foreach (var row in Content.ProblemData.TrainingIndices) {
|
---|
| 206 | attr[row] += 1;
|
---|
| 207 | }
|
---|
| 208 | foreach (var row in Content.ProblemData.TestIndices) {
|
---|
| 209 | attr[row] += 2;
|
---|
| 210 | }
|
---|
| 211 | int start = 0;
|
---|
| 212 | int curAttr = attr[start];
|
---|
| 213 | for (int row = 0; row < attr.Length; row++) {
|
---|
| 214 | if (attr[row] != curAttr) {
|
---|
| 215 | switch (curAttr) {
|
---|
| 216 | case 0: break;
|
---|
| 217 | case 1:
|
---|
| 218 | this.CreateAndAddStripLine("Training", start, row, Color.FromArgb(40, Color.Green), Color.Transparent);
|
---|
| 219 | break;
|
---|
| 220 | case 2:
|
---|
| 221 | this.CreateAndAddStripLine("Test", start, row, Color.FromArgb(40, Color.Red), Color.Transparent);
|
---|
| 222 | break;
|
---|
| 223 | case 3:
|
---|
| 224 | this.CreateAndAddStripLine("Training and Test", start, row, Color.FromArgb(40, Color.Green), Color.FromArgb(40, Color.Red), ChartHatchStyle.WideUpwardDiagonal);
|
---|
| 225 | break;
|
---|
| 226 | default:
|
---|
| 227 | // should not happen
|
---|
| 228 | break;
|
---|
| 229 | }
|
---|
| 230 | curAttr = attr[row];
|
---|
| 231 | start = row;
|
---|
| 232 | }
|
---|
| 233 | }
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | private void CreateAndAddStripLine(string title, int start, int end, Color color, Color secondColor, ChartHatchStyle hatchStyle = ChartHatchStyle.None) {
|
---|
| 237 | StripLine stripLine = new StripLine();
|
---|
| 238 | stripLine.BackColor = color;
|
---|
| 239 | stripLine.BackSecondaryColor = secondColor;
|
---|
| 240 | stripLine.BackHatchStyle = hatchStyle;
|
---|
| 241 | stripLine.Text = title;
|
---|
| 242 | stripLine.Font = new Font("Times New Roman", 12, FontStyle.Bold);
|
---|
| 243 | // strip range is [start .. end] inclusive, but we evaluate [start..end[ (end is exclusive)
|
---|
| 244 | // the strip should be by one longer (starting at start - 0.5 and ending at end + 0.5)
|
---|
| 245 | stripLine.StripWidth = end - start;
|
---|
| 246 | stripLine.IntervalOffset = start - 0.5; // start slightly to the left of the first point to clearly indicate the first point in the partition
|
---|
| 247 | this.chart.ChartAreas[0].AxisX.StripLines.Add(stripLine);
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | private void ToggleSeriesData(Series series) {
|
---|
| 251 | if (series.Points.Count > 0) { //checks if series is shown
|
---|
| 252 | if (this.chart.Series.Any(s => s != series && s.Points.Count > 0)) {
|
---|
| 253 | ClearPointsQuick(series.Points);
|
---|
| 254 | }
|
---|
| 255 | } else if (Content != null) {
|
---|
| 256 |
|
---|
| 257 | IEnumerable<int> indices = null;
|
---|
| 258 | IEnumerable<double> mean = null;
|
---|
| 259 | IEnumerable<double> s2 = null;
|
---|
| 260 | double[] lower = null;
|
---|
| 261 | double[] upper = null;
|
---|
| 262 | switch (series.Name) {
|
---|
| 263 | case ESTIMATEDVALUES_ALL_SERIES_NAME:
|
---|
| 264 | indices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndices).Except(Content.ProblemData.TestIndices).ToArray();
|
---|
| 265 | mean = Content.EstimatedValues.ToArray();
|
---|
| 266 | s2 = Content.EstimatedVariance.ToArray();
|
---|
[8475] | 267 | lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
|
---|
| 268 | upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
|
---|
[8473] | 269 | lower = indices.Select(index => lower[index]).ToArray();
|
---|
| 270 | upper = indices.Select(index => upper[index]).ToArray();
|
---|
| 271 | break;
|
---|
| 272 | case ESTIMATEDVALUES_TRAINING_SERIES_NAME:
|
---|
| 273 | indices = Content.ProblemData.TrainingIndices.ToArray();
|
---|
| 274 | mean = Content.EstimatedTrainingValues.ToArray();
|
---|
| 275 | s2 = Content.EstimatedTrainingVariance.ToArray();
|
---|
[8475] | 276 | lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
|
---|
| 277 | upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
|
---|
[8473] | 278 | break;
|
---|
| 279 | case ESTIMATEDVALUES_TEST_SERIES_NAME:
|
---|
| 280 | indices = Content.ProblemData.TestIndices.ToArray();
|
---|
| 281 | mean = Content.EstimatedTestValues.ToArray();
|
---|
| 282 | s2 = Content.EstimatedTestVariance.ToArray();
|
---|
[8580] | 283 | lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
|
---|
| 284 | upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
|
---|
[8473] | 285 | break;
|
---|
| 286 | }
|
---|
[8484] | 287 | if (indices.Count() > 0) {
|
---|
| 288 | series.Points.DataBindXY(indices, lower, upper);
|
---|
| 289 | this.InsertEmptyPoints(series);
|
---|
| 290 | chart.Legends[series.Legend].ForeColor = Color.Black;
|
---|
| 291 | UpdateCursorInterval();
|
---|
| 292 | chart.Refresh();
|
---|
| 293 | }
|
---|
[8473] | 294 | }
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 | // workaround as per http://stackoverflow.com/questions/5744930/datapointcollection-clear-performance
|
---|
| 298 | private static void ClearPointsQuick(DataPointCollection points) {
|
---|
| 299 | points.SuspendUpdates();
|
---|
| 300 | while (points.Count > 0)
|
---|
| 301 | points.RemoveAt(points.Count - 1);
|
---|
| 302 | points.ResumeUpdates();
|
---|
| 303 | }
|
---|
| 304 |
|
---|
| 305 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
| 306 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
| 307 | if (result.ChartElementType == ChartElementType.LegendItem && result.Series.Name != TARGETVARIABLE_SERIES_NAME)
|
---|
| 308 | Cursor = Cursors.Hand;
|
---|
| 309 | else
|
---|
| 310 | Cursor = Cursors.Default;
|
---|
| 311 | }
|
---|
| 312 | private void chart_MouseDown(object sender, MouseEventArgs e) {
|
---|
| 313 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
| 314 | if (result.ChartElementType == ChartElementType.LegendItem && result.Series.Name != TARGETVARIABLE_SERIES_NAME) {
|
---|
| 315 | ToggleSeriesData(result.Series);
|
---|
| 316 | }
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | private void chart_CustomizeLegend(object sender, CustomizeLegendEventArgs e) {
|
---|
| 320 | if (chart.Series.Count != 4) return;
|
---|
[8484] | 321 | e.LegendItems[0].Cells[1].ForeColor = this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
|
---|
| 322 | e.LegendItems[1].Cells[1].ForeColor = this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
|
---|
| 323 | e.LegendItems[2].Cells[1].ForeColor = this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
|
---|
| 324 | e.LegendItems[3].Cells[1].ForeColor = this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
|
---|
[8473] | 325 | }
|
---|
| 326 | }
|
---|
| 327 | }
|
---|