1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class trinverse
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Triangular matrix inversion
|
---|
35 |
|
---|
36 | The subroutine inverts the following types of matrices:
|
---|
37 | * upper triangular
|
---|
38 | * upper triangular with unit diagonal
|
---|
39 | * lower triangular
|
---|
40 | * lower triangular with unit diagonal
|
---|
41 |
|
---|
42 | In case of an upper (lower) triangular matrix, the inverse matrix will
|
---|
43 | also be upper (lower) triangular, and after the end of the algorithm, the
|
---|
44 | inverse matrix replaces the source matrix. The elements below (above) the
|
---|
45 | main diagonal are not changed by the algorithm.
|
---|
46 |
|
---|
47 | If the matrix has a unit diagonal, the inverse matrix also has a unit
|
---|
48 | diagonal, and the diagonal elements are not passed to the algorithm.
|
---|
49 |
|
---|
50 | Input parameters:
|
---|
51 | A - matrix.
|
---|
52 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
53 | N - size of matrix A.
|
---|
54 | IsUpper - True, if the matrix is upper triangular.
|
---|
55 | IsunitTriangular
|
---|
56 | - True, if the matrix has a unit diagonal.
|
---|
57 |
|
---|
58 | Output parameters:
|
---|
59 | A - inverse matrix (if the problem is not degenerate).
|
---|
60 |
|
---|
61 | Result:
|
---|
62 | True, if the matrix is not singular.
|
---|
63 | False, if the matrix is singular.
|
---|
64 |
|
---|
65 | -- LAPACK routine (version 3.0) --
|
---|
66 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
67 | Courant Institute, Argonne National Lab, and Rice University
|
---|
68 | February 29, 1992
|
---|
69 | *************************************************************************/
|
---|
70 | public static bool rmatrixtrinverse(ref double[,] a,
|
---|
71 | int n,
|
---|
72 | bool isupper,
|
---|
73 | bool isunittriangular)
|
---|
74 | {
|
---|
75 | bool result = new bool();
|
---|
76 | bool nounit = new bool();
|
---|
77 | int i = 0;
|
---|
78 | int j = 0;
|
---|
79 | double v = 0;
|
---|
80 | double ajj = 0;
|
---|
81 | double[] t = new double[0];
|
---|
82 | int i_ = 0;
|
---|
83 |
|
---|
84 | result = true;
|
---|
85 | t = new double[n-1+1];
|
---|
86 |
|
---|
87 | //
|
---|
88 | // Test the input parameters.
|
---|
89 | //
|
---|
90 | nounit = !isunittriangular;
|
---|
91 | if( isupper )
|
---|
92 | {
|
---|
93 |
|
---|
94 | //
|
---|
95 | // Compute inverse of upper triangular matrix.
|
---|
96 | //
|
---|
97 | for(j=0; j<=n-1; j++)
|
---|
98 | {
|
---|
99 | if( nounit )
|
---|
100 | {
|
---|
101 | if( (double)(a[j,j])==(double)(0) )
|
---|
102 | {
|
---|
103 | result = false;
|
---|
104 | return result;
|
---|
105 | }
|
---|
106 | a[j,j] = 1/a[j,j];
|
---|
107 | ajj = -a[j,j];
|
---|
108 | }
|
---|
109 | else
|
---|
110 | {
|
---|
111 | ajj = -1;
|
---|
112 | }
|
---|
113 |
|
---|
114 | //
|
---|
115 | // Compute elements 1:j-1 of j-th column.
|
---|
116 | //
|
---|
117 | if( j>0 )
|
---|
118 | {
|
---|
119 | for(i_=0; i_<=j-1;i_++)
|
---|
120 | {
|
---|
121 | t[i_] = a[i_,j];
|
---|
122 | }
|
---|
123 | for(i=0; i<=j-1; i++)
|
---|
124 | {
|
---|
125 | if( i<j-1 )
|
---|
126 | {
|
---|
127 | v = 0.0;
|
---|
128 | for(i_=i+1; i_<=j-1;i_++)
|
---|
129 | {
|
---|
130 | v += a[i,i_]*t[i_];
|
---|
131 | }
|
---|
132 | }
|
---|
133 | else
|
---|
134 | {
|
---|
135 | v = 0;
|
---|
136 | }
|
---|
137 | if( nounit )
|
---|
138 | {
|
---|
139 | a[i,j] = v+a[i,i]*t[i];
|
---|
140 | }
|
---|
141 | else
|
---|
142 | {
|
---|
143 | a[i,j] = v+t[i];
|
---|
144 | }
|
---|
145 | }
|
---|
146 | for(i_=0; i_<=j-1;i_++)
|
---|
147 | {
|
---|
148 | a[i_,j] = ajj*a[i_,j];
|
---|
149 | }
|
---|
150 | }
|
---|
151 | }
|
---|
152 | }
|
---|
153 | else
|
---|
154 | {
|
---|
155 |
|
---|
156 | //
|
---|
157 | // Compute inverse of lower triangular matrix.
|
---|
158 | //
|
---|
159 | for(j=n-1; j>=0; j--)
|
---|
160 | {
|
---|
161 | if( nounit )
|
---|
162 | {
|
---|
163 | if( (double)(a[j,j])==(double)(0) )
|
---|
164 | {
|
---|
165 | result = false;
|
---|
166 | return result;
|
---|
167 | }
|
---|
168 | a[j,j] = 1/a[j,j];
|
---|
169 | ajj = -a[j,j];
|
---|
170 | }
|
---|
171 | else
|
---|
172 | {
|
---|
173 | ajj = -1;
|
---|
174 | }
|
---|
175 | if( j<n-1 )
|
---|
176 | {
|
---|
177 |
|
---|
178 | //
|
---|
179 | // Compute elements j+1:n of j-th column.
|
---|
180 | //
|
---|
181 | for(i_=j+1; i_<=n-1;i_++)
|
---|
182 | {
|
---|
183 | t[i_] = a[i_,j];
|
---|
184 | }
|
---|
185 | for(i=j+1; i<=n-1; i++)
|
---|
186 | {
|
---|
187 | if( i>j+1 )
|
---|
188 | {
|
---|
189 | v = 0.0;
|
---|
190 | for(i_=j+1; i_<=i-1;i_++)
|
---|
191 | {
|
---|
192 | v += a[i,i_]*t[i_];
|
---|
193 | }
|
---|
194 | }
|
---|
195 | else
|
---|
196 | {
|
---|
197 | v = 0;
|
---|
198 | }
|
---|
199 | if( nounit )
|
---|
200 | {
|
---|
201 | a[i,j] = v+a[i,i]*t[i];
|
---|
202 | }
|
---|
203 | else
|
---|
204 | {
|
---|
205 | a[i,j] = v+t[i];
|
---|
206 | }
|
---|
207 | }
|
---|
208 | for(i_=j+1; i_<=n-1;i_++)
|
---|
209 | {
|
---|
210 | a[i_,j] = ajj*a[i_,j];
|
---|
211 | }
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|
215 | return result;
|
---|
216 | }
|
---|
217 |
|
---|
218 |
|
---|
219 | public static bool invtriangular(ref double[,] a,
|
---|
220 | int n,
|
---|
221 | bool isupper,
|
---|
222 | bool isunittriangular)
|
---|
223 | {
|
---|
224 | bool result = new bool();
|
---|
225 | bool nounit = new bool();
|
---|
226 | int i = 0;
|
---|
227 | int j = 0;
|
---|
228 | int nmj = 0;
|
---|
229 | int jm1 = 0;
|
---|
230 | int jp1 = 0;
|
---|
231 | double v = 0;
|
---|
232 | double ajj = 0;
|
---|
233 | double[] t = new double[0];
|
---|
234 | int i_ = 0;
|
---|
235 |
|
---|
236 | result = true;
|
---|
237 | t = new double[n+1];
|
---|
238 |
|
---|
239 | //
|
---|
240 | // Test the input parameters.
|
---|
241 | //
|
---|
242 | nounit = !isunittriangular;
|
---|
243 | if( isupper )
|
---|
244 | {
|
---|
245 |
|
---|
246 | //
|
---|
247 | // Compute inverse of upper triangular matrix.
|
---|
248 | //
|
---|
249 | for(j=1; j<=n; j++)
|
---|
250 | {
|
---|
251 | if( nounit )
|
---|
252 | {
|
---|
253 | if( (double)(a[j,j])==(double)(0) )
|
---|
254 | {
|
---|
255 | result = false;
|
---|
256 | return result;
|
---|
257 | }
|
---|
258 | a[j,j] = 1/a[j,j];
|
---|
259 | ajj = -a[j,j];
|
---|
260 | }
|
---|
261 | else
|
---|
262 | {
|
---|
263 | ajj = -1;
|
---|
264 | }
|
---|
265 |
|
---|
266 | //
|
---|
267 | // Compute elements 1:j-1 of j-th column.
|
---|
268 | //
|
---|
269 | if( j>1 )
|
---|
270 | {
|
---|
271 | jm1 = j-1;
|
---|
272 | for(i_=1; i_<=jm1;i_++)
|
---|
273 | {
|
---|
274 | t[i_] = a[i_,j];
|
---|
275 | }
|
---|
276 | for(i=1; i<=j-1; i++)
|
---|
277 | {
|
---|
278 | if( i<j-1 )
|
---|
279 | {
|
---|
280 | v = 0.0;
|
---|
281 | for(i_=i+1; i_<=jm1;i_++)
|
---|
282 | {
|
---|
283 | v += a[i,i_]*t[i_];
|
---|
284 | }
|
---|
285 | }
|
---|
286 | else
|
---|
287 | {
|
---|
288 | v = 0;
|
---|
289 | }
|
---|
290 | if( nounit )
|
---|
291 | {
|
---|
292 | a[i,j] = v+a[i,i]*t[i];
|
---|
293 | }
|
---|
294 | else
|
---|
295 | {
|
---|
296 | a[i,j] = v+t[i];
|
---|
297 | }
|
---|
298 | }
|
---|
299 | for(i_=1; i_<=jm1;i_++)
|
---|
300 | {
|
---|
301 | a[i_,j] = ajj*a[i_,j];
|
---|
302 | }
|
---|
303 | }
|
---|
304 | }
|
---|
305 | }
|
---|
306 | else
|
---|
307 | {
|
---|
308 |
|
---|
309 | //
|
---|
310 | // Compute inverse of lower triangular matrix.
|
---|
311 | //
|
---|
312 | for(j=n; j>=1; j--)
|
---|
313 | {
|
---|
314 | if( nounit )
|
---|
315 | {
|
---|
316 | if( (double)(a[j,j])==(double)(0) )
|
---|
317 | {
|
---|
318 | result = false;
|
---|
319 | return result;
|
---|
320 | }
|
---|
321 | a[j,j] = 1/a[j,j];
|
---|
322 | ajj = -a[j,j];
|
---|
323 | }
|
---|
324 | else
|
---|
325 | {
|
---|
326 | ajj = -1;
|
---|
327 | }
|
---|
328 | if( j<n )
|
---|
329 | {
|
---|
330 |
|
---|
331 | //
|
---|
332 | // Compute elements j+1:n of j-th column.
|
---|
333 | //
|
---|
334 | nmj = n-j;
|
---|
335 | jp1 = j+1;
|
---|
336 | for(i_=jp1; i_<=n;i_++)
|
---|
337 | {
|
---|
338 | t[i_] = a[i_,j];
|
---|
339 | }
|
---|
340 | for(i=j+1; i<=n; i++)
|
---|
341 | {
|
---|
342 | if( i>j+1 )
|
---|
343 | {
|
---|
344 | v = 0.0;
|
---|
345 | for(i_=jp1; i_<=i-1;i_++)
|
---|
346 | {
|
---|
347 | v += a[i,i_]*t[i_];
|
---|
348 | }
|
---|
349 | }
|
---|
350 | else
|
---|
351 | {
|
---|
352 | v = 0;
|
---|
353 | }
|
---|
354 | if( nounit )
|
---|
355 | {
|
---|
356 | a[i,j] = v+a[i,i]*t[i];
|
---|
357 | }
|
---|
358 | else
|
---|
359 | {
|
---|
360 | a[i,j] = v+t[i];
|
---|
361 | }
|
---|
362 | }
|
---|
363 | for(i_=jp1; i_<=n;i_++)
|
---|
364 | {
|
---|
365 | a[i_,j] = ajj*a[i_,j];
|
---|
366 | }
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|
370 | return result;
|
---|
371 | }
|
---|
372 | }
|
---|
373 | }
|
---|