[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class variancetests
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Two-sample F-test
|
---|
| 29 |
|
---|
| 30 | This test checks three hypotheses about dispersions of the given samples.
|
---|
| 31 | The following tests are performed:
|
---|
| 32 | * two-tailed test (null hypothesis - the dispersions are equal)
|
---|
| 33 | * left-tailed test (null hypothesis - the dispersion of the first
|
---|
| 34 | sample is greater than or equal to the dispersion of the second
|
---|
| 35 | sample).
|
---|
| 36 | * right-tailed test (null hypothesis - the dispersion of the first
|
---|
| 37 | sample is less than or equal to the dispersion of the second sample)
|
---|
| 38 |
|
---|
| 39 | The test is based on the following assumptions:
|
---|
| 40 | * the given samples have normal distributions
|
---|
| 41 | * the samples are independent.
|
---|
| 42 |
|
---|
| 43 | Input parameters:
|
---|
| 44 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
| 45 | N - sample size.
|
---|
| 46 | Y - sample 2. Array whose index goes from 0 to M-1.
|
---|
| 47 | M - sample size.
|
---|
| 48 |
|
---|
| 49 | Output parameters:
|
---|
| 50 | BothTails - p-value for two-tailed test.
|
---|
| 51 | If BothTails is less than the given significance level
|
---|
| 52 | the null hypothesis is rejected.
|
---|
| 53 | LeftTail - p-value for left-tailed test.
|
---|
| 54 | If LeftTail is less than the given significance level,
|
---|
| 55 | the null hypothesis is rejected.
|
---|
| 56 | RightTail - p-value for right-tailed test.
|
---|
| 57 | If RightTail is less than the given significance level
|
---|
| 58 | the null hypothesis is rejected.
|
---|
| 59 |
|
---|
| 60 | -- ALGLIB --
|
---|
| 61 | Copyright 19.09.2006 by Bochkanov Sergey
|
---|
| 62 | *************************************************************************/
|
---|
| 63 | public static void ftest(ref double[] x,
|
---|
| 64 | int n,
|
---|
| 65 | ref double[] y,
|
---|
| 66 | int m,
|
---|
| 67 | ref double bothtails,
|
---|
| 68 | ref double lefttail,
|
---|
| 69 | ref double righttail)
|
---|
| 70 | {
|
---|
| 71 | int i = 0;
|
---|
| 72 | double xmean = 0;
|
---|
| 73 | double ymean = 0;
|
---|
| 74 | double xvar = 0;
|
---|
| 75 | double yvar = 0;
|
---|
| 76 | double p = 0;
|
---|
| 77 | int df1 = 0;
|
---|
| 78 | int df2 = 0;
|
---|
| 79 | double stat = 0;
|
---|
| 80 |
|
---|
| 81 | if( n<=2 | m<=2 )
|
---|
| 82 | {
|
---|
| 83 | bothtails = 1.0;
|
---|
| 84 | lefttail = 1.0;
|
---|
| 85 | righttail = 1.0;
|
---|
| 86 | return;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | //
|
---|
| 90 | // Mean
|
---|
| 91 | //
|
---|
| 92 | xmean = 0;
|
---|
| 93 | for(i=0; i<=n-1; i++)
|
---|
| 94 | {
|
---|
| 95 | xmean = xmean+x[i];
|
---|
| 96 | }
|
---|
| 97 | xmean = xmean/n;
|
---|
| 98 | ymean = 0;
|
---|
| 99 | for(i=0; i<=m-1; i++)
|
---|
| 100 | {
|
---|
| 101 | ymean = ymean+y[i];
|
---|
| 102 | }
|
---|
| 103 | ymean = ymean/m;
|
---|
| 104 |
|
---|
| 105 | //
|
---|
| 106 | // Variance (using corrected two-pass algorithm)
|
---|
| 107 | //
|
---|
| 108 | xvar = 0;
|
---|
| 109 | for(i=0; i<=n-1; i++)
|
---|
| 110 | {
|
---|
| 111 | xvar = xvar+AP.Math.Sqr(x[i]-xmean);
|
---|
| 112 | }
|
---|
| 113 | xvar = xvar/(n-1);
|
---|
| 114 | yvar = 0;
|
---|
| 115 | for(i=0; i<=m-1; i++)
|
---|
| 116 | {
|
---|
| 117 | yvar = yvar+AP.Math.Sqr(y[i]-ymean);
|
---|
| 118 | }
|
---|
| 119 | yvar = yvar/(m-1);
|
---|
| 120 | if( (double)(xvar)==(double)(0) | (double)(yvar)==(double)(0) )
|
---|
| 121 | {
|
---|
| 122 | bothtails = 1.0;
|
---|
| 123 | lefttail = 1.0;
|
---|
| 124 | righttail = 1.0;
|
---|
| 125 | return;
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | //
|
---|
| 129 | // Statistic
|
---|
| 130 | //
|
---|
| 131 | df1 = n-1;
|
---|
| 132 | df2 = m-1;
|
---|
| 133 | stat = Math.Min(xvar/yvar, yvar/xvar);
|
---|
| 134 | bothtails = 1-(fdistr.fdistribution(df1, df2, 1/stat)-fdistr.fdistribution(df1, df2, stat));
|
---|
| 135 | lefttail = fdistr.fdistribution(df1, df2, xvar/yvar);
|
---|
| 136 | righttail = 1-lefttail;
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 |
|
---|
| 140 | /*************************************************************************
|
---|
| 141 | One-sample chi-square test
|
---|
| 142 |
|
---|
| 143 | This test checks three hypotheses about the dispersion of the given sample
|
---|
| 144 | The following tests are performed:
|
---|
| 145 | * two-tailed test (null hypothesis - the dispersion equals the given
|
---|
| 146 | number)
|
---|
| 147 | * left-tailed test (null hypothesis - the dispersion is greater than
|
---|
| 148 | or equal to the given number)
|
---|
| 149 | * right-tailed test (null hypothesis - dispersion is less than or
|
---|
| 150 | equal to the given number).
|
---|
| 151 |
|
---|
| 152 | Test is based on the following assumptions:
|
---|
| 153 | * the given sample has a normal distribution.
|
---|
| 154 |
|
---|
| 155 | Input parameters:
|
---|
| 156 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
| 157 | N - size of the sample.
|
---|
| 158 | Variance - dispersion value to compare with.
|
---|
| 159 |
|
---|
| 160 | Output parameters:
|
---|
| 161 | BothTails - p-value for two-tailed test.
|
---|
| 162 | If BothTails is less than the given significance level
|
---|
| 163 | the null hypothesis is rejected.
|
---|
| 164 | LeftTail - p-value for left-tailed test.
|
---|
| 165 | If LeftTail is less than the given significance level,
|
---|
| 166 | the null hypothesis is rejected.
|
---|
| 167 | RightTail - p-value for right-tailed test.
|
---|
| 168 | If RightTail is less than the given significance level
|
---|
| 169 | the null hypothesis is rejected.
|
---|
| 170 |
|
---|
| 171 | -- ALGLIB --
|
---|
| 172 | Copyright 19.09.2006 by Bochkanov Sergey
|
---|
| 173 | *************************************************************************/
|
---|
| 174 | public static void onesamplevariancetest(ref double[] x,
|
---|
| 175 | int n,
|
---|
| 176 | double variance,
|
---|
| 177 | ref double bothtails,
|
---|
| 178 | ref double lefttail,
|
---|
| 179 | ref double righttail)
|
---|
| 180 | {
|
---|
| 181 | int i = 0;
|
---|
| 182 | double xmean = 0;
|
---|
| 183 | double ymean = 0;
|
---|
| 184 | double xvar = 0;
|
---|
| 185 | double yvar = 0;
|
---|
| 186 | double p = 0;
|
---|
| 187 | double s = 0;
|
---|
| 188 | double stat = 0;
|
---|
| 189 |
|
---|
| 190 | if( n<=1 )
|
---|
| 191 | {
|
---|
| 192 | bothtails = 1.0;
|
---|
| 193 | lefttail = 1.0;
|
---|
| 194 | righttail = 1.0;
|
---|
| 195 | return;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | //
|
---|
| 199 | // Mean
|
---|
| 200 | //
|
---|
| 201 | xmean = 0;
|
---|
| 202 | for(i=0; i<=n-1; i++)
|
---|
| 203 | {
|
---|
| 204 | xmean = xmean+x[i];
|
---|
| 205 | }
|
---|
| 206 | xmean = xmean/n;
|
---|
| 207 |
|
---|
| 208 | //
|
---|
| 209 | // Variance
|
---|
| 210 | //
|
---|
| 211 | xvar = 0;
|
---|
| 212 | for(i=0; i<=n-1; i++)
|
---|
| 213 | {
|
---|
| 214 | xvar = xvar+AP.Math.Sqr(x[i]-xmean);
|
---|
| 215 | }
|
---|
| 216 | xvar = xvar/(n-1);
|
---|
| 217 | if( (double)(xvar)==(double)(0) )
|
---|
| 218 | {
|
---|
| 219 | bothtails = 1.0;
|
---|
| 220 | lefttail = 1.0;
|
---|
| 221 | righttail = 1.0;
|
---|
| 222 | return;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | //
|
---|
| 226 | // Statistic
|
---|
| 227 | //
|
---|
| 228 | stat = (n-1)*xvar/variance;
|
---|
| 229 | s = chisquaredistr.chisquaredistribution(n-1, stat);
|
---|
| 230 | bothtails = 2*Math.Min(s, 1-s);
|
---|
| 231 | lefttail = s;
|
---|
| 232 | righttail = 1-lefttail;
|
---|
| 233 | }
|
---|
| 234 | }
|
---|
| 235 | }
|
---|