1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class variancetests
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Two-sample F-test
|
---|
29 |
|
---|
30 | This test checks three hypotheses about dispersions of the given samples.
|
---|
31 | The following tests are performed:
|
---|
32 | * two-tailed test (null hypothesis - the dispersions are equal)
|
---|
33 | * left-tailed test (null hypothesis - the dispersion of the first
|
---|
34 | sample is greater than or equal to the dispersion of the second
|
---|
35 | sample).
|
---|
36 | * right-tailed test (null hypothesis - the dispersion of the first
|
---|
37 | sample is less than or equal to the dispersion of the second sample)
|
---|
38 |
|
---|
39 | The test is based on the following assumptions:
|
---|
40 | * the given samples have normal distributions
|
---|
41 | * the samples are independent.
|
---|
42 |
|
---|
43 | Input parameters:
|
---|
44 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
45 | N - sample size.
|
---|
46 | Y - sample 2. Array whose index goes from 0 to M-1.
|
---|
47 | M - sample size.
|
---|
48 |
|
---|
49 | Output parameters:
|
---|
50 | BothTails - p-value for two-tailed test.
|
---|
51 | If BothTails is less than the given significance level
|
---|
52 | the null hypothesis is rejected.
|
---|
53 | LeftTail - p-value for left-tailed test.
|
---|
54 | If LeftTail is less than the given significance level,
|
---|
55 | the null hypothesis is rejected.
|
---|
56 | RightTail - p-value for right-tailed test.
|
---|
57 | If RightTail is less than the given significance level
|
---|
58 | the null hypothesis is rejected.
|
---|
59 |
|
---|
60 | -- ALGLIB --
|
---|
61 | Copyright 19.09.2006 by Bochkanov Sergey
|
---|
62 | *************************************************************************/
|
---|
63 | public static void ftest(ref double[] x,
|
---|
64 | int n,
|
---|
65 | ref double[] y,
|
---|
66 | int m,
|
---|
67 | ref double bothtails,
|
---|
68 | ref double lefttail,
|
---|
69 | ref double righttail)
|
---|
70 | {
|
---|
71 | int i = 0;
|
---|
72 | double xmean = 0;
|
---|
73 | double ymean = 0;
|
---|
74 | double xvar = 0;
|
---|
75 | double yvar = 0;
|
---|
76 | double p = 0;
|
---|
77 | int df1 = 0;
|
---|
78 | int df2 = 0;
|
---|
79 | double stat = 0;
|
---|
80 |
|
---|
81 | if( n<=2 | m<=2 )
|
---|
82 | {
|
---|
83 | bothtails = 1.0;
|
---|
84 | lefttail = 1.0;
|
---|
85 | righttail = 1.0;
|
---|
86 | return;
|
---|
87 | }
|
---|
88 |
|
---|
89 | //
|
---|
90 | // Mean
|
---|
91 | //
|
---|
92 | xmean = 0;
|
---|
93 | for(i=0; i<=n-1; i++)
|
---|
94 | {
|
---|
95 | xmean = xmean+x[i];
|
---|
96 | }
|
---|
97 | xmean = xmean/n;
|
---|
98 | ymean = 0;
|
---|
99 | for(i=0; i<=m-1; i++)
|
---|
100 | {
|
---|
101 | ymean = ymean+y[i];
|
---|
102 | }
|
---|
103 | ymean = ymean/m;
|
---|
104 |
|
---|
105 | //
|
---|
106 | // Variance (using corrected two-pass algorithm)
|
---|
107 | //
|
---|
108 | xvar = 0;
|
---|
109 | for(i=0; i<=n-1; i++)
|
---|
110 | {
|
---|
111 | xvar = xvar+AP.Math.Sqr(x[i]-xmean);
|
---|
112 | }
|
---|
113 | xvar = xvar/(n-1);
|
---|
114 | yvar = 0;
|
---|
115 | for(i=0; i<=m-1; i++)
|
---|
116 | {
|
---|
117 | yvar = yvar+AP.Math.Sqr(y[i]-ymean);
|
---|
118 | }
|
---|
119 | yvar = yvar/(m-1);
|
---|
120 | if( (double)(xvar)==(double)(0) | (double)(yvar)==(double)(0) )
|
---|
121 | {
|
---|
122 | bothtails = 1.0;
|
---|
123 | lefttail = 1.0;
|
---|
124 | righttail = 1.0;
|
---|
125 | return;
|
---|
126 | }
|
---|
127 |
|
---|
128 | //
|
---|
129 | // Statistic
|
---|
130 | //
|
---|
131 | df1 = n-1;
|
---|
132 | df2 = m-1;
|
---|
133 | stat = Math.Min(xvar/yvar, yvar/xvar);
|
---|
134 | bothtails = 1-(fdistr.fdistribution(df1, df2, 1/stat)-fdistr.fdistribution(df1, df2, stat));
|
---|
135 | lefttail = fdistr.fdistribution(df1, df2, xvar/yvar);
|
---|
136 | righttail = 1-lefttail;
|
---|
137 | }
|
---|
138 |
|
---|
139 |
|
---|
140 | /*************************************************************************
|
---|
141 | One-sample chi-square test
|
---|
142 |
|
---|
143 | This test checks three hypotheses about the dispersion of the given sample
|
---|
144 | The following tests are performed:
|
---|
145 | * two-tailed test (null hypothesis - the dispersion equals the given
|
---|
146 | number)
|
---|
147 | * left-tailed test (null hypothesis - the dispersion is greater than
|
---|
148 | or equal to the given number)
|
---|
149 | * right-tailed test (null hypothesis - dispersion is less than or
|
---|
150 | equal to the given number).
|
---|
151 |
|
---|
152 | Test is based on the following assumptions:
|
---|
153 | * the given sample has a normal distribution.
|
---|
154 |
|
---|
155 | Input parameters:
|
---|
156 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
157 | N - size of the sample.
|
---|
158 | Variance - dispersion value to compare with.
|
---|
159 |
|
---|
160 | Output parameters:
|
---|
161 | BothTails - p-value for two-tailed test.
|
---|
162 | If BothTails is less than the given significance level
|
---|
163 | the null hypothesis is rejected.
|
---|
164 | LeftTail - p-value for left-tailed test.
|
---|
165 | If LeftTail is less than the given significance level,
|
---|
166 | the null hypothesis is rejected.
|
---|
167 | RightTail - p-value for right-tailed test.
|
---|
168 | If RightTail is less than the given significance level
|
---|
169 | the null hypothesis is rejected.
|
---|
170 |
|
---|
171 | -- ALGLIB --
|
---|
172 | Copyright 19.09.2006 by Bochkanov Sergey
|
---|
173 | *************************************************************************/
|
---|
174 | public static void onesamplevariancetest(ref double[] x,
|
---|
175 | int n,
|
---|
176 | double variance,
|
---|
177 | ref double bothtails,
|
---|
178 | ref double lefttail,
|
---|
179 | ref double righttail)
|
---|
180 | {
|
---|
181 | int i = 0;
|
---|
182 | double xmean = 0;
|
---|
183 | double ymean = 0;
|
---|
184 | double xvar = 0;
|
---|
185 | double yvar = 0;
|
---|
186 | double p = 0;
|
---|
187 | double s = 0;
|
---|
188 | double stat = 0;
|
---|
189 |
|
---|
190 | if( n<=1 )
|
---|
191 | {
|
---|
192 | bothtails = 1.0;
|
---|
193 | lefttail = 1.0;
|
---|
194 | righttail = 1.0;
|
---|
195 | return;
|
---|
196 | }
|
---|
197 |
|
---|
198 | //
|
---|
199 | // Mean
|
---|
200 | //
|
---|
201 | xmean = 0;
|
---|
202 | for(i=0; i<=n-1; i++)
|
---|
203 | {
|
---|
204 | xmean = xmean+x[i];
|
---|
205 | }
|
---|
206 | xmean = xmean/n;
|
---|
207 |
|
---|
208 | //
|
---|
209 | // Variance
|
---|
210 | //
|
---|
211 | xvar = 0;
|
---|
212 | for(i=0; i<=n-1; i++)
|
---|
213 | {
|
---|
214 | xvar = xvar+AP.Math.Sqr(x[i]-xmean);
|
---|
215 | }
|
---|
216 | xvar = xvar/(n-1);
|
---|
217 | if( (double)(xvar)==(double)(0) )
|
---|
218 | {
|
---|
219 | bothtails = 1.0;
|
---|
220 | lefttail = 1.0;
|
---|
221 | righttail = 1.0;
|
---|
222 | return;
|
---|
223 | }
|
---|
224 |
|
---|
225 | //
|
---|
226 | // Statistic
|
---|
227 | //
|
---|
228 | stat = (n-1)*xvar/variance;
|
---|
229 | s = chisquaredistr.chisquaredistribution(n-1, stat);
|
---|
230 | bothtails = 2*Math.Min(s, 1-s);
|
---|
231 | lefttail = s;
|
---|
232 | righttail = 1-lefttail;
|
---|
233 | }
|
---|
234 | }
|
---|
235 | }
|
---|