[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class trinverse
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | Triangular matrix inversion
|
---|
| 35 |
|
---|
| 36 | The subroutine inverts the following types of matrices:
|
---|
| 37 | * upper triangular
|
---|
| 38 | * upper triangular with unit diagonal
|
---|
| 39 | * lower triangular
|
---|
| 40 | * lower triangular with unit diagonal
|
---|
| 41 |
|
---|
| 42 | In case of an upper (lower) triangular matrix, the inverse matrix will
|
---|
| 43 | also be upper (lower) triangular, and after the end of the algorithm, the
|
---|
| 44 | inverse matrix replaces the source matrix. The elements below (above) the
|
---|
| 45 | main diagonal are not changed by the algorithm.
|
---|
| 46 |
|
---|
| 47 | If the matrix has a unit diagonal, the inverse matrix also has a unit
|
---|
| 48 | diagonal, and the diagonal elements are not passed to the algorithm.
|
---|
| 49 |
|
---|
| 50 | Input parameters:
|
---|
| 51 | A - matrix.
|
---|
| 52 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 53 | N - size of matrix A.
|
---|
| 54 | IsUpper - True, if the matrix is upper triangular.
|
---|
| 55 | IsunitTriangular
|
---|
| 56 | - True, if the matrix has a unit diagonal.
|
---|
| 57 |
|
---|
| 58 | Output parameters:
|
---|
| 59 | A - inverse matrix (if the problem is not degenerate).
|
---|
| 60 |
|
---|
| 61 | Result:
|
---|
| 62 | True, if the matrix is not singular.
|
---|
| 63 | False, if the matrix is singular.
|
---|
| 64 |
|
---|
| 65 | -- LAPACK routine (version 3.0) --
|
---|
| 66 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 67 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 68 | February 29, 1992
|
---|
| 69 | *************************************************************************/
|
---|
| 70 | public static bool rmatrixtrinverse(ref double[,] a,
|
---|
| 71 | int n,
|
---|
| 72 | bool isupper,
|
---|
| 73 | bool isunittriangular)
|
---|
| 74 | {
|
---|
| 75 | bool result = new bool();
|
---|
| 76 | bool nounit = new bool();
|
---|
| 77 | int i = 0;
|
---|
| 78 | int j = 0;
|
---|
| 79 | double v = 0;
|
---|
| 80 | double ajj = 0;
|
---|
| 81 | double[] t = new double[0];
|
---|
| 82 | int i_ = 0;
|
---|
| 83 |
|
---|
| 84 | result = true;
|
---|
| 85 | t = new double[n-1+1];
|
---|
| 86 |
|
---|
| 87 | //
|
---|
| 88 | // Test the input parameters.
|
---|
| 89 | //
|
---|
| 90 | nounit = !isunittriangular;
|
---|
| 91 | if( isupper )
|
---|
| 92 | {
|
---|
| 93 |
|
---|
| 94 | //
|
---|
| 95 | // Compute inverse of upper triangular matrix.
|
---|
| 96 | //
|
---|
| 97 | for(j=0; j<=n-1; j++)
|
---|
| 98 | {
|
---|
| 99 | if( nounit )
|
---|
| 100 | {
|
---|
| 101 | if( (double)(a[j,j])==(double)(0) )
|
---|
| 102 | {
|
---|
| 103 | result = false;
|
---|
| 104 | return result;
|
---|
| 105 | }
|
---|
| 106 | a[j,j] = 1/a[j,j];
|
---|
| 107 | ajj = -a[j,j];
|
---|
| 108 | }
|
---|
| 109 | else
|
---|
| 110 | {
|
---|
| 111 | ajj = -1;
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | //
|
---|
| 115 | // Compute elements 1:j-1 of j-th column.
|
---|
| 116 | //
|
---|
| 117 | if( j>0 )
|
---|
| 118 | {
|
---|
| 119 | for(i_=0; i_<=j-1;i_++)
|
---|
| 120 | {
|
---|
| 121 | t[i_] = a[i_,j];
|
---|
| 122 | }
|
---|
| 123 | for(i=0; i<=j-1; i++)
|
---|
| 124 | {
|
---|
| 125 | if( i<j-1 )
|
---|
| 126 | {
|
---|
| 127 | v = 0.0;
|
---|
| 128 | for(i_=i+1; i_<=j-1;i_++)
|
---|
| 129 | {
|
---|
| 130 | v += a[i,i_]*t[i_];
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | else
|
---|
| 134 | {
|
---|
| 135 | v = 0;
|
---|
| 136 | }
|
---|
| 137 | if( nounit )
|
---|
| 138 | {
|
---|
| 139 | a[i,j] = v+a[i,i]*t[i];
|
---|
| 140 | }
|
---|
| 141 | else
|
---|
| 142 | {
|
---|
| 143 | a[i,j] = v+t[i];
|
---|
| 144 | }
|
---|
| 145 | }
|
---|
| 146 | for(i_=0; i_<=j-1;i_++)
|
---|
| 147 | {
|
---|
| 148 | a[i_,j] = ajj*a[i_,j];
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 | else
|
---|
| 154 | {
|
---|
| 155 |
|
---|
| 156 | //
|
---|
| 157 | // Compute inverse of lower triangular matrix.
|
---|
| 158 | //
|
---|
| 159 | for(j=n-1; j>=0; j--)
|
---|
| 160 | {
|
---|
| 161 | if( nounit )
|
---|
| 162 | {
|
---|
| 163 | if( (double)(a[j,j])==(double)(0) )
|
---|
| 164 | {
|
---|
| 165 | result = false;
|
---|
| 166 | return result;
|
---|
| 167 | }
|
---|
| 168 | a[j,j] = 1/a[j,j];
|
---|
| 169 | ajj = -a[j,j];
|
---|
| 170 | }
|
---|
| 171 | else
|
---|
| 172 | {
|
---|
| 173 | ajj = -1;
|
---|
| 174 | }
|
---|
| 175 | if( j<n-1 )
|
---|
| 176 | {
|
---|
| 177 |
|
---|
| 178 | //
|
---|
| 179 | // Compute elements j+1:n of j-th column.
|
---|
| 180 | //
|
---|
| 181 | for(i_=j+1; i_<=n-1;i_++)
|
---|
| 182 | {
|
---|
| 183 | t[i_] = a[i_,j];
|
---|
| 184 | }
|
---|
| 185 | for(i=j+1; i<=n-1; i++)
|
---|
| 186 | {
|
---|
| 187 | if( i>j+1 )
|
---|
| 188 | {
|
---|
| 189 | v = 0.0;
|
---|
| 190 | for(i_=j+1; i_<=i-1;i_++)
|
---|
| 191 | {
|
---|
| 192 | v += a[i,i_]*t[i_];
|
---|
| 193 | }
|
---|
| 194 | }
|
---|
| 195 | else
|
---|
| 196 | {
|
---|
| 197 | v = 0;
|
---|
| 198 | }
|
---|
| 199 | if( nounit )
|
---|
| 200 | {
|
---|
| 201 | a[i,j] = v+a[i,i]*t[i];
|
---|
| 202 | }
|
---|
| 203 | else
|
---|
| 204 | {
|
---|
| 205 | a[i,j] = v+t[i];
|
---|
| 206 | }
|
---|
| 207 | }
|
---|
| 208 | for(i_=j+1; i_<=n-1;i_++)
|
---|
| 209 | {
|
---|
| 210 | a[i_,j] = ajj*a[i_,j];
|
---|
| 211 | }
|
---|
| 212 | }
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 | return result;
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 |
|
---|
| 219 | public static bool invtriangular(ref double[,] a,
|
---|
| 220 | int n,
|
---|
| 221 | bool isupper,
|
---|
| 222 | bool isunittriangular)
|
---|
| 223 | {
|
---|
| 224 | bool result = new bool();
|
---|
| 225 | bool nounit = new bool();
|
---|
| 226 | int i = 0;
|
---|
| 227 | int j = 0;
|
---|
| 228 | int nmj = 0;
|
---|
| 229 | int jm1 = 0;
|
---|
| 230 | int jp1 = 0;
|
---|
| 231 | double v = 0;
|
---|
| 232 | double ajj = 0;
|
---|
| 233 | double[] t = new double[0];
|
---|
| 234 | int i_ = 0;
|
---|
| 235 |
|
---|
| 236 | result = true;
|
---|
| 237 | t = new double[n+1];
|
---|
| 238 |
|
---|
| 239 | //
|
---|
| 240 | // Test the input parameters.
|
---|
| 241 | //
|
---|
| 242 | nounit = !isunittriangular;
|
---|
| 243 | if( isupper )
|
---|
| 244 | {
|
---|
| 245 |
|
---|
| 246 | //
|
---|
| 247 | // Compute inverse of upper triangular matrix.
|
---|
| 248 | //
|
---|
| 249 | for(j=1; j<=n; j++)
|
---|
| 250 | {
|
---|
| 251 | if( nounit )
|
---|
| 252 | {
|
---|
| 253 | if( (double)(a[j,j])==(double)(0) )
|
---|
| 254 | {
|
---|
| 255 | result = false;
|
---|
| 256 | return result;
|
---|
| 257 | }
|
---|
| 258 | a[j,j] = 1/a[j,j];
|
---|
| 259 | ajj = -a[j,j];
|
---|
| 260 | }
|
---|
| 261 | else
|
---|
| 262 | {
|
---|
| 263 | ajj = -1;
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | //
|
---|
| 267 | // Compute elements 1:j-1 of j-th column.
|
---|
| 268 | //
|
---|
| 269 | if( j>1 )
|
---|
| 270 | {
|
---|
| 271 | jm1 = j-1;
|
---|
| 272 | for(i_=1; i_<=jm1;i_++)
|
---|
| 273 | {
|
---|
| 274 | t[i_] = a[i_,j];
|
---|
| 275 | }
|
---|
| 276 | for(i=1; i<=j-1; i++)
|
---|
| 277 | {
|
---|
| 278 | if( i<j-1 )
|
---|
| 279 | {
|
---|
| 280 | v = 0.0;
|
---|
| 281 | for(i_=i+1; i_<=jm1;i_++)
|
---|
| 282 | {
|
---|
| 283 | v += a[i,i_]*t[i_];
|
---|
| 284 | }
|
---|
| 285 | }
|
---|
| 286 | else
|
---|
| 287 | {
|
---|
| 288 | v = 0;
|
---|
| 289 | }
|
---|
| 290 | if( nounit )
|
---|
| 291 | {
|
---|
| 292 | a[i,j] = v+a[i,i]*t[i];
|
---|
| 293 | }
|
---|
| 294 | else
|
---|
| 295 | {
|
---|
| 296 | a[i,j] = v+t[i];
|
---|
| 297 | }
|
---|
| 298 | }
|
---|
| 299 | for(i_=1; i_<=jm1;i_++)
|
---|
| 300 | {
|
---|
| 301 | a[i_,j] = ajj*a[i_,j];
|
---|
| 302 | }
|
---|
| 303 | }
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 | else
|
---|
| 307 | {
|
---|
| 308 |
|
---|
| 309 | //
|
---|
| 310 | // Compute inverse of lower triangular matrix.
|
---|
| 311 | //
|
---|
| 312 | for(j=n; j>=1; j--)
|
---|
| 313 | {
|
---|
| 314 | if( nounit )
|
---|
| 315 | {
|
---|
| 316 | if( (double)(a[j,j])==(double)(0) )
|
---|
| 317 | {
|
---|
| 318 | result = false;
|
---|
| 319 | return result;
|
---|
| 320 | }
|
---|
| 321 | a[j,j] = 1/a[j,j];
|
---|
| 322 | ajj = -a[j,j];
|
---|
| 323 | }
|
---|
| 324 | else
|
---|
| 325 | {
|
---|
| 326 | ajj = -1;
|
---|
| 327 | }
|
---|
| 328 | if( j<n )
|
---|
| 329 | {
|
---|
| 330 |
|
---|
| 331 | //
|
---|
| 332 | // Compute elements j+1:n of j-th column.
|
---|
| 333 | //
|
---|
| 334 | nmj = n-j;
|
---|
| 335 | jp1 = j+1;
|
---|
| 336 | for(i_=jp1; i_<=n;i_++)
|
---|
| 337 | {
|
---|
| 338 | t[i_] = a[i_,j];
|
---|
| 339 | }
|
---|
| 340 | for(i=j+1; i<=n; i++)
|
---|
| 341 | {
|
---|
| 342 | if( i>j+1 )
|
---|
| 343 | {
|
---|
| 344 | v = 0.0;
|
---|
| 345 | for(i_=jp1; i_<=i-1;i_++)
|
---|
| 346 | {
|
---|
| 347 | v += a[i,i_]*t[i_];
|
---|
| 348 | }
|
---|
| 349 | }
|
---|
| 350 | else
|
---|
| 351 | {
|
---|
| 352 | v = 0;
|
---|
| 353 | }
|
---|
| 354 | if( nounit )
|
---|
| 355 | {
|
---|
| 356 | a[i,j] = v+a[i,i]*t[i];
|
---|
| 357 | }
|
---|
| 358 | else
|
---|
| 359 | {
|
---|
| 360 | a[i,j] = v+t[i];
|
---|
| 361 | }
|
---|
| 362 | }
|
---|
| 363 | for(i_=jp1; i_<=n;i_++)
|
---|
| 364 | {
|
---|
| 365 | a[i_,j] = ajj*a[i_,j];
|
---|
| 366 | }
|
---|
| 367 | }
|
---|
| 368 | }
|
---|
| 369 | }
|
---|
| 370 | return result;
|
---|
| 371 | }
|
---|
| 372 | }
|
---|
| 373 | }
|
---|