[2563] | 1 |
|
---|
| 2 | using System;
|
---|
| 3 |
|
---|
| 4 | namespace alglib
|
---|
| 5 | {
|
---|
| 6 | public class xblas
|
---|
| 7 | {
|
---|
| 8 | /*************************************************************************
|
---|
| 9 | More precise dot-product. Absolute error of subroutine result is about
|
---|
| 10 | 1 ulp of max(MX,V), where:
|
---|
| 11 | MX = max( |a[i]*b[i]| )
|
---|
| 12 | V = |(a,b)|
|
---|
| 13 |
|
---|
| 14 | INPUT PARAMETERS
|
---|
| 15 | A - array[0..N-1], vector 1
|
---|
| 16 | B - array[0..N-1], vector 2
|
---|
| 17 | N - vectors length, N<2^29.
|
---|
| 18 | Temp - array[0..N-1], pre-allocated temporary storage
|
---|
| 19 |
|
---|
| 20 | OUTPUT PARAMETERS
|
---|
| 21 | R - (A,B)
|
---|
| 22 | RErr - estimate of error. This estimate accounts for both errors
|
---|
| 23 | during calculation of (A,B) and errors introduced by
|
---|
| 24 | rounding of A/B to fit in double (about 1 ulp).
|
---|
| 25 |
|
---|
| 26 | -- ALGLIB --
|
---|
| 27 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
| 28 | *************************************************************************/
|
---|
| 29 | public static void xdot(ref double[] a,
|
---|
| 30 | ref double[] b,
|
---|
| 31 | int n,
|
---|
| 32 | ref double[] temp,
|
---|
| 33 | ref double r,
|
---|
| 34 | ref double rerr)
|
---|
| 35 | {
|
---|
| 36 | int i = 0;
|
---|
| 37 | int k = 0;
|
---|
| 38 | int ks = 0;
|
---|
| 39 | double mx = 0;
|
---|
| 40 | double v = 0;
|
---|
| 41 | double v1 = 0;
|
---|
| 42 | double v2 = 0;
|
---|
| 43 | double s = 0;
|
---|
| 44 | double ln2 = 0;
|
---|
| 45 | double chunk = 0;
|
---|
| 46 | double invchunk = 0;
|
---|
| 47 | bool allzeros = new bool();
|
---|
| 48 | int i_ = 0;
|
---|
| 49 |
|
---|
| 50 |
|
---|
| 51 | //
|
---|
| 52 | // special cases:
|
---|
| 53 | // * N=0
|
---|
| 54 | // * N is too large to use integer arithmetics
|
---|
| 55 | //
|
---|
| 56 | if( n==0 )
|
---|
| 57 | {
|
---|
| 58 | r = 0;
|
---|
| 59 | rerr = 0;
|
---|
| 60 | return;
|
---|
| 61 | }
|
---|
| 62 | System.Diagnostics.Debug.Assert(n<536870912, "XDot: N is too large!");
|
---|
| 63 |
|
---|
| 64 | //
|
---|
| 65 | // Prepare
|
---|
| 66 | //
|
---|
| 67 | ln2 = Math.Log(2);
|
---|
| 68 |
|
---|
| 69 | //
|
---|
| 70 | // calculate pairwise products vector TEMP
|
---|
| 71 | // (relative precision of TEMP - almost full)
|
---|
| 72 | // find infinity-norm of products vector
|
---|
| 73 | //
|
---|
| 74 | mx = 0;
|
---|
| 75 | for(i=0; i<=n-1; i++)
|
---|
| 76 | {
|
---|
| 77 | v = a[i]*b[i];
|
---|
| 78 | temp[i] = v;
|
---|
| 79 | mx = Math.Max(mx, Math.Abs(v));
|
---|
| 80 | }
|
---|
| 81 | if( (double)(mx)==(double)(0) )
|
---|
| 82 | {
|
---|
| 83 | r = 0;
|
---|
| 84 | rerr = 0;
|
---|
| 85 | return;
|
---|
| 86 | }
|
---|
| 87 | rerr = mx*AP.Math.MachineEpsilon;
|
---|
| 88 |
|
---|
| 89 | //
|
---|
| 90 | // 1. find S such that 0.5<=S*MX<1
|
---|
| 91 | // 2. multiply TEMP by S, so task is normalized in some sense
|
---|
| 92 | // 3. S:=1/S so we can obtain original vector multiplying by S
|
---|
| 93 | //
|
---|
| 94 | k = (int)Math.Round(Math.Log(mx)/ln2);
|
---|
| 95 | s = xfastpow(2, -k);
|
---|
| 96 | while( (double)(s*mx)>=(double)(1) )
|
---|
| 97 | {
|
---|
| 98 | s = 0.5*s;
|
---|
| 99 | }
|
---|
| 100 | while( (double)(s*mx)<(double)(0.5) )
|
---|
| 101 | {
|
---|
| 102 | s = 2*s;
|
---|
| 103 | }
|
---|
| 104 | for(i_=0; i_<=n-1;i_++)
|
---|
| 105 | {
|
---|
| 106 | temp[i_] = s*temp[i_];
|
---|
| 107 | }
|
---|
| 108 | s = 1/s;
|
---|
| 109 |
|
---|
| 110 | //
|
---|
| 111 | // find Chunk=2^M such that N*Chunk<2^29
|
---|
| 112 | //
|
---|
| 113 | // we have chosen upper limit (2^29) with enough space left
|
---|
| 114 | // to tolerate possible problems with rounding and N's close
|
---|
| 115 | // to the limit, so we don't want to be very strict here.
|
---|
| 116 | //
|
---|
| 117 | k = (int)(Math.Log((double)(536870912)/(double)(n))/ln2);
|
---|
| 118 | chunk = xfastpow(2, k);
|
---|
| 119 | if( (double)(chunk)<(double)(2) )
|
---|
| 120 | {
|
---|
| 121 | chunk = 2;
|
---|
| 122 | }
|
---|
| 123 | invchunk = 1/chunk;
|
---|
| 124 |
|
---|
| 125 | //
|
---|
| 126 | // calculate result
|
---|
| 127 | //
|
---|
| 128 | r = 0;
|
---|
| 129 | for(i_=0; i_<=n-1;i_++)
|
---|
| 130 | {
|
---|
| 131 | temp[i_] = chunk*temp[i_];
|
---|
| 132 | }
|
---|
| 133 | while( true )
|
---|
| 134 | {
|
---|
| 135 | s = s*invchunk;
|
---|
| 136 | allzeros = true;
|
---|
| 137 | ks = 0;
|
---|
| 138 | for(i=0; i<=n-1; i++)
|
---|
| 139 | {
|
---|
| 140 | v = temp[i];
|
---|
| 141 | k = (int)(v);
|
---|
| 142 | if( (double)(v)!=(double)(k) )
|
---|
| 143 | {
|
---|
| 144 | allzeros = false;
|
---|
| 145 | }
|
---|
| 146 | temp[i] = chunk*(v-k);
|
---|
| 147 | ks = ks+k;
|
---|
| 148 | }
|
---|
| 149 | r = r+s*ks;
|
---|
| 150 | v = Math.Abs(r);
|
---|
| 151 | if( allzeros | (double)(s*n+mx)==(double)(mx) )
|
---|
| 152 | {
|
---|
| 153 | break;
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | //
|
---|
| 158 | // correct error
|
---|
| 159 | //
|
---|
| 160 | rerr = Math.Max(rerr, Math.Abs(r)*AP.Math.MachineEpsilon);
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 |
|
---|
| 164 | private static double xfastpow(double r,
|
---|
| 165 | int n)
|
---|
| 166 | {
|
---|
| 167 | double result = 0;
|
---|
| 168 |
|
---|
| 169 | if( n>0 )
|
---|
| 170 | {
|
---|
| 171 | if( n%2==0 )
|
---|
| 172 | {
|
---|
| 173 | result = AP.Math.Sqr(xfastpow(r, n/2));
|
---|
| 174 | }
|
---|
| 175 | else
|
---|
| 176 | {
|
---|
| 177 | result = r*xfastpow(r, n-1);
|
---|
| 178 | }
|
---|
| 179 | return result;
|
---|
| 180 | }
|
---|
| 181 | if( n==0 )
|
---|
| 182 | {
|
---|
| 183 | result = 1;
|
---|
| 184 | }
|
---|
| 185 | if( n<0 )
|
---|
| 186 | {
|
---|
| 187 | result = xfastpow(1/r, -n);
|
---|
| 188 | }
|
---|
| 189 | return result;
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 |
|
---|
| 193 | private static double xfrac(double r)
|
---|
| 194 | {
|
---|
| 195 | double result = 0;
|
---|
| 196 | int i = 0;
|
---|
| 197 |
|
---|
| 198 | if( (double)(r)==(double)(0) )
|
---|
| 199 | {
|
---|
| 200 | result = 0;
|
---|
| 201 | return result;
|
---|
| 202 | }
|
---|
| 203 | if( (double)(r)<(double)(0) )
|
---|
| 204 | {
|
---|
| 205 | result = -1;
|
---|
| 206 | r = -r;
|
---|
| 207 | }
|
---|
| 208 | else
|
---|
| 209 | {
|
---|
| 210 | result = 1;
|
---|
| 211 | }
|
---|
| 212 | result = result*(r-(int)Math.Floor(r));
|
---|
| 213 | return result;
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | }
|
---|