1 |
|
---|
2 | using System;
|
---|
3 |
|
---|
4 | namespace alglib
|
---|
5 | {
|
---|
6 | public class xblas
|
---|
7 | {
|
---|
8 | /*************************************************************************
|
---|
9 | More precise dot-product. Absolute error of subroutine result is about
|
---|
10 | 1 ulp of max(MX,V), where:
|
---|
11 | MX = max( |a[i]*b[i]| )
|
---|
12 | V = |(a,b)|
|
---|
13 |
|
---|
14 | INPUT PARAMETERS
|
---|
15 | A - array[0..N-1], vector 1
|
---|
16 | B - array[0..N-1], vector 2
|
---|
17 | N - vectors length, N<2^29.
|
---|
18 | Temp - array[0..N-1], pre-allocated temporary storage
|
---|
19 |
|
---|
20 | OUTPUT PARAMETERS
|
---|
21 | R - (A,B)
|
---|
22 | RErr - estimate of error. This estimate accounts for both errors
|
---|
23 | during calculation of (A,B) and errors introduced by
|
---|
24 | rounding of A/B to fit in double (about 1 ulp).
|
---|
25 |
|
---|
26 | -- ALGLIB --
|
---|
27 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
28 | *************************************************************************/
|
---|
29 | public static void xdot(ref double[] a,
|
---|
30 | ref double[] b,
|
---|
31 | int n,
|
---|
32 | ref double[] temp,
|
---|
33 | ref double r,
|
---|
34 | ref double rerr)
|
---|
35 | {
|
---|
36 | int i = 0;
|
---|
37 | int k = 0;
|
---|
38 | int ks = 0;
|
---|
39 | double mx = 0;
|
---|
40 | double v = 0;
|
---|
41 | double v1 = 0;
|
---|
42 | double v2 = 0;
|
---|
43 | double s = 0;
|
---|
44 | double ln2 = 0;
|
---|
45 | double chunk = 0;
|
---|
46 | double invchunk = 0;
|
---|
47 | bool allzeros = new bool();
|
---|
48 | int i_ = 0;
|
---|
49 |
|
---|
50 |
|
---|
51 | //
|
---|
52 | // special cases:
|
---|
53 | // * N=0
|
---|
54 | // * N is too large to use integer arithmetics
|
---|
55 | //
|
---|
56 | if( n==0 )
|
---|
57 | {
|
---|
58 | r = 0;
|
---|
59 | rerr = 0;
|
---|
60 | return;
|
---|
61 | }
|
---|
62 | System.Diagnostics.Debug.Assert(n<536870912, "XDot: N is too large!");
|
---|
63 |
|
---|
64 | //
|
---|
65 | // Prepare
|
---|
66 | //
|
---|
67 | ln2 = Math.Log(2);
|
---|
68 |
|
---|
69 | //
|
---|
70 | // calculate pairwise products vector TEMP
|
---|
71 | // (relative precision of TEMP - almost full)
|
---|
72 | // find infinity-norm of products vector
|
---|
73 | //
|
---|
74 | mx = 0;
|
---|
75 | for(i=0; i<=n-1; i++)
|
---|
76 | {
|
---|
77 | v = a[i]*b[i];
|
---|
78 | temp[i] = v;
|
---|
79 | mx = Math.Max(mx, Math.Abs(v));
|
---|
80 | }
|
---|
81 | if( (double)(mx)==(double)(0) )
|
---|
82 | {
|
---|
83 | r = 0;
|
---|
84 | rerr = 0;
|
---|
85 | return;
|
---|
86 | }
|
---|
87 | rerr = mx*AP.Math.MachineEpsilon;
|
---|
88 |
|
---|
89 | //
|
---|
90 | // 1. find S such that 0.5<=S*MX<1
|
---|
91 | // 2. multiply TEMP by S, so task is normalized in some sense
|
---|
92 | // 3. S:=1/S so we can obtain original vector multiplying by S
|
---|
93 | //
|
---|
94 | k = (int)Math.Round(Math.Log(mx)/ln2);
|
---|
95 | s = xfastpow(2, -k);
|
---|
96 | while( (double)(s*mx)>=(double)(1) )
|
---|
97 | {
|
---|
98 | s = 0.5*s;
|
---|
99 | }
|
---|
100 | while( (double)(s*mx)<(double)(0.5) )
|
---|
101 | {
|
---|
102 | s = 2*s;
|
---|
103 | }
|
---|
104 | for(i_=0; i_<=n-1;i_++)
|
---|
105 | {
|
---|
106 | temp[i_] = s*temp[i_];
|
---|
107 | }
|
---|
108 | s = 1/s;
|
---|
109 |
|
---|
110 | //
|
---|
111 | // find Chunk=2^M such that N*Chunk<2^29
|
---|
112 | //
|
---|
113 | // we have chosen upper limit (2^29) with enough space left
|
---|
114 | // to tolerate possible problems with rounding and N's close
|
---|
115 | // to the limit, so we don't want to be very strict here.
|
---|
116 | //
|
---|
117 | k = (int)(Math.Log((double)(536870912)/(double)(n))/ln2);
|
---|
118 | chunk = xfastpow(2, k);
|
---|
119 | if( (double)(chunk)<(double)(2) )
|
---|
120 | {
|
---|
121 | chunk = 2;
|
---|
122 | }
|
---|
123 | invchunk = 1/chunk;
|
---|
124 |
|
---|
125 | //
|
---|
126 | // calculate result
|
---|
127 | //
|
---|
128 | r = 0;
|
---|
129 | for(i_=0; i_<=n-1;i_++)
|
---|
130 | {
|
---|
131 | temp[i_] = chunk*temp[i_];
|
---|
132 | }
|
---|
133 | while( true )
|
---|
134 | {
|
---|
135 | s = s*invchunk;
|
---|
136 | allzeros = true;
|
---|
137 | ks = 0;
|
---|
138 | for(i=0; i<=n-1; i++)
|
---|
139 | {
|
---|
140 | v = temp[i];
|
---|
141 | k = (int)(v);
|
---|
142 | if( (double)(v)!=(double)(k) )
|
---|
143 | {
|
---|
144 | allzeros = false;
|
---|
145 | }
|
---|
146 | temp[i] = chunk*(v-k);
|
---|
147 | ks = ks+k;
|
---|
148 | }
|
---|
149 | r = r+s*ks;
|
---|
150 | v = Math.Abs(r);
|
---|
151 | if( allzeros | (double)(s*n+mx)==(double)(mx) )
|
---|
152 | {
|
---|
153 | break;
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | //
|
---|
158 | // correct error
|
---|
159 | //
|
---|
160 | rerr = Math.Max(rerr, Math.Abs(r)*AP.Math.MachineEpsilon);
|
---|
161 | }
|
---|
162 |
|
---|
163 |
|
---|
164 | private static double xfastpow(double r,
|
---|
165 | int n)
|
---|
166 | {
|
---|
167 | double result = 0;
|
---|
168 |
|
---|
169 | if( n>0 )
|
---|
170 | {
|
---|
171 | if( n%2==0 )
|
---|
172 | {
|
---|
173 | result = AP.Math.Sqr(xfastpow(r, n/2));
|
---|
174 | }
|
---|
175 | else
|
---|
176 | {
|
---|
177 | result = r*xfastpow(r, n-1);
|
---|
178 | }
|
---|
179 | return result;
|
---|
180 | }
|
---|
181 | if( n==0 )
|
---|
182 | {
|
---|
183 | result = 1;
|
---|
184 | }
|
---|
185 | if( n<0 )
|
---|
186 | {
|
---|
187 | result = xfastpow(1/r, -n);
|
---|
188 | }
|
---|
189 | return result;
|
---|
190 | }
|
---|
191 |
|
---|
192 |
|
---|
193 | private static double xfrac(double r)
|
---|
194 | {
|
---|
195 | double result = 0;
|
---|
196 | int i = 0;
|
---|
197 |
|
---|
198 | if( (double)(r)==(double)(0) )
|
---|
199 | {
|
---|
200 | result = 0;
|
---|
201 | return result;
|
---|
202 | }
|
---|
203 | if( (double)(r)<(double)(0) )
|
---|
204 | {
|
---|
205 | result = -1;
|
---|
206 | r = -r;
|
---|
207 | }
|
---|
208 | else
|
---|
209 | {
|
---|
210 | result = 1;
|
---|
211 | }
|
---|
212 | result = result*(r-(int)Math.Floor(r));
|
---|
213 | return result;
|
---|
214 | }
|
---|
215 | }
|
---|
216 | }
|
---|