1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class tridiagonal
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Reduction of a symmetric matrix which is given by its higher or lower
|
---|
35 | triangular part to a tridiagonal matrix using orthogonal similarity
|
---|
36 | transformation: Q'*A*Q=T.
|
---|
37 |
|
---|
38 | Input parameters:
|
---|
39 | A - matrix to be transformed
|
---|
40 | array with elements [0..N-1, 0..N-1].
|
---|
41 | N - size of matrix A.
|
---|
42 | IsUpper - storage format. If IsUpper = True, then matrix A is given
|
---|
43 | by its upper triangle, and the lower triangle is not used
|
---|
44 | and not modified by the algorithm, and vice versa
|
---|
45 | if IsUpper = False.
|
---|
46 |
|
---|
47 | Output parameters:
|
---|
48 | A - matrices T and Q in compact form (see lower)
|
---|
49 | Tau - array of factors which are forming matrices H(i)
|
---|
50 | array with elements [0..N-2].
|
---|
51 | D - main diagonal of symmetric matrix T.
|
---|
52 | array with elements [0..N-1].
|
---|
53 | E - secondary diagonal of symmetric matrix T.
|
---|
54 | array with elements [0..N-2].
|
---|
55 |
|
---|
56 |
|
---|
57 | If IsUpper=True, the matrix Q is represented as a product of elementary
|
---|
58 | reflectors
|
---|
59 |
|
---|
60 | Q = H(n-2) . . . H(2) H(0).
|
---|
61 |
|
---|
62 | Each H(i) has the form
|
---|
63 |
|
---|
64 | H(i) = I - tau * v * v'
|
---|
65 |
|
---|
66 | where tau is a real scalar, and v is a real vector with
|
---|
67 | v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
|
---|
68 | A(0:i-1,i+1), and tau in TAU(i).
|
---|
69 |
|
---|
70 | If IsUpper=False, the matrix Q is represented as a product of elementary
|
---|
71 | reflectors
|
---|
72 |
|
---|
73 | Q = H(0) H(2) . . . H(n-2).
|
---|
74 |
|
---|
75 | Each H(i) has the form
|
---|
76 |
|
---|
77 | H(i) = I - tau * v * v'
|
---|
78 |
|
---|
79 | where tau is a real scalar, and v is a real vector with
|
---|
80 | v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
|
---|
81 | and tau in TAU(i).
|
---|
82 |
|
---|
83 | The contents of A on exit are illustrated by the following examples
|
---|
84 | with n = 5:
|
---|
85 |
|
---|
86 | if UPLO = 'U': if UPLO = 'L':
|
---|
87 |
|
---|
88 | ( d e v1 v2 v3 ) ( d )
|
---|
89 | ( d e v2 v3 ) ( e d )
|
---|
90 | ( d e v3 ) ( v0 e d )
|
---|
91 | ( d e ) ( v0 v1 e d )
|
---|
92 | ( d ) ( v0 v1 v2 e d )
|
---|
93 |
|
---|
94 | where d and e denote diagonal and off-diagonal elements of T, and vi
|
---|
95 | denotes an element of the vector defining H(i).
|
---|
96 |
|
---|
97 | -- LAPACK routine (version 3.0) --
|
---|
98 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
99 | Courant Institute, Argonne National Lab, and Rice University
|
---|
100 | October 31, 1992
|
---|
101 | *************************************************************************/
|
---|
102 | public static void smatrixtd(ref double[,] a,
|
---|
103 | int n,
|
---|
104 | bool isupper,
|
---|
105 | ref double[] tau,
|
---|
106 | ref double[] d,
|
---|
107 | ref double[] e)
|
---|
108 | {
|
---|
109 | int i = 0;
|
---|
110 | double alpha = 0;
|
---|
111 | double taui = 0;
|
---|
112 | double v = 0;
|
---|
113 | double[] t = new double[0];
|
---|
114 | double[] t2 = new double[0];
|
---|
115 | double[] t3 = new double[0];
|
---|
116 | int i_ = 0;
|
---|
117 | int i1_ = 0;
|
---|
118 |
|
---|
119 | if( n<=0 )
|
---|
120 | {
|
---|
121 | return;
|
---|
122 | }
|
---|
123 | t = new double[n+1];
|
---|
124 | t2 = new double[n+1];
|
---|
125 | t3 = new double[n+1];
|
---|
126 | if( n>1 )
|
---|
127 | {
|
---|
128 | tau = new double[n-2+1];
|
---|
129 | }
|
---|
130 | d = new double[n-1+1];
|
---|
131 | if( n>1 )
|
---|
132 | {
|
---|
133 | e = new double[n-2+1];
|
---|
134 | }
|
---|
135 | if( isupper )
|
---|
136 | {
|
---|
137 |
|
---|
138 | //
|
---|
139 | // Reduce the upper triangle of A
|
---|
140 | //
|
---|
141 | for(i=n-2; i>=0; i--)
|
---|
142 | {
|
---|
143 |
|
---|
144 | //
|
---|
145 | // Generate elementary reflector H() = E - tau * v * v'
|
---|
146 | //
|
---|
147 | if( i>=1 )
|
---|
148 | {
|
---|
149 | i1_ = (0) - (2);
|
---|
150 | for(i_=2; i_<=i+1;i_++)
|
---|
151 | {
|
---|
152 | t[i_] = a[i_+i1_,i+1];
|
---|
153 | }
|
---|
154 | }
|
---|
155 | t[1] = a[i,i+1];
|
---|
156 | reflections.generatereflection(ref t, i+1, ref taui);
|
---|
157 | if( i>=1 )
|
---|
158 | {
|
---|
159 | i1_ = (2) - (0);
|
---|
160 | for(i_=0; i_<=i-1;i_++)
|
---|
161 | {
|
---|
162 | a[i_,i+1] = t[i_+i1_];
|
---|
163 | }
|
---|
164 | }
|
---|
165 | a[i,i+1] = t[1];
|
---|
166 | e[i] = a[i,i+1];
|
---|
167 | if( (double)(taui)!=(double)(0) )
|
---|
168 | {
|
---|
169 |
|
---|
170 | //
|
---|
171 | // Apply H from both sides to A
|
---|
172 | //
|
---|
173 | a[i,i+1] = 1;
|
---|
174 |
|
---|
175 | //
|
---|
176 | // Compute x := tau * A * v storing x in TAU
|
---|
177 | //
|
---|
178 | i1_ = (0) - (1);
|
---|
179 | for(i_=1; i_<=i+1;i_++)
|
---|
180 | {
|
---|
181 | t[i_] = a[i_+i1_,i+1];
|
---|
182 | }
|
---|
183 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 0, i, ref t, taui, ref t3);
|
---|
184 | i1_ = (1) - (0);
|
---|
185 | for(i_=0; i_<=i;i_++)
|
---|
186 | {
|
---|
187 | tau[i_] = t3[i_+i1_];
|
---|
188 | }
|
---|
189 |
|
---|
190 | //
|
---|
191 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
192 | //
|
---|
193 | v = 0.0;
|
---|
194 | for(i_=0; i_<=i;i_++)
|
---|
195 | {
|
---|
196 | v += tau[i_]*a[i_,i+1];
|
---|
197 | }
|
---|
198 | alpha = -(0.5*taui*v);
|
---|
199 | for(i_=0; i_<=i;i_++)
|
---|
200 | {
|
---|
201 | tau[i_] = tau[i_] + alpha*a[i_,i+1];
|
---|
202 | }
|
---|
203 |
|
---|
204 | //
|
---|
205 | // Apply the transformation as a rank-2 update:
|
---|
206 | // A := A - v * w' - w * v'
|
---|
207 | //
|
---|
208 | i1_ = (0) - (1);
|
---|
209 | for(i_=1; i_<=i+1;i_++)
|
---|
210 | {
|
---|
211 | t[i_] = a[i_+i1_,i+1];
|
---|
212 | }
|
---|
213 | i1_ = (0) - (1);
|
---|
214 | for(i_=1; i_<=i+1;i_++)
|
---|
215 | {
|
---|
216 | t3[i_] = tau[i_+i1_];
|
---|
217 | }
|
---|
218 | sblas.symmetricrank2update(ref a, isupper, 0, i, ref t, ref t3, ref t2, -1);
|
---|
219 | a[i,i+1] = e[i];
|
---|
220 | }
|
---|
221 | d[i+1] = a[i+1,i+1];
|
---|
222 | tau[i] = taui;
|
---|
223 | }
|
---|
224 | d[0] = a[0,0];
|
---|
225 | }
|
---|
226 | else
|
---|
227 | {
|
---|
228 |
|
---|
229 | //
|
---|
230 | // Reduce the lower triangle of A
|
---|
231 | //
|
---|
232 | for(i=0; i<=n-2; i++)
|
---|
233 | {
|
---|
234 |
|
---|
235 | //
|
---|
236 | // Generate elementary reflector H = E - tau * v * v'
|
---|
237 | //
|
---|
238 | i1_ = (i+1) - (1);
|
---|
239 | for(i_=1; i_<=n-i-1;i_++)
|
---|
240 | {
|
---|
241 | t[i_] = a[i_+i1_,i];
|
---|
242 | }
|
---|
243 | reflections.generatereflection(ref t, n-i-1, ref taui);
|
---|
244 | i1_ = (1) - (i+1);
|
---|
245 | for(i_=i+1; i_<=n-1;i_++)
|
---|
246 | {
|
---|
247 | a[i_,i] = t[i_+i1_];
|
---|
248 | }
|
---|
249 | e[i] = a[i+1,i];
|
---|
250 | if( (double)(taui)!=(double)(0) )
|
---|
251 | {
|
---|
252 |
|
---|
253 | //
|
---|
254 | // Apply H from both sides to A
|
---|
255 | //
|
---|
256 | a[i+1,i] = 1;
|
---|
257 |
|
---|
258 | //
|
---|
259 | // Compute x := tau * A * v storing y in TAU
|
---|
260 | //
|
---|
261 | i1_ = (i+1) - (1);
|
---|
262 | for(i_=1; i_<=n-i-1;i_++)
|
---|
263 | {
|
---|
264 | t[i_] = a[i_+i1_,i];
|
---|
265 | }
|
---|
266 | sblas.symmetricmatrixvectormultiply(ref a, isupper, i+1, n-1, ref t, taui, ref t2);
|
---|
267 | i1_ = (1) - (i);
|
---|
268 | for(i_=i; i_<=n-2;i_++)
|
---|
269 | {
|
---|
270 | tau[i_] = t2[i_+i1_];
|
---|
271 | }
|
---|
272 |
|
---|
273 | //
|
---|
274 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
275 | //
|
---|
276 | i1_ = (i+1)-(i);
|
---|
277 | v = 0.0;
|
---|
278 | for(i_=i; i_<=n-2;i_++)
|
---|
279 | {
|
---|
280 | v += tau[i_]*a[i_+i1_,i];
|
---|
281 | }
|
---|
282 | alpha = -(0.5*taui*v);
|
---|
283 | i1_ = (i+1) - (i);
|
---|
284 | for(i_=i; i_<=n-2;i_++)
|
---|
285 | {
|
---|
286 | tau[i_] = tau[i_] + alpha*a[i_+i1_,i];
|
---|
287 | }
|
---|
288 |
|
---|
289 | //
|
---|
290 | // Apply the transformation as a rank-2 update:
|
---|
291 | // A := A - v * w' - w * v'
|
---|
292 | //
|
---|
293 | //
|
---|
294 | i1_ = (i+1) - (1);
|
---|
295 | for(i_=1; i_<=n-i-1;i_++)
|
---|
296 | {
|
---|
297 | t[i_] = a[i_+i1_,i];
|
---|
298 | }
|
---|
299 | i1_ = (i) - (1);
|
---|
300 | for(i_=1; i_<=n-i-1;i_++)
|
---|
301 | {
|
---|
302 | t2[i_] = tau[i_+i1_];
|
---|
303 | }
|
---|
304 | sblas.symmetricrank2update(ref a, isupper, i+1, n-1, ref t, ref t2, ref t3, -1);
|
---|
305 | a[i+1,i] = e[i];
|
---|
306 | }
|
---|
307 | d[i] = a[i,i];
|
---|
308 | tau[i] = taui;
|
---|
309 | }
|
---|
310 | d[n-1] = a[n-1,n-1];
|
---|
311 | }
|
---|
312 | }
|
---|
313 |
|
---|
314 |
|
---|
315 | /*************************************************************************
|
---|
316 | Unpacking matrix Q which reduces symmetric matrix to a tridiagonal
|
---|
317 | form.
|
---|
318 |
|
---|
319 | Input parameters:
|
---|
320 | A - the result of a SMatrixTD subroutine
|
---|
321 | N - size of matrix A.
|
---|
322 | IsUpper - storage format (a parameter of SMatrixTD subroutine)
|
---|
323 | Tau - the result of a SMatrixTD subroutine
|
---|
324 |
|
---|
325 | Output parameters:
|
---|
326 | Q - transformation matrix.
|
---|
327 | array with elements [0..N-1, 0..N-1].
|
---|
328 |
|
---|
329 | -- ALGLIB --
|
---|
330 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
331 | *************************************************************************/
|
---|
332 | public static void smatrixtdunpackq(ref double[,] a,
|
---|
333 | int n,
|
---|
334 | bool isupper,
|
---|
335 | ref double[] tau,
|
---|
336 | ref double[,] q)
|
---|
337 | {
|
---|
338 | int i = 0;
|
---|
339 | int j = 0;
|
---|
340 | double[] v = new double[0];
|
---|
341 | double[] work = new double[0];
|
---|
342 | int i_ = 0;
|
---|
343 | int i1_ = 0;
|
---|
344 |
|
---|
345 | if( n==0 )
|
---|
346 | {
|
---|
347 | return;
|
---|
348 | }
|
---|
349 |
|
---|
350 | //
|
---|
351 | // init
|
---|
352 | //
|
---|
353 | q = new double[n-1+1, n-1+1];
|
---|
354 | v = new double[n+1];
|
---|
355 | work = new double[n-1+1];
|
---|
356 | for(i=0; i<=n-1; i++)
|
---|
357 | {
|
---|
358 | for(j=0; j<=n-1; j++)
|
---|
359 | {
|
---|
360 | if( i==j )
|
---|
361 | {
|
---|
362 | q[i,j] = 1;
|
---|
363 | }
|
---|
364 | else
|
---|
365 | {
|
---|
366 | q[i,j] = 0;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|
370 |
|
---|
371 | //
|
---|
372 | // unpack Q
|
---|
373 | //
|
---|
374 | if( isupper )
|
---|
375 | {
|
---|
376 | for(i=0; i<=n-2; i++)
|
---|
377 | {
|
---|
378 |
|
---|
379 | //
|
---|
380 | // Apply H(i)
|
---|
381 | //
|
---|
382 | i1_ = (0) - (1);
|
---|
383 | for(i_=1; i_<=i+1;i_++)
|
---|
384 | {
|
---|
385 | v[i_] = a[i_+i1_,i+1];
|
---|
386 | }
|
---|
387 | v[i+1] = 1;
|
---|
388 | reflections.applyreflectionfromtheleft(ref q, tau[i], ref v, 0, i, 0, n-1, ref work);
|
---|
389 | }
|
---|
390 | }
|
---|
391 | else
|
---|
392 | {
|
---|
393 | for(i=n-2; i>=0; i--)
|
---|
394 | {
|
---|
395 |
|
---|
396 | //
|
---|
397 | // Apply H(i)
|
---|
398 | //
|
---|
399 | i1_ = (i+1) - (1);
|
---|
400 | for(i_=1; i_<=n-i-1;i_++)
|
---|
401 | {
|
---|
402 | v[i_] = a[i_+i1_,i];
|
---|
403 | }
|
---|
404 | v[1] = 1;
|
---|
405 | reflections.applyreflectionfromtheleft(ref q, tau[i], ref v, i+1, n-1, 0, n-1, ref work);
|
---|
406 | }
|
---|
407 | }
|
---|
408 | }
|
---|
409 |
|
---|
410 |
|
---|
411 | public static void totridiagonal(ref double[,] a,
|
---|
412 | int n,
|
---|
413 | bool isupper,
|
---|
414 | ref double[] tau,
|
---|
415 | ref double[] d,
|
---|
416 | ref double[] e)
|
---|
417 | {
|
---|
418 | int i = 0;
|
---|
419 | int ip1 = 0;
|
---|
420 | int im1 = 0;
|
---|
421 | int nmi = 0;
|
---|
422 | int nm1 = 0;
|
---|
423 | double alpha = 0;
|
---|
424 | double taui = 0;
|
---|
425 | double v = 0;
|
---|
426 | double[] t = new double[0];
|
---|
427 | double[] t2 = new double[0];
|
---|
428 | double[] t3 = new double[0];
|
---|
429 | int i_ = 0;
|
---|
430 | int i1_ = 0;
|
---|
431 |
|
---|
432 | if( n<=0 )
|
---|
433 | {
|
---|
434 | return;
|
---|
435 | }
|
---|
436 | t = new double[n+1];
|
---|
437 | t2 = new double[n+1];
|
---|
438 | t3 = new double[n+1];
|
---|
439 | tau = new double[Math.Max(1, n-1)+1];
|
---|
440 | d = new double[n+1];
|
---|
441 | e = new double[Math.Max(1, n-1)+1];
|
---|
442 | if( isupper )
|
---|
443 | {
|
---|
444 |
|
---|
445 | //
|
---|
446 | // Reduce the upper triangle of A
|
---|
447 | //
|
---|
448 | for(i=n-1; i>=1; i--)
|
---|
449 | {
|
---|
450 |
|
---|
451 | //
|
---|
452 | // Generate elementary reflector H(i) = I - tau * v * v'
|
---|
453 | // to annihilate A(1:i-1,i+1)
|
---|
454 | //
|
---|
455 | // DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI );
|
---|
456 | //
|
---|
457 | ip1 = i+1;
|
---|
458 | im1 = i-1;
|
---|
459 | if( i>=2 )
|
---|
460 | {
|
---|
461 | i1_ = (1) - (2);
|
---|
462 | for(i_=2; i_<=i;i_++)
|
---|
463 | {
|
---|
464 | t[i_] = a[i_+i1_,ip1];
|
---|
465 | }
|
---|
466 | }
|
---|
467 | t[1] = a[i,ip1];
|
---|
468 | reflections.generatereflection(ref t, i, ref taui);
|
---|
469 | if( i>=2 )
|
---|
470 | {
|
---|
471 | i1_ = (2) - (1);
|
---|
472 | for(i_=1; i_<=im1;i_++)
|
---|
473 | {
|
---|
474 | a[i_,ip1] = t[i_+i1_];
|
---|
475 | }
|
---|
476 | }
|
---|
477 | a[i,ip1] = t[1];
|
---|
478 | e[i] = a[i,i+1];
|
---|
479 | if( (double)(taui)!=(double)(0) )
|
---|
480 | {
|
---|
481 |
|
---|
482 | //
|
---|
483 | // Apply H(i) from both sides to A(1:i,1:i)
|
---|
484 | //
|
---|
485 | a[i,i+1] = 1;
|
---|
486 |
|
---|
487 | //
|
---|
488 | // Compute x := tau * A * v storing x in TAU(1:i)
|
---|
489 | //
|
---|
490 | // DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO, TAU, 1 );
|
---|
491 | //
|
---|
492 | ip1 = i+1;
|
---|
493 | for(i_=1; i_<=i;i_++)
|
---|
494 | {
|
---|
495 | t[i_] = a[i_,ip1];
|
---|
496 | }
|
---|
497 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 1, i, ref t, taui, ref tau);
|
---|
498 |
|
---|
499 | //
|
---|
500 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
501 | //
|
---|
502 | ip1 = i+1;
|
---|
503 | v = 0.0;
|
---|
504 | for(i_=1; i_<=i;i_++)
|
---|
505 | {
|
---|
506 | v += tau[i_]*a[i_,ip1];
|
---|
507 | }
|
---|
508 | alpha = -(0.5*taui*v);
|
---|
509 | for(i_=1; i_<=i;i_++)
|
---|
510 | {
|
---|
511 | tau[i_] = tau[i_] + alpha*a[i_,ip1];
|
---|
512 | }
|
---|
513 |
|
---|
514 | //
|
---|
515 | // Apply the transformation as a rank-2 update:
|
---|
516 | // A := A - v * w' - w * v'
|
---|
517 | //
|
---|
518 | // DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A, LDA );
|
---|
519 | //
|
---|
520 | for(i_=1; i_<=i;i_++)
|
---|
521 | {
|
---|
522 | t[i_] = a[i_,ip1];
|
---|
523 | }
|
---|
524 | sblas.symmetricrank2update(ref a, isupper, 1, i, ref t, ref tau, ref t2, -1);
|
---|
525 | a[i,i+1] = e[i];
|
---|
526 | }
|
---|
527 | d[i+1] = a[i+1,i+1];
|
---|
528 | tau[i] = taui;
|
---|
529 | }
|
---|
530 | d[1] = a[1,1];
|
---|
531 | }
|
---|
532 | else
|
---|
533 | {
|
---|
534 |
|
---|
535 | //
|
---|
536 | // Reduce the lower triangle of A
|
---|
537 | //
|
---|
538 | for(i=1; i<=n-1; i++)
|
---|
539 | {
|
---|
540 |
|
---|
541 | //
|
---|
542 | // Generate elementary reflector H(i) = I - tau * v * v'
|
---|
543 | // to annihilate A(i+2:n,i)
|
---|
544 | //
|
---|
545 | //DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1, TAUI );
|
---|
546 | //
|
---|
547 | nmi = n-i;
|
---|
548 | ip1 = i+1;
|
---|
549 | i1_ = (ip1) - (1);
|
---|
550 | for(i_=1; i_<=nmi;i_++)
|
---|
551 | {
|
---|
552 | t[i_] = a[i_+i1_,i];
|
---|
553 | }
|
---|
554 | reflections.generatereflection(ref t, nmi, ref taui);
|
---|
555 | i1_ = (1) - (ip1);
|
---|
556 | for(i_=ip1; i_<=n;i_++)
|
---|
557 | {
|
---|
558 | a[i_,i] = t[i_+i1_];
|
---|
559 | }
|
---|
560 | e[i] = a[i+1,i];
|
---|
561 | if( (double)(taui)!=(double)(0) )
|
---|
562 | {
|
---|
563 |
|
---|
564 | //
|
---|
565 | // Apply H(i) from both sides to A(i+1:n,i+1:n)
|
---|
566 | //
|
---|
567 | a[i+1,i] = 1;
|
---|
568 |
|
---|
569 | //
|
---|
570 | // Compute x := tau * A * v storing y in TAU(i:n-1)
|
---|
571 | //
|
---|
572 | //DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO, TAU( I ), 1 );
|
---|
573 | //
|
---|
574 | ip1 = i+1;
|
---|
575 | nmi = n-i;
|
---|
576 | nm1 = n-1;
|
---|
577 | i1_ = (ip1) - (1);
|
---|
578 | for(i_=1; i_<=nmi;i_++)
|
---|
579 | {
|
---|
580 | t[i_] = a[i_+i1_,i];
|
---|
581 | }
|
---|
582 | sblas.symmetricmatrixvectormultiply(ref a, isupper, i+1, n, ref t, taui, ref t2);
|
---|
583 | i1_ = (1) - (i);
|
---|
584 | for(i_=i; i_<=nm1;i_++)
|
---|
585 | {
|
---|
586 | tau[i_] = t2[i_+i1_];
|
---|
587 | }
|
---|
588 |
|
---|
589 | //
|
---|
590 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
591 | //
|
---|
592 | nm1 = n-1;
|
---|
593 | ip1 = i+1;
|
---|
594 | i1_ = (ip1)-(i);
|
---|
595 | v = 0.0;
|
---|
596 | for(i_=i; i_<=nm1;i_++)
|
---|
597 | {
|
---|
598 | v += tau[i_]*a[i_+i1_,i];
|
---|
599 | }
|
---|
600 | alpha = -(0.5*taui*v);
|
---|
601 | i1_ = (ip1) - (i);
|
---|
602 | for(i_=i; i_<=nm1;i_++)
|
---|
603 | {
|
---|
604 | tau[i_] = tau[i_] + alpha*a[i_+i1_,i];
|
---|
605 | }
|
---|
606 |
|
---|
607 | //
|
---|
608 | // Apply the transformation as a rank-2 update:
|
---|
609 | // A := A - v * w' - w * v'
|
---|
610 | //
|
---|
611 | //DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1, A( I+1, I+1 ), LDA );
|
---|
612 | //
|
---|
613 | nm1 = n-1;
|
---|
614 | nmi = n-i;
|
---|
615 | ip1 = i+1;
|
---|
616 | i1_ = (ip1) - (1);
|
---|
617 | for(i_=1; i_<=nmi;i_++)
|
---|
618 | {
|
---|
619 | t[i_] = a[i_+i1_,i];
|
---|
620 | }
|
---|
621 | i1_ = (i) - (1);
|
---|
622 | for(i_=1; i_<=nmi;i_++)
|
---|
623 | {
|
---|
624 | t2[i_] = tau[i_+i1_];
|
---|
625 | }
|
---|
626 | sblas.symmetricrank2update(ref a, isupper, i+1, n, ref t, ref t2, ref t3, -1);
|
---|
627 | a[i+1,i] = e[i];
|
---|
628 | }
|
---|
629 | d[i] = a[i,i];
|
---|
630 | tau[i] = taui;
|
---|
631 | }
|
---|
632 | d[n] = a[n,n];
|
---|
633 | }
|
---|
634 | }
|
---|
635 |
|
---|
636 |
|
---|
637 | public static void unpackqfromtridiagonal(ref double[,] a,
|
---|
638 | int n,
|
---|
639 | bool isupper,
|
---|
640 | ref double[] tau,
|
---|
641 | ref double[,] q)
|
---|
642 | {
|
---|
643 | int i = 0;
|
---|
644 | int j = 0;
|
---|
645 | int ip1 = 0;
|
---|
646 | int nmi = 0;
|
---|
647 | double[] v = new double[0];
|
---|
648 | double[] work = new double[0];
|
---|
649 | int i_ = 0;
|
---|
650 | int i1_ = 0;
|
---|
651 |
|
---|
652 | if( n==0 )
|
---|
653 | {
|
---|
654 | return;
|
---|
655 | }
|
---|
656 |
|
---|
657 | //
|
---|
658 | // init
|
---|
659 | //
|
---|
660 | q = new double[n+1, n+1];
|
---|
661 | v = new double[n+1];
|
---|
662 | work = new double[n+1];
|
---|
663 | for(i=1; i<=n; i++)
|
---|
664 | {
|
---|
665 | for(j=1; j<=n; j++)
|
---|
666 | {
|
---|
667 | if( i==j )
|
---|
668 | {
|
---|
669 | q[i,j] = 1;
|
---|
670 | }
|
---|
671 | else
|
---|
672 | {
|
---|
673 | q[i,j] = 0;
|
---|
674 | }
|
---|
675 | }
|
---|
676 | }
|
---|
677 |
|
---|
678 | //
|
---|
679 | // unpack Q
|
---|
680 | //
|
---|
681 | if( isupper )
|
---|
682 | {
|
---|
683 | for(i=1; i<=n-1; i++)
|
---|
684 | {
|
---|
685 |
|
---|
686 | //
|
---|
687 | // Apply H(i)
|
---|
688 | //
|
---|
689 | ip1 = i+1;
|
---|
690 | for(i_=1; i_<=i;i_++)
|
---|
691 | {
|
---|
692 | v[i_] = a[i_,ip1];
|
---|
693 | }
|
---|
694 | v[i] = 1;
|
---|
695 | reflections.applyreflectionfromtheleft(ref q, tau[i], ref v, 1, i, 1, n, ref work);
|
---|
696 | }
|
---|
697 | }
|
---|
698 | else
|
---|
699 | {
|
---|
700 | for(i=n-1; i>=1; i--)
|
---|
701 | {
|
---|
702 |
|
---|
703 | //
|
---|
704 | // Apply H(i)
|
---|
705 | //
|
---|
706 | ip1 = i+1;
|
---|
707 | nmi = n-i;
|
---|
708 | i1_ = (ip1) - (1);
|
---|
709 | for(i_=1; i_<=nmi;i_++)
|
---|
710 | {
|
---|
711 | v[i_] = a[i_+i1_,i];
|
---|
712 | }
|
---|
713 | v[1] = 1;
|
---|
714 | reflections.applyreflectionfromtheleft(ref q, tau[i], ref v, i+1, n, 1, n, ref work);
|
---|
715 | }
|
---|
716 | }
|
---|
717 | }
|
---|
718 | }
|
---|
719 | }
|
---|