1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class tdbisinv
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Subroutine for finding the tridiagonal matrix eigenvalues/vectors in a
|
---|
35 | given half-interval (A, B] by using bisection and inverse iteration.
|
---|
36 |
|
---|
37 | Input parameters:
|
---|
38 | D - the main diagonal of a tridiagonal matrix.
|
---|
39 | Array whose index ranges within [0..N-1].
|
---|
40 | E - the secondary diagonal of a tridiagonal matrix.
|
---|
41 | Array whose index ranges within [0..N-2].
|
---|
42 | N - size of matrix, N>=0.
|
---|
43 | ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
---|
44 | If ZNeeded is equal to:
|
---|
45 | * 0, the eigenvectors are not needed;
|
---|
46 | * 1, the eigenvectors of a tridiagonal matrix are multiplied
|
---|
47 | by the square matrix Z. It is used if the tridiagonal
|
---|
48 | matrix is obtained by the similarity transformation
|
---|
49 | of a symmetric matrix.
|
---|
50 | * 2, the eigenvectors of a tridiagonal matrix replace matrix Z.
|
---|
51 | A, B - half-interval (A, B] to search eigenvalues in.
|
---|
52 | Z - if ZNeeded is equal to:
|
---|
53 | * 0, Z isn't used and remains unchanged;
|
---|
54 | * 1, Z contains the square matrix (array whose indexes range
|
---|
55 | within [0..N-1, 0..N-1]) which reduces the given symmetric
|
---|
56 | matrix to tridiagonal form;
|
---|
57 | * 2, Z isn't used (but changed on the exit).
|
---|
58 |
|
---|
59 | Output parameters:
|
---|
60 | D - array of the eigenvalues found.
|
---|
61 | Array whose index ranges within [0..M-1].
|
---|
62 | M - number of eigenvalues found in the given half-interval (M>=0).
|
---|
63 | Z - if ZNeeded is equal to:
|
---|
64 | * 0, doesn't contain any information;
|
---|
65 | * 1, contains the product of a given NxN matrix Z (from the
|
---|
66 | left) and NxM matrix of the eigenvectors found (from the
|
---|
67 | right). Array whose indexes range within [0..N-1, 0..M-1].
|
---|
68 | * 2, contains the matrix of the eigenvectors found.
|
---|
69 | Array whose indexes range within [0..N-1, 0..M-1].
|
---|
70 |
|
---|
71 | Result:
|
---|
72 |
|
---|
73 | True, if successful. In that case, M contains the number of eigenvalues
|
---|
74 | in the given half-interval (could be equal to 0), D contains the eigenvalues,
|
---|
75 | Z contains the eigenvectors (if needed).
|
---|
76 | It should be noted that the subroutine changes the size of arrays D and Z.
|
---|
77 |
|
---|
78 | False, if the bisection method subroutine wasn't able to find the
|
---|
79 | eigenvalues in the given interval or if the inverse iteration subroutine
|
---|
80 | wasn't able to find all the corresponding eigenvectors. In that case,
|
---|
81 | the eigenvalues and eigenvectors are not returned, M is equal to 0.
|
---|
82 |
|
---|
83 | -- ALGLIB --
|
---|
84 | Copyright 31.03.2008 by Bochkanov Sergey
|
---|
85 | *************************************************************************/
|
---|
86 | public static bool smatrixtdevdr(ref double[] d,
|
---|
87 | ref double[] e,
|
---|
88 | int n,
|
---|
89 | int zneeded,
|
---|
90 | double a,
|
---|
91 | double b,
|
---|
92 | ref int m,
|
---|
93 | ref double[,] z)
|
---|
94 | {
|
---|
95 | bool result = new bool();
|
---|
96 | int errorcode = 0;
|
---|
97 | int nsplit = 0;
|
---|
98 | int i = 0;
|
---|
99 | int j = 0;
|
---|
100 | int k = 0;
|
---|
101 | int cr = 0;
|
---|
102 | int[] iblock = new int[0];
|
---|
103 | int[] isplit = new int[0];
|
---|
104 | int[] ifail = new int[0];
|
---|
105 | double[] d1 = new double[0];
|
---|
106 | double[] e1 = new double[0];
|
---|
107 | double[] w = new double[0];
|
---|
108 | double[,] z2 = new double[0,0];
|
---|
109 | double[,] z3 = new double[0,0];
|
---|
110 | double v = 0;
|
---|
111 | int i_ = 0;
|
---|
112 | int i1_ = 0;
|
---|
113 |
|
---|
114 | System.Diagnostics.Debug.Assert(zneeded>=0 & zneeded<=2, "SMatrixTDEVDR: incorrect ZNeeded!");
|
---|
115 |
|
---|
116 | //
|
---|
117 | // Special cases
|
---|
118 | //
|
---|
119 | if( (double)(b)<=(double)(a) )
|
---|
120 | {
|
---|
121 | m = 0;
|
---|
122 | result = true;
|
---|
123 | return result;
|
---|
124 | }
|
---|
125 | if( n<=0 )
|
---|
126 | {
|
---|
127 | m = 0;
|
---|
128 | result = true;
|
---|
129 | return result;
|
---|
130 | }
|
---|
131 |
|
---|
132 | //
|
---|
133 | // Copy D,E to D1, E1
|
---|
134 | //
|
---|
135 | d1 = new double[n+1];
|
---|
136 | i1_ = (0) - (1);
|
---|
137 | for(i_=1; i_<=n;i_++)
|
---|
138 | {
|
---|
139 | d1[i_] = d[i_+i1_];
|
---|
140 | }
|
---|
141 | if( n>1 )
|
---|
142 | {
|
---|
143 | e1 = new double[n-1+1];
|
---|
144 | i1_ = (0) - (1);
|
---|
145 | for(i_=1; i_<=n-1;i_++)
|
---|
146 | {
|
---|
147 | e1[i_] = e[i_+i1_];
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | //
|
---|
152 | // No eigen vectors
|
---|
153 | //
|
---|
154 | if( zneeded==0 )
|
---|
155 | {
|
---|
156 | result = internalbisectioneigenvalues(d1, e1, n, 2, 1, a, b, 0, 0, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
157 | if( !result | m==0 )
|
---|
158 | {
|
---|
159 | m = 0;
|
---|
160 | return result;
|
---|
161 | }
|
---|
162 | d = new double[m-1+1];
|
---|
163 | i1_ = (1) - (0);
|
---|
164 | for(i_=0; i_<=m-1;i_++)
|
---|
165 | {
|
---|
166 | d[i_] = w[i_+i1_];
|
---|
167 | }
|
---|
168 | return result;
|
---|
169 | }
|
---|
170 |
|
---|
171 | //
|
---|
172 | // Eigen vectors are multiplied by Z
|
---|
173 | //
|
---|
174 | if( zneeded==1 )
|
---|
175 | {
|
---|
176 |
|
---|
177 | //
|
---|
178 | // Find eigen pairs
|
---|
179 | //
|
---|
180 | result = internalbisectioneigenvalues(d1, e1, n, 2, 2, a, b, 0, 0, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
181 | if( !result | m==0 )
|
---|
182 | {
|
---|
183 | m = 0;
|
---|
184 | return result;
|
---|
185 | }
|
---|
186 | internaldstein(n, ref d1, e1, m, w, ref iblock, ref isplit, ref z2, ref ifail, ref cr);
|
---|
187 | if( cr!=0 )
|
---|
188 | {
|
---|
189 | m = 0;
|
---|
190 | result = false;
|
---|
191 | return result;
|
---|
192 | }
|
---|
193 |
|
---|
194 | //
|
---|
195 | // Sort eigen values and vectors
|
---|
196 | //
|
---|
197 | for(i=1; i<=m; i++)
|
---|
198 | {
|
---|
199 | k = i;
|
---|
200 | for(j=i; j<=m; j++)
|
---|
201 | {
|
---|
202 | if( (double)(w[j])<(double)(w[k]) )
|
---|
203 | {
|
---|
204 | k = j;
|
---|
205 | }
|
---|
206 | }
|
---|
207 | v = w[i];
|
---|
208 | w[i] = w[k];
|
---|
209 | w[k] = v;
|
---|
210 | for(j=1; j<=n; j++)
|
---|
211 | {
|
---|
212 | v = z2[j,i];
|
---|
213 | z2[j,i] = z2[j,k];
|
---|
214 | z2[j,k] = v;
|
---|
215 | }
|
---|
216 | }
|
---|
217 |
|
---|
218 | //
|
---|
219 | // Transform Z2 and overwrite Z
|
---|
220 | //
|
---|
221 | z3 = new double[m+1, n+1];
|
---|
222 | for(i=1; i<=m; i++)
|
---|
223 | {
|
---|
224 | for(i_=1; i_<=n;i_++)
|
---|
225 | {
|
---|
226 | z3[i,i_] = z2[i_,i];
|
---|
227 | }
|
---|
228 | }
|
---|
229 | for(i=1; i<=n; i++)
|
---|
230 | {
|
---|
231 | for(j=1; j<=m; j++)
|
---|
232 | {
|
---|
233 | i1_ = (1)-(0);
|
---|
234 | v = 0.0;
|
---|
235 | for(i_=0; i_<=n-1;i_++)
|
---|
236 | {
|
---|
237 | v += z[i-1,i_]*z3[j,i_+i1_];
|
---|
238 | }
|
---|
239 | z2[i,j] = v;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | z = new double[n-1+1, m-1+1];
|
---|
243 | for(i=1; i<=m; i++)
|
---|
244 | {
|
---|
245 | i1_ = (1) - (0);
|
---|
246 | for(i_=0; i_<=n-1;i_++)
|
---|
247 | {
|
---|
248 | z[i_,i-1] = z2[i_+i1_,i];
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 | //
|
---|
253 | // Store W
|
---|
254 | //
|
---|
255 | d = new double[m-1+1];
|
---|
256 | for(i=1; i<=m; i++)
|
---|
257 | {
|
---|
258 | d[i-1] = w[i];
|
---|
259 | }
|
---|
260 | return result;
|
---|
261 | }
|
---|
262 |
|
---|
263 | //
|
---|
264 | // Eigen vectors are stored in Z
|
---|
265 | //
|
---|
266 | if( zneeded==2 )
|
---|
267 | {
|
---|
268 |
|
---|
269 | //
|
---|
270 | // Find eigen pairs
|
---|
271 | //
|
---|
272 | result = internalbisectioneigenvalues(d1, e1, n, 2, 2, a, b, 0, 0, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
273 | if( !result | m==0 )
|
---|
274 | {
|
---|
275 | m = 0;
|
---|
276 | return result;
|
---|
277 | }
|
---|
278 | internaldstein(n, ref d1, e1, m, w, ref iblock, ref isplit, ref z2, ref ifail, ref cr);
|
---|
279 | if( cr!=0 )
|
---|
280 | {
|
---|
281 | m = 0;
|
---|
282 | result = false;
|
---|
283 | return result;
|
---|
284 | }
|
---|
285 |
|
---|
286 | //
|
---|
287 | // Sort eigen values and vectors
|
---|
288 | //
|
---|
289 | for(i=1; i<=m; i++)
|
---|
290 | {
|
---|
291 | k = i;
|
---|
292 | for(j=i; j<=m; j++)
|
---|
293 | {
|
---|
294 | if( (double)(w[j])<(double)(w[k]) )
|
---|
295 | {
|
---|
296 | k = j;
|
---|
297 | }
|
---|
298 | }
|
---|
299 | v = w[i];
|
---|
300 | w[i] = w[k];
|
---|
301 | w[k] = v;
|
---|
302 | for(j=1; j<=n; j++)
|
---|
303 | {
|
---|
304 | v = z2[j,i];
|
---|
305 | z2[j,i] = z2[j,k];
|
---|
306 | z2[j,k] = v;
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | //
|
---|
311 | // Store W
|
---|
312 | //
|
---|
313 | d = new double[m-1+1];
|
---|
314 | for(i=1; i<=m; i++)
|
---|
315 | {
|
---|
316 | d[i-1] = w[i];
|
---|
317 | }
|
---|
318 | z = new double[n-1+1, m-1+1];
|
---|
319 | for(i=1; i<=m; i++)
|
---|
320 | {
|
---|
321 | i1_ = (1) - (0);
|
---|
322 | for(i_=0; i_<=n-1;i_++)
|
---|
323 | {
|
---|
324 | z[i_,i-1] = z2[i_+i1_,i];
|
---|
325 | }
|
---|
326 | }
|
---|
327 | return result;
|
---|
328 | }
|
---|
329 | result = false;
|
---|
330 | return result;
|
---|
331 | }
|
---|
332 |
|
---|
333 |
|
---|
334 | /*************************************************************************
|
---|
335 | Subroutine for finding tridiagonal matrix eigenvalues/vectors with given
|
---|
336 | indexes (in ascending order) by using the bisection and inverse iteraion.
|
---|
337 |
|
---|
338 | Input parameters:
|
---|
339 | D - the main diagonal of a tridiagonal matrix.
|
---|
340 | Array whose index ranges within [0..N-1].
|
---|
341 | E - the secondary diagonal of a tridiagonal matrix.
|
---|
342 | Array whose index ranges within [0..N-2].
|
---|
343 | N - size of matrix. N>=0.
|
---|
344 | ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
---|
345 | If ZNeeded is equal to:
|
---|
346 | * 0, the eigenvectors are not needed;
|
---|
347 | * 1, the eigenvectors of a tridiagonal matrix are multiplied
|
---|
348 | by the square matrix Z. It is used if the
|
---|
349 | tridiagonal matrix is obtained by the similarity transformation
|
---|
350 | of a symmetric matrix.
|
---|
351 | * 2, the eigenvectors of a tridiagonal matrix replace
|
---|
352 | matrix Z.
|
---|
353 | I1, I2 - index interval for searching (from I1 to I2).
|
---|
354 | 0 <= I1 <= I2 <= N-1.
|
---|
355 | Z - if ZNeeded is equal to:
|
---|
356 | * 0, Z isn't used and remains unchanged;
|
---|
357 | * 1, Z contains the square matrix (array whose indexes range within [0..N-1, 0..N-1])
|
---|
358 | which reduces the given symmetric matrix to tridiagonal form;
|
---|
359 | * 2, Z isn't used (but changed on the exit).
|
---|
360 |
|
---|
361 | Output parameters:
|
---|
362 | D - array of the eigenvalues found.
|
---|
363 | Array whose index ranges within [0..I2-I1].
|
---|
364 | Z - if ZNeeded is equal to:
|
---|
365 | * 0, doesn't contain any information;
|
---|
366 | * 1, contains the product of a given NxN matrix Z (from the left) and
|
---|
367 | Nx(I2-I1) matrix of the eigenvectors found (from the right).
|
---|
368 | Array whose indexes range within [0..N-1, 0..I2-I1].
|
---|
369 | * 2, contains the matrix of the eigenvalues found.
|
---|
370 | Array whose indexes range within [0..N-1, 0..I2-I1].
|
---|
371 |
|
---|
372 |
|
---|
373 | Result:
|
---|
374 |
|
---|
375 | True, if successful. In that case, D contains the eigenvalues,
|
---|
376 | Z contains the eigenvectors (if needed).
|
---|
377 | It should be noted that the subroutine changes the size of arrays D and Z.
|
---|
378 |
|
---|
379 | False, if the bisection method subroutine wasn't able to find the eigenvalues
|
---|
380 | in the given interval or if the inverse iteration subroutine wasn't able
|
---|
381 | to find all the corresponding eigenvectors. In that case, the eigenvalues
|
---|
382 | and eigenvectors are not returned.
|
---|
383 |
|
---|
384 | -- ALGLIB --
|
---|
385 | Copyright 25.12.2005 by Bochkanov Sergey
|
---|
386 | *************************************************************************/
|
---|
387 | public static bool smatrixtdevdi(ref double[] d,
|
---|
388 | ref double[] e,
|
---|
389 | int n,
|
---|
390 | int zneeded,
|
---|
391 | int i1,
|
---|
392 | int i2,
|
---|
393 | ref double[,] z)
|
---|
394 | {
|
---|
395 | bool result = new bool();
|
---|
396 | int errorcode = 0;
|
---|
397 | int nsplit = 0;
|
---|
398 | int i = 0;
|
---|
399 | int j = 0;
|
---|
400 | int k = 0;
|
---|
401 | int m = 0;
|
---|
402 | int cr = 0;
|
---|
403 | int[] iblock = new int[0];
|
---|
404 | int[] isplit = new int[0];
|
---|
405 | int[] ifail = new int[0];
|
---|
406 | double[] w = new double[0];
|
---|
407 | double[] d1 = new double[0];
|
---|
408 | double[] e1 = new double[0];
|
---|
409 | double[,] z2 = new double[0,0];
|
---|
410 | double[,] z3 = new double[0,0];
|
---|
411 | double v = 0;
|
---|
412 | int i_ = 0;
|
---|
413 | int i1_ = 0;
|
---|
414 |
|
---|
415 | System.Diagnostics.Debug.Assert(0<=i1 & i1<=i2 & i2<n, "SMatrixTDEVDI: incorrect I1/I2!");
|
---|
416 |
|
---|
417 | //
|
---|
418 | // Copy D,E to D1, E1
|
---|
419 | //
|
---|
420 | d1 = new double[n+1];
|
---|
421 | i1_ = (0) - (1);
|
---|
422 | for(i_=1; i_<=n;i_++)
|
---|
423 | {
|
---|
424 | d1[i_] = d[i_+i1_];
|
---|
425 | }
|
---|
426 | if( n>1 )
|
---|
427 | {
|
---|
428 | e1 = new double[n-1+1];
|
---|
429 | i1_ = (0) - (1);
|
---|
430 | for(i_=1; i_<=n-1;i_++)
|
---|
431 | {
|
---|
432 | e1[i_] = e[i_+i1_];
|
---|
433 | }
|
---|
434 | }
|
---|
435 |
|
---|
436 | //
|
---|
437 | // No eigen vectors
|
---|
438 | //
|
---|
439 | if( zneeded==0 )
|
---|
440 | {
|
---|
441 | result = internalbisectioneigenvalues(d1, e1, n, 3, 1, 0, 0, i1+1, i2+1, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
442 | if( !result )
|
---|
443 | {
|
---|
444 | return result;
|
---|
445 | }
|
---|
446 | if( m!=i2-i1+1 )
|
---|
447 | {
|
---|
448 | result = false;
|
---|
449 | return result;
|
---|
450 | }
|
---|
451 | d = new double[m-1+1];
|
---|
452 | for(i=1; i<=m; i++)
|
---|
453 | {
|
---|
454 | d[i-1] = w[i];
|
---|
455 | }
|
---|
456 | return result;
|
---|
457 | }
|
---|
458 |
|
---|
459 | //
|
---|
460 | // Eigen vectors are multiplied by Z
|
---|
461 | //
|
---|
462 | if( zneeded==1 )
|
---|
463 | {
|
---|
464 |
|
---|
465 | //
|
---|
466 | // Find eigen pairs
|
---|
467 | //
|
---|
468 | result = internalbisectioneigenvalues(d1, e1, n, 3, 2, 0, 0, i1+1, i2+1, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
469 | if( !result )
|
---|
470 | {
|
---|
471 | return result;
|
---|
472 | }
|
---|
473 | if( m!=i2-i1+1 )
|
---|
474 | {
|
---|
475 | result = false;
|
---|
476 | return result;
|
---|
477 | }
|
---|
478 | internaldstein(n, ref d1, e1, m, w, ref iblock, ref isplit, ref z2, ref ifail, ref cr);
|
---|
479 | if( cr!=0 )
|
---|
480 | {
|
---|
481 | result = false;
|
---|
482 | return result;
|
---|
483 | }
|
---|
484 |
|
---|
485 | //
|
---|
486 | // Sort eigen values and vectors
|
---|
487 | //
|
---|
488 | for(i=1; i<=m; i++)
|
---|
489 | {
|
---|
490 | k = i;
|
---|
491 | for(j=i; j<=m; j++)
|
---|
492 | {
|
---|
493 | if( (double)(w[j])<(double)(w[k]) )
|
---|
494 | {
|
---|
495 | k = j;
|
---|
496 | }
|
---|
497 | }
|
---|
498 | v = w[i];
|
---|
499 | w[i] = w[k];
|
---|
500 | w[k] = v;
|
---|
501 | for(j=1; j<=n; j++)
|
---|
502 | {
|
---|
503 | v = z2[j,i];
|
---|
504 | z2[j,i] = z2[j,k];
|
---|
505 | z2[j,k] = v;
|
---|
506 | }
|
---|
507 | }
|
---|
508 |
|
---|
509 | //
|
---|
510 | // Transform Z2 and overwrite Z
|
---|
511 | //
|
---|
512 | z3 = new double[m+1, n+1];
|
---|
513 | for(i=1; i<=m; i++)
|
---|
514 | {
|
---|
515 | for(i_=1; i_<=n;i_++)
|
---|
516 | {
|
---|
517 | z3[i,i_] = z2[i_,i];
|
---|
518 | }
|
---|
519 | }
|
---|
520 | for(i=1; i<=n; i++)
|
---|
521 | {
|
---|
522 | for(j=1; j<=m; j++)
|
---|
523 | {
|
---|
524 | i1_ = (1)-(0);
|
---|
525 | v = 0.0;
|
---|
526 | for(i_=0; i_<=n-1;i_++)
|
---|
527 | {
|
---|
528 | v += z[i-1,i_]*z3[j,i_+i1_];
|
---|
529 | }
|
---|
530 | z2[i,j] = v;
|
---|
531 | }
|
---|
532 | }
|
---|
533 | z = new double[n-1+1, m-1+1];
|
---|
534 | for(i=1; i<=m; i++)
|
---|
535 | {
|
---|
536 | i1_ = (1) - (0);
|
---|
537 | for(i_=0; i_<=n-1;i_++)
|
---|
538 | {
|
---|
539 | z[i_,i-1] = z2[i_+i1_,i];
|
---|
540 | }
|
---|
541 | }
|
---|
542 |
|
---|
543 | //
|
---|
544 | // Store W
|
---|
545 | //
|
---|
546 | d = new double[m-1+1];
|
---|
547 | for(i=1; i<=m; i++)
|
---|
548 | {
|
---|
549 | d[i-1] = w[i];
|
---|
550 | }
|
---|
551 | return result;
|
---|
552 | }
|
---|
553 |
|
---|
554 | //
|
---|
555 | // Eigen vectors are stored in Z
|
---|
556 | //
|
---|
557 | if( zneeded==2 )
|
---|
558 | {
|
---|
559 |
|
---|
560 | //
|
---|
561 | // Find eigen pairs
|
---|
562 | //
|
---|
563 | result = internalbisectioneigenvalues(d1, e1, n, 3, 2, 0, 0, i1+1, i2+1, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
564 | if( !result )
|
---|
565 | {
|
---|
566 | return result;
|
---|
567 | }
|
---|
568 | if( m!=i2-i1+1 )
|
---|
569 | {
|
---|
570 | result = false;
|
---|
571 | return result;
|
---|
572 | }
|
---|
573 | internaldstein(n, ref d1, e1, m, w, ref iblock, ref isplit, ref z2, ref ifail, ref cr);
|
---|
574 | if( cr!=0 )
|
---|
575 | {
|
---|
576 | result = false;
|
---|
577 | return result;
|
---|
578 | }
|
---|
579 |
|
---|
580 | //
|
---|
581 | // Sort eigen values and vectors
|
---|
582 | //
|
---|
583 | for(i=1; i<=m; i++)
|
---|
584 | {
|
---|
585 | k = i;
|
---|
586 | for(j=i; j<=m; j++)
|
---|
587 | {
|
---|
588 | if( (double)(w[j])<(double)(w[k]) )
|
---|
589 | {
|
---|
590 | k = j;
|
---|
591 | }
|
---|
592 | }
|
---|
593 | v = w[i];
|
---|
594 | w[i] = w[k];
|
---|
595 | w[k] = v;
|
---|
596 | for(j=1; j<=n; j++)
|
---|
597 | {
|
---|
598 | v = z2[j,i];
|
---|
599 | z2[j,i] = z2[j,k];
|
---|
600 | z2[j,k] = v;
|
---|
601 | }
|
---|
602 | }
|
---|
603 |
|
---|
604 | //
|
---|
605 | // Store Z
|
---|
606 | //
|
---|
607 | z = new double[n-1+1, m-1+1];
|
---|
608 | for(i=1; i<=m; i++)
|
---|
609 | {
|
---|
610 | i1_ = (1) - (0);
|
---|
611 | for(i_=0; i_<=n-1;i_++)
|
---|
612 | {
|
---|
613 | z[i_,i-1] = z2[i_+i1_,i];
|
---|
614 | }
|
---|
615 | }
|
---|
616 |
|
---|
617 | //
|
---|
618 | // Store W
|
---|
619 | //
|
---|
620 | d = new double[m-1+1];
|
---|
621 | for(i=1; i<=m; i++)
|
---|
622 | {
|
---|
623 | d[i-1] = w[i];
|
---|
624 | }
|
---|
625 | return result;
|
---|
626 | }
|
---|
627 | result = false;
|
---|
628 | return result;
|
---|
629 | }
|
---|
630 |
|
---|
631 |
|
---|
632 | public static bool tridiagonaleigenvaluesandvectorsininterval(ref double[] d,
|
---|
633 | ref double[] e,
|
---|
634 | int n,
|
---|
635 | int zneeded,
|
---|
636 | double a,
|
---|
637 | double b,
|
---|
638 | ref int m,
|
---|
639 | ref double[,] z)
|
---|
640 | {
|
---|
641 | bool result = new bool();
|
---|
642 | int errorcode = 0;
|
---|
643 | int nsplit = 0;
|
---|
644 | int i = 0;
|
---|
645 | int j = 0;
|
---|
646 | int k = 0;
|
---|
647 | int cr = 0;
|
---|
648 | int[] iblock = new int[0];
|
---|
649 | int[] isplit = new int[0];
|
---|
650 | int[] ifail = new int[0];
|
---|
651 | double[] w = new double[0];
|
---|
652 | double[,] z2 = new double[0,0];
|
---|
653 | double[,] z3 = new double[0,0];
|
---|
654 | double v = 0;
|
---|
655 | int i_ = 0;
|
---|
656 |
|
---|
657 |
|
---|
658 | //
|
---|
659 | // No eigen vectors
|
---|
660 | //
|
---|
661 | if( zneeded==0 )
|
---|
662 | {
|
---|
663 | result = internalbisectioneigenvalues(d, e, n, 2, 1, a, b, 0, 0, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
664 | if( !result | m==0 )
|
---|
665 | {
|
---|
666 | m = 0;
|
---|
667 | return result;
|
---|
668 | }
|
---|
669 | d = new double[m+1];
|
---|
670 | for(i=1; i<=m; i++)
|
---|
671 | {
|
---|
672 | d[i] = w[i];
|
---|
673 | }
|
---|
674 | return result;
|
---|
675 | }
|
---|
676 |
|
---|
677 | //
|
---|
678 | // Eigen vectors are multiplied by Z
|
---|
679 | //
|
---|
680 | if( zneeded==1 )
|
---|
681 | {
|
---|
682 |
|
---|
683 | //
|
---|
684 | // Find eigen pairs
|
---|
685 | //
|
---|
686 | result = internalbisectioneigenvalues(d, e, n, 2, 2, a, b, 0, 0, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
687 | if( !result | m==0 )
|
---|
688 | {
|
---|
689 | m = 0;
|
---|
690 | return result;
|
---|
691 | }
|
---|
692 | internaldstein(n, ref d, e, m, w, ref iblock, ref isplit, ref z2, ref ifail, ref cr);
|
---|
693 | if( cr!=0 )
|
---|
694 | {
|
---|
695 | m = 0;
|
---|
696 | result = false;
|
---|
697 | return result;
|
---|
698 | }
|
---|
699 |
|
---|
700 | //
|
---|
701 | // Sort eigen values and vectors
|
---|
702 | //
|
---|
703 | for(i=1; i<=m; i++)
|
---|
704 | {
|
---|
705 | k = i;
|
---|
706 | for(j=i; j<=m; j++)
|
---|
707 | {
|
---|
708 | if( (double)(w[j])<(double)(w[k]) )
|
---|
709 | {
|
---|
710 | k = j;
|
---|
711 | }
|
---|
712 | }
|
---|
713 | v = w[i];
|
---|
714 | w[i] = w[k];
|
---|
715 | w[k] = v;
|
---|
716 | for(j=1; j<=n; j++)
|
---|
717 | {
|
---|
718 | v = z2[j,i];
|
---|
719 | z2[j,i] = z2[j,k];
|
---|
720 | z2[j,k] = v;
|
---|
721 | }
|
---|
722 | }
|
---|
723 |
|
---|
724 | //
|
---|
725 | // Transform Z2 and overwrite Z
|
---|
726 | //
|
---|
727 | z3 = new double[m+1, n+1];
|
---|
728 | for(i=1; i<=m; i++)
|
---|
729 | {
|
---|
730 | for(i_=1; i_<=n;i_++)
|
---|
731 | {
|
---|
732 | z3[i,i_] = z2[i_,i];
|
---|
733 | }
|
---|
734 | }
|
---|
735 | for(i=1; i<=n; i++)
|
---|
736 | {
|
---|
737 | for(j=1; j<=m; j++)
|
---|
738 | {
|
---|
739 | v = 0.0;
|
---|
740 | for(i_=1; i_<=n;i_++)
|
---|
741 | {
|
---|
742 | v += z[i,i_]*z3[j,i_];
|
---|
743 | }
|
---|
744 | z2[i,j] = v;
|
---|
745 | }
|
---|
746 | }
|
---|
747 | z = new double[n+1, m+1];
|
---|
748 | for(i=1; i<=m; i++)
|
---|
749 | {
|
---|
750 | for(i_=1; i_<=n;i_++)
|
---|
751 | {
|
---|
752 | z[i_,i] = z2[i_,i];
|
---|
753 | }
|
---|
754 | }
|
---|
755 |
|
---|
756 | //
|
---|
757 | // Store W
|
---|
758 | //
|
---|
759 | d = new double[m+1];
|
---|
760 | for(i=1; i<=m; i++)
|
---|
761 | {
|
---|
762 | d[i] = w[i];
|
---|
763 | }
|
---|
764 | return result;
|
---|
765 | }
|
---|
766 |
|
---|
767 | //
|
---|
768 | // Eigen vectors are stored in Z
|
---|
769 | //
|
---|
770 | if( zneeded==2 )
|
---|
771 | {
|
---|
772 |
|
---|
773 | //
|
---|
774 | // Find eigen pairs
|
---|
775 | //
|
---|
776 | result = internalbisectioneigenvalues(d, e, n, 2, 2, a, b, 0, 0, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
777 | if( !result | m==0 )
|
---|
778 | {
|
---|
779 | m = 0;
|
---|
780 | return result;
|
---|
781 | }
|
---|
782 | internaldstein(n, ref d, e, m, w, ref iblock, ref isplit, ref z, ref ifail, ref cr);
|
---|
783 | if( cr!=0 )
|
---|
784 | {
|
---|
785 | m = 0;
|
---|
786 | result = false;
|
---|
787 | return result;
|
---|
788 | }
|
---|
789 |
|
---|
790 | //
|
---|
791 | // Sort eigen values and vectors
|
---|
792 | //
|
---|
793 | for(i=1; i<=m; i++)
|
---|
794 | {
|
---|
795 | k = i;
|
---|
796 | for(j=i; j<=m; j++)
|
---|
797 | {
|
---|
798 | if( (double)(w[j])<(double)(w[k]) )
|
---|
799 | {
|
---|
800 | k = j;
|
---|
801 | }
|
---|
802 | }
|
---|
803 | v = w[i];
|
---|
804 | w[i] = w[k];
|
---|
805 | w[k] = v;
|
---|
806 | for(j=1; j<=n; j++)
|
---|
807 | {
|
---|
808 | v = z[j,i];
|
---|
809 | z[j,i] = z[j,k];
|
---|
810 | z[j,k] = v;
|
---|
811 | }
|
---|
812 | }
|
---|
813 |
|
---|
814 | //
|
---|
815 | // Store W
|
---|
816 | //
|
---|
817 | d = new double[m+1];
|
---|
818 | for(i=1; i<=m; i++)
|
---|
819 | {
|
---|
820 | d[i] = w[i];
|
---|
821 | }
|
---|
822 | return result;
|
---|
823 | }
|
---|
824 | result = false;
|
---|
825 | return result;
|
---|
826 | }
|
---|
827 |
|
---|
828 |
|
---|
829 | public static bool tridiagonaleigenvaluesandvectorsbyindexes(ref double[] d,
|
---|
830 | ref double[] e,
|
---|
831 | int n,
|
---|
832 | int zneeded,
|
---|
833 | int i1,
|
---|
834 | int i2,
|
---|
835 | ref double[,] z)
|
---|
836 | {
|
---|
837 | bool result = new bool();
|
---|
838 | int errorcode = 0;
|
---|
839 | int nsplit = 0;
|
---|
840 | int i = 0;
|
---|
841 | int j = 0;
|
---|
842 | int k = 0;
|
---|
843 | int m = 0;
|
---|
844 | int cr = 0;
|
---|
845 | int[] iblock = new int[0];
|
---|
846 | int[] isplit = new int[0];
|
---|
847 | int[] ifail = new int[0];
|
---|
848 | double[] w = new double[0];
|
---|
849 | double[,] z2 = new double[0,0];
|
---|
850 | double[,] z3 = new double[0,0];
|
---|
851 | double v = 0;
|
---|
852 | int i_ = 0;
|
---|
853 |
|
---|
854 |
|
---|
855 | //
|
---|
856 | // No eigen vectors
|
---|
857 | //
|
---|
858 | if( zneeded==0 )
|
---|
859 | {
|
---|
860 | result = internalbisectioneigenvalues(d, e, n, 3, 1, 0, 0, i1, i2, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
861 | if( !result )
|
---|
862 | {
|
---|
863 | return result;
|
---|
864 | }
|
---|
865 | d = new double[m+1];
|
---|
866 | for(i=1; i<=m; i++)
|
---|
867 | {
|
---|
868 | d[i] = w[i];
|
---|
869 | }
|
---|
870 | return result;
|
---|
871 | }
|
---|
872 |
|
---|
873 | //
|
---|
874 | // Eigen vectors are multiplied by Z
|
---|
875 | //
|
---|
876 | if( zneeded==1 )
|
---|
877 | {
|
---|
878 |
|
---|
879 | //
|
---|
880 | // Find eigen pairs
|
---|
881 | //
|
---|
882 | result = internalbisectioneigenvalues(d, e, n, 3, 2, 0, 0, i1, i2, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
883 | if( !result )
|
---|
884 | {
|
---|
885 | return result;
|
---|
886 | }
|
---|
887 | internaldstein(n, ref d, e, m, w, ref iblock, ref isplit, ref z2, ref ifail, ref cr);
|
---|
888 | if( cr!=0 )
|
---|
889 | {
|
---|
890 | result = false;
|
---|
891 | return result;
|
---|
892 | }
|
---|
893 |
|
---|
894 | //
|
---|
895 | // Sort eigen values and vectors
|
---|
896 | //
|
---|
897 | for(i=1; i<=m; i++)
|
---|
898 | {
|
---|
899 | k = i;
|
---|
900 | for(j=i; j<=m; j++)
|
---|
901 | {
|
---|
902 | if( (double)(w[j])<(double)(w[k]) )
|
---|
903 | {
|
---|
904 | k = j;
|
---|
905 | }
|
---|
906 | }
|
---|
907 | v = w[i];
|
---|
908 | w[i] = w[k];
|
---|
909 | w[k] = v;
|
---|
910 | for(j=1; j<=n; j++)
|
---|
911 | {
|
---|
912 | v = z2[j,i];
|
---|
913 | z2[j,i] = z2[j,k];
|
---|
914 | z2[j,k] = v;
|
---|
915 | }
|
---|
916 | }
|
---|
917 |
|
---|
918 | //
|
---|
919 | // Transform Z2 and overwrite Z
|
---|
920 | //
|
---|
921 | z3 = new double[m+1, n+1];
|
---|
922 | for(i=1; i<=m; i++)
|
---|
923 | {
|
---|
924 | for(i_=1; i_<=n;i_++)
|
---|
925 | {
|
---|
926 | z3[i,i_] = z2[i_,i];
|
---|
927 | }
|
---|
928 | }
|
---|
929 | for(i=1; i<=n; i++)
|
---|
930 | {
|
---|
931 | for(j=1; j<=m; j++)
|
---|
932 | {
|
---|
933 | v = 0.0;
|
---|
934 | for(i_=1; i_<=n;i_++)
|
---|
935 | {
|
---|
936 | v += z[i,i_]*z3[j,i_];
|
---|
937 | }
|
---|
938 | z2[i,j] = v;
|
---|
939 | }
|
---|
940 | }
|
---|
941 | z = new double[n+1, m+1];
|
---|
942 | for(i=1; i<=m; i++)
|
---|
943 | {
|
---|
944 | for(i_=1; i_<=n;i_++)
|
---|
945 | {
|
---|
946 | z[i_,i] = z2[i_,i];
|
---|
947 | }
|
---|
948 | }
|
---|
949 |
|
---|
950 | //
|
---|
951 | // Store W
|
---|
952 | //
|
---|
953 | d = new double[m+1];
|
---|
954 | for(i=1; i<=m; i++)
|
---|
955 | {
|
---|
956 | d[i] = w[i];
|
---|
957 | }
|
---|
958 | return result;
|
---|
959 | }
|
---|
960 |
|
---|
961 | //
|
---|
962 | // Eigen vectors are stored in Z
|
---|
963 | //
|
---|
964 | if( zneeded==2 )
|
---|
965 | {
|
---|
966 |
|
---|
967 | //
|
---|
968 | // Find eigen pairs
|
---|
969 | //
|
---|
970 | result = internalbisectioneigenvalues(d, e, n, 3, 2, 0, 0, i1, i2, -1, ref w, ref m, ref nsplit, ref iblock, ref isplit, ref errorcode);
|
---|
971 | if( !result )
|
---|
972 | {
|
---|
973 | return result;
|
---|
974 | }
|
---|
975 | internaldstein(n, ref d, e, m, w, ref iblock, ref isplit, ref z, ref ifail, ref cr);
|
---|
976 | if( cr!=0 )
|
---|
977 | {
|
---|
978 | result = false;
|
---|
979 | return result;
|
---|
980 | }
|
---|
981 |
|
---|
982 | //
|
---|
983 | // Sort eigen values and vectors
|
---|
984 | //
|
---|
985 | for(i=1; i<=m; i++)
|
---|
986 | {
|
---|
987 | k = i;
|
---|
988 | for(j=i; j<=m; j++)
|
---|
989 | {
|
---|
990 | if( (double)(w[j])<(double)(w[k]) )
|
---|
991 | {
|
---|
992 | k = j;
|
---|
993 | }
|
---|
994 | }
|
---|
995 | v = w[i];
|
---|
996 | w[i] = w[k];
|
---|
997 | w[k] = v;
|
---|
998 | for(j=1; j<=n; j++)
|
---|
999 | {
|
---|
1000 | v = z[j,i];
|
---|
1001 | z[j,i] = z[j,k];
|
---|
1002 | z[j,k] = v;
|
---|
1003 | }
|
---|
1004 | }
|
---|
1005 |
|
---|
1006 | //
|
---|
1007 | // Store W
|
---|
1008 | //
|
---|
1009 | d = new double[m+1];
|
---|
1010 | for(i=1; i<=m; i++)
|
---|
1011 | {
|
---|
1012 | d[i] = w[i];
|
---|
1013 | }
|
---|
1014 | return result;
|
---|
1015 | }
|
---|
1016 | result = false;
|
---|
1017 | return result;
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 |
|
---|
1021 | public static bool internalbisectioneigenvalues(double[] d,
|
---|
1022 | double[] e,
|
---|
1023 | int n,
|
---|
1024 | int irange,
|
---|
1025 | int iorder,
|
---|
1026 | double vl,
|
---|
1027 | double vu,
|
---|
1028 | int il,
|
---|
1029 | int iu,
|
---|
1030 | double abstol,
|
---|
1031 | ref double[] w,
|
---|
1032 | ref int m,
|
---|
1033 | ref int nsplit,
|
---|
1034 | ref int[] iblock,
|
---|
1035 | ref int[] isplit,
|
---|
1036 | ref int errorcode)
|
---|
1037 | {
|
---|
1038 | bool result = new bool();
|
---|
1039 | double fudge = 0;
|
---|
1040 | double relfac = 0;
|
---|
1041 | bool ncnvrg = new bool();
|
---|
1042 | bool toofew = new bool();
|
---|
1043 | int ib = 0;
|
---|
1044 | int ibegin = 0;
|
---|
1045 | int idiscl = 0;
|
---|
1046 | int idiscu = 0;
|
---|
1047 | int ie = 0;
|
---|
1048 | int iend = 0;
|
---|
1049 | int iinfo = 0;
|
---|
1050 | int im = 0;
|
---|
1051 | int iin = 0;
|
---|
1052 | int ioff = 0;
|
---|
1053 | int iout = 0;
|
---|
1054 | int itmax = 0;
|
---|
1055 | int iw = 0;
|
---|
1056 | int iwoff = 0;
|
---|
1057 | int j = 0;
|
---|
1058 | int itmp1 = 0;
|
---|
1059 | int jb = 0;
|
---|
1060 | int jdisc = 0;
|
---|
1061 | int je = 0;
|
---|
1062 | int nwl = 0;
|
---|
1063 | int nwu = 0;
|
---|
1064 | double atoli = 0;
|
---|
1065 | double bnorm = 0;
|
---|
1066 | double gl = 0;
|
---|
1067 | double gu = 0;
|
---|
1068 | double pivmin = 0;
|
---|
1069 | double rtoli = 0;
|
---|
1070 | double safemn = 0;
|
---|
1071 | double tmp1 = 0;
|
---|
1072 | double tmp2 = 0;
|
---|
1073 | double tnorm = 0;
|
---|
1074 | double ulp = 0;
|
---|
1075 | double wkill = 0;
|
---|
1076 | double wl = 0;
|
---|
1077 | double wlu = 0;
|
---|
1078 | double wu = 0;
|
---|
1079 | double wul = 0;
|
---|
1080 | double scalefactor = 0;
|
---|
1081 | double t = 0;
|
---|
1082 | int[] idumma = new int[0];
|
---|
1083 | double[] work = new double[0];
|
---|
1084 | int[] iwork = new int[0];
|
---|
1085 | int[] ia1s2 = new int[0];
|
---|
1086 | double[] ra1s2 = new double[0];
|
---|
1087 | double[,] ra1s2x2 = new double[0,0];
|
---|
1088 | int[,] ia1s2x2 = new int[0,0];
|
---|
1089 | double[] ra1siin = new double[0];
|
---|
1090 | double[] ra2siin = new double[0];
|
---|
1091 | double[] ra3siin = new double[0];
|
---|
1092 | double[] ra4siin = new double[0];
|
---|
1093 | double[,] ra1siinx2 = new double[0,0];
|
---|
1094 | int[,] ia1siinx2 = new int[0,0];
|
---|
1095 | int[] iworkspace = new int[0];
|
---|
1096 | double[] rworkspace = new double[0];
|
---|
1097 | int tmpi = 0;
|
---|
1098 |
|
---|
1099 | d = (double[])d.Clone();
|
---|
1100 | e = (double[])e.Clone();
|
---|
1101 |
|
---|
1102 |
|
---|
1103 | //
|
---|
1104 | // Quick return if possible
|
---|
1105 | //
|
---|
1106 | m = 0;
|
---|
1107 | if( n==0 )
|
---|
1108 | {
|
---|
1109 | result = true;
|
---|
1110 | return result;
|
---|
1111 | }
|
---|
1112 |
|
---|
1113 | //
|
---|
1114 | // Get machine constants
|
---|
1115 | // NB is the minimum vector length for vector bisection, or 0
|
---|
1116 | // if only scalar is to be done.
|
---|
1117 | //
|
---|
1118 | fudge = 2;
|
---|
1119 | relfac = 2;
|
---|
1120 | safemn = AP.Math.MinRealNumber;
|
---|
1121 | ulp = 2*AP.Math.MachineEpsilon;
|
---|
1122 | rtoli = ulp*relfac;
|
---|
1123 | idumma = new int[1+1];
|
---|
1124 | work = new double[4*n+1];
|
---|
1125 | iwork = new int[3*n+1];
|
---|
1126 | w = new double[n+1];
|
---|
1127 | iblock = new int[n+1];
|
---|
1128 | isplit = new int[n+1];
|
---|
1129 | ia1s2 = new int[2+1];
|
---|
1130 | ra1s2 = new double[2+1];
|
---|
1131 | ra1s2x2 = new double[2+1, 2+1];
|
---|
1132 | ia1s2x2 = new int[2+1, 2+1];
|
---|
1133 | ra1siin = new double[n+1];
|
---|
1134 | ra2siin = new double[n+1];
|
---|
1135 | ra3siin = new double[n+1];
|
---|
1136 | ra4siin = new double[n+1];
|
---|
1137 | ra1siinx2 = new double[n+1, 2+1];
|
---|
1138 | ia1siinx2 = new int[n+1, 2+1];
|
---|
1139 | iworkspace = new int[n+1];
|
---|
1140 | rworkspace = new double[n+1];
|
---|
1141 |
|
---|
1142 | //
|
---|
1143 | // Check for Errors
|
---|
1144 | //
|
---|
1145 | result = false;
|
---|
1146 | errorcode = 0;
|
---|
1147 | if( irange<=0 | irange>=4 )
|
---|
1148 | {
|
---|
1149 | errorcode = -4;
|
---|
1150 | }
|
---|
1151 | if( iorder<=0 | iorder>=3 )
|
---|
1152 | {
|
---|
1153 | errorcode = -5;
|
---|
1154 | }
|
---|
1155 | if( n<0 )
|
---|
1156 | {
|
---|
1157 | errorcode = -3;
|
---|
1158 | }
|
---|
1159 | if( irange==2 & (double)(vl)>=(double)(vu) )
|
---|
1160 | {
|
---|
1161 | errorcode = -6;
|
---|
1162 | }
|
---|
1163 | if( irange==3 & (il<1 | il>Math.Max(1, n)) )
|
---|
1164 | {
|
---|
1165 | errorcode = -8;
|
---|
1166 | }
|
---|
1167 | if( irange==3 & (iu<Math.Min(n, il) | iu>n) )
|
---|
1168 | {
|
---|
1169 | errorcode = -9;
|
---|
1170 | }
|
---|
1171 | if( errorcode!=0 )
|
---|
1172 | {
|
---|
1173 | return result;
|
---|
1174 | }
|
---|
1175 |
|
---|
1176 | //
|
---|
1177 | // Initialize error flags
|
---|
1178 | //
|
---|
1179 | ncnvrg = false;
|
---|
1180 | toofew = false;
|
---|
1181 |
|
---|
1182 | //
|
---|
1183 | // Simplifications:
|
---|
1184 | //
|
---|
1185 | if( irange==3 & il==1 & iu==n )
|
---|
1186 | {
|
---|
1187 | irange = 1;
|
---|
1188 | }
|
---|
1189 |
|
---|
1190 | //
|
---|
1191 | // Special Case when N=1
|
---|
1192 | //
|
---|
1193 | if( n==1 )
|
---|
1194 | {
|
---|
1195 | nsplit = 1;
|
---|
1196 | isplit[1] = 1;
|
---|
1197 | if( irange==2 & ((double)(vl)>=(double)(d[1]) | (double)(vu)<(double)(d[1])) )
|
---|
1198 | {
|
---|
1199 | m = 0;
|
---|
1200 | }
|
---|
1201 | else
|
---|
1202 | {
|
---|
1203 | w[1] = d[1];
|
---|
1204 | iblock[1] = 1;
|
---|
1205 | m = 1;
|
---|
1206 | }
|
---|
1207 | result = true;
|
---|
1208 | return result;
|
---|
1209 | }
|
---|
1210 |
|
---|
1211 | //
|
---|
1212 | // Scaling
|
---|
1213 | //
|
---|
1214 | t = Math.Abs(d[n]);
|
---|
1215 | for(j=1; j<=n-1; j++)
|
---|
1216 | {
|
---|
1217 | t = Math.Max(t, Math.Abs(d[j]));
|
---|
1218 | t = Math.Max(t, Math.Abs(e[j]));
|
---|
1219 | }
|
---|
1220 | scalefactor = 1;
|
---|
1221 | if( (double)(t)!=(double)(0) )
|
---|
1222 | {
|
---|
1223 | if( (double)(t)>(double)(Math.Sqrt(Math.Sqrt(AP.Math.MinRealNumber))*Math.Sqrt(AP.Math.MaxRealNumber)) )
|
---|
1224 | {
|
---|
1225 | scalefactor = t;
|
---|
1226 | }
|
---|
1227 | if( (double)(t)<(double)(Math.Sqrt(Math.Sqrt(AP.Math.MaxRealNumber))*Math.Sqrt(AP.Math.MinRealNumber)) )
|
---|
1228 | {
|
---|
1229 | scalefactor = t;
|
---|
1230 | }
|
---|
1231 | for(j=1; j<=n-1; j++)
|
---|
1232 | {
|
---|
1233 | d[j] = d[j]/scalefactor;
|
---|
1234 | e[j] = e[j]/scalefactor;
|
---|
1235 | }
|
---|
1236 | d[n] = d[n]/scalefactor;
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 | //
|
---|
1240 | // Compute Splitting Points
|
---|
1241 | //
|
---|
1242 | nsplit = 1;
|
---|
1243 | work[n] = 0;
|
---|
1244 | pivmin = 1;
|
---|
1245 | for(j=2; j<=n; j++)
|
---|
1246 | {
|
---|
1247 | tmp1 = AP.Math.Sqr(e[j-1]);
|
---|
1248 | if( (double)(Math.Abs(d[j]*d[j-1])*AP.Math.Sqr(ulp)+safemn)>(double)(tmp1) )
|
---|
1249 | {
|
---|
1250 | isplit[nsplit] = j-1;
|
---|
1251 | nsplit = nsplit+1;
|
---|
1252 | work[j-1] = 0;
|
---|
1253 | }
|
---|
1254 | else
|
---|
1255 | {
|
---|
1256 | work[j-1] = tmp1;
|
---|
1257 | pivmin = Math.Max(pivmin, tmp1);
|
---|
1258 | }
|
---|
1259 | }
|
---|
1260 | isplit[nsplit] = n;
|
---|
1261 | pivmin = pivmin*safemn;
|
---|
1262 |
|
---|
1263 | //
|
---|
1264 | // Compute Interval and ATOLI
|
---|
1265 | //
|
---|
1266 | if( irange==3 )
|
---|
1267 | {
|
---|
1268 |
|
---|
1269 | //
|
---|
1270 | // RANGE='I': Compute the interval containing eigenvalues
|
---|
1271 | // IL through IU.
|
---|
1272 | //
|
---|
1273 | // Compute Gershgorin interval for entire (split) matrix
|
---|
1274 | // and use it as the initial interval
|
---|
1275 | //
|
---|
1276 | gu = d[1];
|
---|
1277 | gl = d[1];
|
---|
1278 | tmp1 = 0;
|
---|
1279 | for(j=1; j<=n-1; j++)
|
---|
1280 | {
|
---|
1281 | tmp2 = Math.Sqrt(work[j]);
|
---|
1282 | gu = Math.Max(gu, d[j]+tmp1+tmp2);
|
---|
1283 | gl = Math.Min(gl, d[j]-tmp1-tmp2);
|
---|
1284 | tmp1 = tmp2;
|
---|
1285 | }
|
---|
1286 | gu = Math.Max(gu, d[n]+tmp1);
|
---|
1287 | gl = Math.Min(gl, d[n]-tmp1);
|
---|
1288 | tnorm = Math.Max(Math.Abs(gl), Math.Abs(gu));
|
---|
1289 | gl = gl-fudge*tnorm*ulp*n-fudge*2*pivmin;
|
---|
1290 | gu = gu+fudge*tnorm*ulp*n+fudge*pivmin;
|
---|
1291 |
|
---|
1292 | //
|
---|
1293 | // Compute Iteration parameters
|
---|
1294 | //
|
---|
1295 | itmax = (int)Math.Ceiling((Math.Log(tnorm+pivmin)-Math.Log(pivmin))/Math.Log(2))+2;
|
---|
1296 | if( (double)(abstol)<=(double)(0) )
|
---|
1297 | {
|
---|
1298 | atoli = ulp*tnorm;
|
---|
1299 | }
|
---|
1300 | else
|
---|
1301 | {
|
---|
1302 | atoli = abstol;
|
---|
1303 | }
|
---|
1304 | work[n+1] = gl;
|
---|
1305 | work[n+2] = gl;
|
---|
1306 | work[n+3] = gu;
|
---|
1307 | work[n+4] = gu;
|
---|
1308 | work[n+5] = gl;
|
---|
1309 | work[n+6] = gu;
|
---|
1310 | iwork[1] = -1;
|
---|
1311 | iwork[2] = -1;
|
---|
1312 | iwork[3] = n+1;
|
---|
1313 | iwork[4] = n+1;
|
---|
1314 | iwork[5] = il-1;
|
---|
1315 | iwork[6] = iu;
|
---|
1316 |
|
---|
1317 | //
|
---|
1318 | // Calling DLAEBZ
|
---|
1319 | //
|
---|
1320 | // DLAEBZ( 3, ITMAX, N, 2, 2, NB, ATOLI, RTOLI, PIVMIN, D, E,
|
---|
1321 | // WORK, IWORK( 5 ), WORK( N+1 ), WORK( N+5 ), IOUT,
|
---|
1322 | // IWORK, W, IBLOCK, IINFO )
|
---|
1323 | //
|
---|
1324 | ia1s2[1] = iwork[5];
|
---|
1325 | ia1s2[2] = iwork[6];
|
---|
1326 | ra1s2[1] = work[n+5];
|
---|
1327 | ra1s2[2] = work[n+6];
|
---|
1328 | ra1s2x2[1,1] = work[n+1];
|
---|
1329 | ra1s2x2[2,1] = work[n+2];
|
---|
1330 | ra1s2x2[1,2] = work[n+3];
|
---|
1331 | ra1s2x2[2,2] = work[n+4];
|
---|
1332 | ia1s2x2[1,1] = iwork[1];
|
---|
1333 | ia1s2x2[2,1] = iwork[2];
|
---|
1334 | ia1s2x2[1,2] = iwork[3];
|
---|
1335 | ia1s2x2[2,2] = iwork[4];
|
---|
1336 | internaldlaebz(3, itmax, n, 2, 2, atoli, rtoli, pivmin, ref d, ref e, ref work, ref ia1s2, ref ra1s2x2, ref ra1s2, ref iout, ref ia1s2x2, ref w, ref iblock, ref iinfo);
|
---|
1337 | iwork[5] = ia1s2[1];
|
---|
1338 | iwork[6] = ia1s2[2];
|
---|
1339 | work[n+5] = ra1s2[1];
|
---|
1340 | work[n+6] = ra1s2[2];
|
---|
1341 | work[n+1] = ra1s2x2[1,1];
|
---|
1342 | work[n+2] = ra1s2x2[2,1];
|
---|
1343 | work[n+3] = ra1s2x2[1,2];
|
---|
1344 | work[n+4] = ra1s2x2[2,2];
|
---|
1345 | iwork[1] = ia1s2x2[1,1];
|
---|
1346 | iwork[2] = ia1s2x2[2,1];
|
---|
1347 | iwork[3] = ia1s2x2[1,2];
|
---|
1348 | iwork[4] = ia1s2x2[2,2];
|
---|
1349 | if( iwork[6]==iu )
|
---|
1350 | {
|
---|
1351 | wl = work[n+1];
|
---|
1352 | wlu = work[n+3];
|
---|
1353 | nwl = iwork[1];
|
---|
1354 | wu = work[n+4];
|
---|
1355 | wul = work[n+2];
|
---|
1356 | nwu = iwork[4];
|
---|
1357 | }
|
---|
1358 | else
|
---|
1359 | {
|
---|
1360 | wl = work[n+2];
|
---|
1361 | wlu = work[n+4];
|
---|
1362 | nwl = iwork[2];
|
---|
1363 | wu = work[n+3];
|
---|
1364 | wul = work[n+1];
|
---|
1365 | nwu = iwork[3];
|
---|
1366 | }
|
---|
1367 | if( nwl<0 | nwl>=n | nwu<1 | nwu>n )
|
---|
1368 | {
|
---|
1369 | errorcode = 4;
|
---|
1370 | result = false;
|
---|
1371 | return result;
|
---|
1372 | }
|
---|
1373 | }
|
---|
1374 | else
|
---|
1375 | {
|
---|
1376 |
|
---|
1377 | //
|
---|
1378 | // RANGE='A' or 'V' -- Set ATOLI
|
---|
1379 | //
|
---|
1380 | tnorm = Math.Max(Math.Abs(d[1])+Math.Abs(e[1]), Math.Abs(d[n])+Math.Abs(e[n-1]));
|
---|
1381 | for(j=2; j<=n-1; j++)
|
---|
1382 | {
|
---|
1383 | tnorm = Math.Max(tnorm, Math.Abs(d[j])+Math.Abs(e[j-1])+Math.Abs(e[j]));
|
---|
1384 | }
|
---|
1385 | if( (double)(abstol)<=(double)(0) )
|
---|
1386 | {
|
---|
1387 | atoli = ulp*tnorm;
|
---|
1388 | }
|
---|
1389 | else
|
---|
1390 | {
|
---|
1391 | atoli = abstol;
|
---|
1392 | }
|
---|
1393 | if( irange==2 )
|
---|
1394 | {
|
---|
1395 | wl = vl;
|
---|
1396 | wu = vu;
|
---|
1397 | }
|
---|
1398 | else
|
---|
1399 | {
|
---|
1400 | wl = 0;
|
---|
1401 | wu = 0;
|
---|
1402 | }
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 | //
|
---|
1406 | // Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.
|
---|
1407 | // NWL accumulates the number of eigenvalues .le. WL,
|
---|
1408 | // NWU accumulates the number of eigenvalues .le. WU
|
---|
1409 | //
|
---|
1410 | m = 0;
|
---|
1411 | iend = 0;
|
---|
1412 | errorcode = 0;
|
---|
1413 | nwl = 0;
|
---|
1414 | nwu = 0;
|
---|
1415 | for(jb=1; jb<=nsplit; jb++)
|
---|
1416 | {
|
---|
1417 | ioff = iend;
|
---|
1418 | ibegin = ioff+1;
|
---|
1419 | iend = isplit[jb];
|
---|
1420 | iin = iend-ioff;
|
---|
1421 | if( iin==1 )
|
---|
1422 | {
|
---|
1423 |
|
---|
1424 | //
|
---|
1425 | // Special Case -- IIN=1
|
---|
1426 | //
|
---|
1427 | if( irange==1 | (double)(wl)>=(double)(d[ibegin]-pivmin) )
|
---|
1428 | {
|
---|
1429 | nwl = nwl+1;
|
---|
1430 | }
|
---|
1431 | if( irange==1 | (double)(wu)>=(double)(d[ibegin]-pivmin) )
|
---|
1432 | {
|
---|
1433 | nwu = nwu+1;
|
---|
1434 | }
|
---|
1435 | if( irange==1 | (double)(wl)<(double)(d[ibegin]-pivmin) & (double)(wu)>=(double)(d[ibegin]-pivmin) )
|
---|
1436 | {
|
---|
1437 | m = m+1;
|
---|
1438 | w[m] = d[ibegin];
|
---|
1439 | iblock[m] = jb;
|
---|
1440 | }
|
---|
1441 | }
|
---|
1442 | else
|
---|
1443 | {
|
---|
1444 |
|
---|
1445 | //
|
---|
1446 | // General Case -- IIN > 1
|
---|
1447 | //
|
---|
1448 | // Compute Gershgorin Interval
|
---|
1449 | // and use it as the initial interval
|
---|
1450 | //
|
---|
1451 | gu = d[ibegin];
|
---|
1452 | gl = d[ibegin];
|
---|
1453 | tmp1 = 0;
|
---|
1454 | for(j=ibegin; j<=iend-1; j++)
|
---|
1455 | {
|
---|
1456 | tmp2 = Math.Abs(e[j]);
|
---|
1457 | gu = Math.Max(gu, d[j]+tmp1+tmp2);
|
---|
1458 | gl = Math.Min(gl, d[j]-tmp1-tmp2);
|
---|
1459 | tmp1 = tmp2;
|
---|
1460 | }
|
---|
1461 | gu = Math.Max(gu, d[iend]+tmp1);
|
---|
1462 | gl = Math.Min(gl, d[iend]-tmp1);
|
---|
1463 | bnorm = Math.Max(Math.Abs(gl), Math.Abs(gu));
|
---|
1464 | gl = gl-fudge*bnorm*ulp*iin-fudge*pivmin;
|
---|
1465 | gu = gu+fudge*bnorm*ulp*iin+fudge*pivmin;
|
---|
1466 |
|
---|
1467 | //
|
---|
1468 | // Compute ATOLI for the current submatrix
|
---|
1469 | //
|
---|
1470 | if( (double)(abstol)<=(double)(0) )
|
---|
1471 | {
|
---|
1472 | atoli = ulp*Math.Max(Math.Abs(gl), Math.Abs(gu));
|
---|
1473 | }
|
---|
1474 | else
|
---|
1475 | {
|
---|
1476 | atoli = abstol;
|
---|
1477 | }
|
---|
1478 | if( irange>1 )
|
---|
1479 | {
|
---|
1480 | if( (double)(gu)<(double)(wl) )
|
---|
1481 | {
|
---|
1482 | nwl = nwl+iin;
|
---|
1483 | nwu = nwu+iin;
|
---|
1484 | continue;
|
---|
1485 | }
|
---|
1486 | gl = Math.Max(gl, wl);
|
---|
1487 | gu = Math.Min(gu, wu);
|
---|
1488 | if( (double)(gl)>=(double)(gu) )
|
---|
1489 | {
|
---|
1490 | continue;
|
---|
1491 | }
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 | //
|
---|
1495 | // Set Up Initial Interval
|
---|
1496 | //
|
---|
1497 | work[n+1] = gl;
|
---|
1498 | work[n+iin+1] = gu;
|
---|
1499 |
|
---|
1500 | //
|
---|
1501 | // Calling DLAEBZ
|
---|
1502 | //
|
---|
1503 | // CALL DLAEBZ( 1, 0, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
|
---|
1504 | // D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
|
---|
1505 | // IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IM,
|
---|
1506 | // IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
|
---|
1507 | //
|
---|
1508 | for(tmpi=1; tmpi<=iin; tmpi++)
|
---|
1509 | {
|
---|
1510 | ra1siin[tmpi] = d[ibegin-1+tmpi];
|
---|
1511 | if( ibegin-1+tmpi<n )
|
---|
1512 | {
|
---|
1513 | ra2siin[tmpi] = e[ibegin-1+tmpi];
|
---|
1514 | }
|
---|
1515 | ra3siin[tmpi] = work[ibegin-1+tmpi];
|
---|
1516 | ra1siinx2[tmpi,1] = work[n+tmpi];
|
---|
1517 | ra1siinx2[tmpi,2] = work[n+tmpi+iin];
|
---|
1518 | ra4siin[tmpi] = work[n+2*iin+tmpi];
|
---|
1519 | rworkspace[tmpi] = w[m+tmpi];
|
---|
1520 | iworkspace[tmpi] = iblock[m+tmpi];
|
---|
1521 | ia1siinx2[tmpi,1] = iwork[tmpi];
|
---|
1522 | ia1siinx2[tmpi,2] = iwork[tmpi+iin];
|
---|
1523 | }
|
---|
1524 | internaldlaebz(1, 0, iin, iin, 1, atoli, rtoli, pivmin, ref ra1siin, ref ra2siin, ref ra3siin, ref idumma, ref ra1siinx2, ref ra4siin, ref im, ref ia1siinx2, ref rworkspace, ref iworkspace, ref iinfo);
|
---|
1525 | for(tmpi=1; tmpi<=iin; tmpi++)
|
---|
1526 | {
|
---|
1527 | work[n+tmpi] = ra1siinx2[tmpi,1];
|
---|
1528 | work[n+tmpi+iin] = ra1siinx2[tmpi,2];
|
---|
1529 | work[n+2*iin+tmpi] = ra4siin[tmpi];
|
---|
1530 | w[m+tmpi] = rworkspace[tmpi];
|
---|
1531 | iblock[m+tmpi] = iworkspace[tmpi];
|
---|
1532 | iwork[tmpi] = ia1siinx2[tmpi,1];
|
---|
1533 | iwork[tmpi+iin] = ia1siinx2[tmpi,2];
|
---|
1534 | }
|
---|
1535 | nwl = nwl+iwork[1];
|
---|
1536 | nwu = nwu+iwork[iin+1];
|
---|
1537 | iwoff = m-iwork[1];
|
---|
1538 |
|
---|
1539 | //
|
---|
1540 | // Compute Eigenvalues
|
---|
1541 | //
|
---|
1542 | itmax = (int)Math.Ceiling((Math.Log(gu-gl+pivmin)-Math.Log(pivmin))/Math.Log(2))+2;
|
---|
1543 |
|
---|
1544 | //
|
---|
1545 | // Calling DLAEBZ
|
---|
1546 | //
|
---|
1547 | //CALL DLAEBZ( 2, ITMAX, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
|
---|
1548 | // D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
|
---|
1549 | // IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IOUT,
|
---|
1550 | // IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
|
---|
1551 | //
|
---|
1552 | for(tmpi=1; tmpi<=iin; tmpi++)
|
---|
1553 | {
|
---|
1554 | ra1siin[tmpi] = d[ibegin-1+tmpi];
|
---|
1555 | if( ibegin-1+tmpi<n )
|
---|
1556 | {
|
---|
1557 | ra2siin[tmpi] = e[ibegin-1+tmpi];
|
---|
1558 | }
|
---|
1559 | ra3siin[tmpi] = work[ibegin-1+tmpi];
|
---|
1560 | ra1siinx2[tmpi,1] = work[n+tmpi];
|
---|
1561 | ra1siinx2[tmpi,2] = work[n+tmpi+iin];
|
---|
1562 | ra4siin[tmpi] = work[n+2*iin+tmpi];
|
---|
1563 | rworkspace[tmpi] = w[m+tmpi];
|
---|
1564 | iworkspace[tmpi] = iblock[m+tmpi];
|
---|
1565 | ia1siinx2[tmpi,1] = iwork[tmpi];
|
---|
1566 | ia1siinx2[tmpi,2] = iwork[tmpi+iin];
|
---|
1567 | }
|
---|
1568 | internaldlaebz(2, itmax, iin, iin, 1, atoli, rtoli, pivmin, ref ra1siin, ref ra2siin, ref ra3siin, ref idumma, ref ra1siinx2, ref ra4siin, ref iout, ref ia1siinx2, ref rworkspace, ref iworkspace, ref iinfo);
|
---|
1569 | for(tmpi=1; tmpi<=iin; tmpi++)
|
---|
1570 | {
|
---|
1571 | work[n+tmpi] = ra1siinx2[tmpi,1];
|
---|
1572 | work[n+tmpi+iin] = ra1siinx2[tmpi,2];
|
---|
1573 | work[n+2*iin+tmpi] = ra4siin[tmpi];
|
---|
1574 | w[m+tmpi] = rworkspace[tmpi];
|
---|
1575 | iblock[m+tmpi] = iworkspace[tmpi];
|
---|
1576 | iwork[tmpi] = ia1siinx2[tmpi,1];
|
---|
1577 | iwork[tmpi+iin] = ia1siinx2[tmpi,2];
|
---|
1578 | }
|
---|
1579 |
|
---|
1580 | //
|
---|
1581 | // Copy Eigenvalues Into W and IBLOCK
|
---|
1582 | // Use -JB for block number for unconverged eigenvalues.
|
---|
1583 | //
|
---|
1584 | for(j=1; j<=iout; j++)
|
---|
1585 | {
|
---|
1586 | tmp1 = 0.5*(work[j+n]+work[j+iin+n]);
|
---|
1587 |
|
---|
1588 | //
|
---|
1589 | // Flag non-convergence.
|
---|
1590 | //
|
---|
1591 | if( j>iout-iinfo )
|
---|
1592 | {
|
---|
1593 | ncnvrg = true;
|
---|
1594 | ib = -jb;
|
---|
1595 | }
|
---|
1596 | else
|
---|
1597 | {
|
---|
1598 | ib = jb;
|
---|
1599 | }
|
---|
1600 | for(je=iwork[j]+1+iwoff; je<=iwork[j+iin]+iwoff; je++)
|
---|
1601 | {
|
---|
1602 | w[je] = tmp1;
|
---|
1603 | iblock[je] = ib;
|
---|
1604 | }
|
---|
1605 | }
|
---|
1606 | m = m+im;
|
---|
1607 | }
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | //
|
---|
1611 | // If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU
|
---|
1612 | // If NWL+1 < IL or NWU > IU, discard extra eigenvalues.
|
---|
1613 | //
|
---|
1614 | if( irange==3 )
|
---|
1615 | {
|
---|
1616 | im = 0;
|
---|
1617 | idiscl = il-1-nwl;
|
---|
1618 | idiscu = nwu-iu;
|
---|
1619 | if( idiscl>0 | idiscu>0 )
|
---|
1620 | {
|
---|
1621 | for(je=1; je<=m; je++)
|
---|
1622 | {
|
---|
1623 | if( (double)(w[je])<=(double)(wlu) & idiscl>0 )
|
---|
1624 | {
|
---|
1625 | idiscl = idiscl-1;
|
---|
1626 | }
|
---|
1627 | else
|
---|
1628 | {
|
---|
1629 | if( (double)(w[je])>=(double)(wul) & idiscu>0 )
|
---|
1630 | {
|
---|
1631 | idiscu = idiscu-1;
|
---|
1632 | }
|
---|
1633 | else
|
---|
1634 | {
|
---|
1635 | im = im+1;
|
---|
1636 | w[im] = w[je];
|
---|
1637 | iblock[im] = iblock[je];
|
---|
1638 | }
|
---|
1639 | }
|
---|
1640 | }
|
---|
1641 | m = im;
|
---|
1642 | }
|
---|
1643 | if( idiscl>0 | idiscu>0 )
|
---|
1644 | {
|
---|
1645 |
|
---|
1646 | //
|
---|
1647 | // Code to deal with effects of bad arithmetic:
|
---|
1648 | // Some low eigenvalues to be discarded are not in (WL,WLU],
|
---|
1649 | // or high eigenvalues to be discarded are not in (WUL,WU]
|
---|
1650 | // so just kill off the smallest IDISCL/largest IDISCU
|
---|
1651 | // eigenvalues, by simply finding the smallest/largest
|
---|
1652 | // eigenvalue(s).
|
---|
1653 | //
|
---|
1654 | // (If N(w) is monotone non-decreasing, this should never
|
---|
1655 | // happen.)
|
---|
1656 | //
|
---|
1657 | if( idiscl>0 )
|
---|
1658 | {
|
---|
1659 | wkill = wu;
|
---|
1660 | for(jdisc=1; jdisc<=idiscl; jdisc++)
|
---|
1661 | {
|
---|
1662 | iw = 0;
|
---|
1663 | for(je=1; je<=m; je++)
|
---|
1664 | {
|
---|
1665 | if( iblock[je]!=0 & ((double)(w[je])<(double)(wkill) | iw==0) )
|
---|
1666 | {
|
---|
1667 | iw = je;
|
---|
1668 | wkill = w[je];
|
---|
1669 | }
|
---|
1670 | }
|
---|
1671 | iblock[iw] = 0;
|
---|
1672 | }
|
---|
1673 | }
|
---|
1674 | if( idiscu>0 )
|
---|
1675 | {
|
---|
1676 | wkill = wl;
|
---|
1677 | for(jdisc=1; jdisc<=idiscu; jdisc++)
|
---|
1678 | {
|
---|
1679 | iw = 0;
|
---|
1680 | for(je=1; je<=m; je++)
|
---|
1681 | {
|
---|
1682 | if( iblock[je]!=0 & ((double)(w[je])>(double)(wkill) | iw==0) )
|
---|
1683 | {
|
---|
1684 | iw = je;
|
---|
1685 | wkill = w[je];
|
---|
1686 | }
|
---|
1687 | }
|
---|
1688 | iblock[iw] = 0;
|
---|
1689 | }
|
---|
1690 | }
|
---|
1691 | im = 0;
|
---|
1692 | for(je=1; je<=m; je++)
|
---|
1693 | {
|
---|
1694 | if( iblock[je]!=0 )
|
---|
1695 | {
|
---|
1696 | im = im+1;
|
---|
1697 | w[im] = w[je];
|
---|
1698 | iblock[im] = iblock[je];
|
---|
1699 | }
|
---|
1700 | }
|
---|
1701 | m = im;
|
---|
1702 | }
|
---|
1703 | if( idiscl<0 | idiscu<0 )
|
---|
1704 | {
|
---|
1705 | toofew = true;
|
---|
1706 | }
|
---|
1707 | }
|
---|
1708 |
|
---|
1709 | //
|
---|
1710 | // If ORDER='B', do nothing -- the eigenvalues are already sorted
|
---|
1711 | // by block.
|
---|
1712 | // If ORDER='E', sort the eigenvalues from smallest to largest
|
---|
1713 | //
|
---|
1714 | if( iorder==1 & nsplit>1 )
|
---|
1715 | {
|
---|
1716 | for(je=1; je<=m-1; je++)
|
---|
1717 | {
|
---|
1718 | ie = 0;
|
---|
1719 | tmp1 = w[je];
|
---|
1720 | for(j=je+1; j<=m; j++)
|
---|
1721 | {
|
---|
1722 | if( (double)(w[j])<(double)(tmp1) )
|
---|
1723 | {
|
---|
1724 | ie = j;
|
---|
1725 | tmp1 = w[j];
|
---|
1726 | }
|
---|
1727 | }
|
---|
1728 | if( ie!=0 )
|
---|
1729 | {
|
---|
1730 | itmp1 = iblock[ie];
|
---|
1731 | w[ie] = w[je];
|
---|
1732 | iblock[ie] = iblock[je];
|
---|
1733 | w[je] = tmp1;
|
---|
1734 | iblock[je] = itmp1;
|
---|
1735 | }
|
---|
1736 | }
|
---|
1737 | }
|
---|
1738 | for(j=1; j<=m; j++)
|
---|
1739 | {
|
---|
1740 | w[j] = w[j]*scalefactor;
|
---|
1741 | }
|
---|
1742 | errorcode = 0;
|
---|
1743 | if( ncnvrg )
|
---|
1744 | {
|
---|
1745 | errorcode = errorcode+1;
|
---|
1746 | }
|
---|
1747 | if( toofew )
|
---|
1748 | {
|
---|
1749 | errorcode = errorcode+2;
|
---|
1750 | }
|
---|
1751 | result = errorcode==0;
|
---|
1752 | return result;
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 |
|
---|
1756 | public static void internaldstein(int n,
|
---|
1757 | ref double[] d,
|
---|
1758 | double[] e,
|
---|
1759 | int m,
|
---|
1760 | double[] w,
|
---|
1761 | ref int[] iblock,
|
---|
1762 | ref int[] isplit,
|
---|
1763 | ref double[,] z,
|
---|
1764 | ref int[] ifail,
|
---|
1765 | ref int info)
|
---|
1766 | {
|
---|
1767 | int maxits = 0;
|
---|
1768 | int extra = 0;
|
---|
1769 | int b1 = 0;
|
---|
1770 | int blksiz = 0;
|
---|
1771 | int bn = 0;
|
---|
1772 | int gpind = 0;
|
---|
1773 | int i = 0;
|
---|
1774 | int iinfo = 0;
|
---|
1775 | int its = 0;
|
---|
1776 | int j = 0;
|
---|
1777 | int j1 = 0;
|
---|
1778 | int jblk = 0;
|
---|
1779 | int jmax = 0;
|
---|
1780 | int nblk = 0;
|
---|
1781 | int nrmchk = 0;
|
---|
1782 | double dtpcrt = 0;
|
---|
1783 | double eps = 0;
|
---|
1784 | double eps1 = 0;
|
---|
1785 | double nrm = 0;
|
---|
1786 | double onenrm = 0;
|
---|
1787 | double ortol = 0;
|
---|
1788 | double pertol = 0;
|
---|
1789 | double scl = 0;
|
---|
1790 | double sep = 0;
|
---|
1791 | double tol = 0;
|
---|
1792 | double xj = 0;
|
---|
1793 | double xjm = 0;
|
---|
1794 | double ztr = 0;
|
---|
1795 | double[] work1 = new double[0];
|
---|
1796 | double[] work2 = new double[0];
|
---|
1797 | double[] work3 = new double[0];
|
---|
1798 | double[] work4 = new double[0];
|
---|
1799 | double[] work5 = new double[0];
|
---|
1800 | int[] iwork = new int[0];
|
---|
1801 | bool tmpcriterion = new bool();
|
---|
1802 | int ti = 0;
|
---|
1803 | int i1 = 0;
|
---|
1804 | int i2 = 0;
|
---|
1805 | double v = 0;
|
---|
1806 | int i_ = 0;
|
---|
1807 | int i1_ = 0;
|
---|
1808 |
|
---|
1809 | e = (double[])e.Clone();
|
---|
1810 | w = (double[])w.Clone();
|
---|
1811 |
|
---|
1812 | maxits = 5;
|
---|
1813 | extra = 2;
|
---|
1814 | work1 = new double[Math.Max(n, 1)+1];
|
---|
1815 | work2 = new double[Math.Max(n-1, 1)+1];
|
---|
1816 | work3 = new double[Math.Max(n, 1)+1];
|
---|
1817 | work4 = new double[Math.Max(n, 1)+1];
|
---|
1818 | work5 = new double[Math.Max(n, 1)+1];
|
---|
1819 | iwork = new int[Math.Max(n, 1)+1];
|
---|
1820 | ifail = new int[Math.Max(m, 1)+1];
|
---|
1821 | z = new double[Math.Max(n, 1)+1, Math.Max(m, 1)+1];
|
---|
1822 |
|
---|
1823 | //
|
---|
1824 | // Test the input parameters.
|
---|
1825 | //
|
---|
1826 | info = 0;
|
---|
1827 | for(i=1; i<=m; i++)
|
---|
1828 | {
|
---|
1829 | ifail[i] = 0;
|
---|
1830 | }
|
---|
1831 | if( n<0 )
|
---|
1832 | {
|
---|
1833 | info = -1;
|
---|
1834 | return;
|
---|
1835 | }
|
---|
1836 | if( m<0 | m>n )
|
---|
1837 | {
|
---|
1838 | info = -4;
|
---|
1839 | return;
|
---|
1840 | }
|
---|
1841 | for(j=2; j<=m; j++)
|
---|
1842 | {
|
---|
1843 | if( iblock[j]<iblock[j-1] )
|
---|
1844 | {
|
---|
1845 | info = -6;
|
---|
1846 | break;
|
---|
1847 | }
|
---|
1848 | if( iblock[j]==iblock[j-1] & (double)(w[j])<(double)(w[j-1]) )
|
---|
1849 | {
|
---|
1850 | info = -5;
|
---|
1851 | break;
|
---|
1852 | }
|
---|
1853 | }
|
---|
1854 | if( info!=0 )
|
---|
1855 | {
|
---|
1856 | return;
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 | //
|
---|
1860 | // Quick return if possible
|
---|
1861 | //
|
---|
1862 | if( n==0 | m==0 )
|
---|
1863 | {
|
---|
1864 | return;
|
---|
1865 | }
|
---|
1866 | if( n==1 )
|
---|
1867 | {
|
---|
1868 | z[1,1] = 1;
|
---|
1869 | return;
|
---|
1870 | }
|
---|
1871 |
|
---|
1872 | //
|
---|
1873 | // Some preparations
|
---|
1874 | //
|
---|
1875 | ti = n-1;
|
---|
1876 | for(i_=1; i_<=ti;i_++)
|
---|
1877 | {
|
---|
1878 | work1[i_] = e[i_];
|
---|
1879 | }
|
---|
1880 | e = new double[n+1];
|
---|
1881 | for(i_=1; i_<=ti;i_++)
|
---|
1882 | {
|
---|
1883 | e[i_] = work1[i_];
|
---|
1884 | }
|
---|
1885 | for(i_=1; i_<=m;i_++)
|
---|
1886 | {
|
---|
1887 | work1[i_] = w[i_];
|
---|
1888 | }
|
---|
1889 | w = new double[n+1];
|
---|
1890 | for(i_=1; i_<=m;i_++)
|
---|
1891 | {
|
---|
1892 | w[i_] = work1[i_];
|
---|
1893 | }
|
---|
1894 |
|
---|
1895 | //
|
---|
1896 | // Get machine constants.
|
---|
1897 | //
|
---|
1898 | eps = AP.Math.MachineEpsilon;
|
---|
1899 |
|
---|
1900 | //
|
---|
1901 | // Compute eigenvectors of matrix blocks.
|
---|
1902 | //
|
---|
1903 | j1 = 1;
|
---|
1904 | for(nblk=1; nblk<=iblock[m]; nblk++)
|
---|
1905 | {
|
---|
1906 |
|
---|
1907 | //
|
---|
1908 | // Find starting and ending indices of block nblk.
|
---|
1909 | //
|
---|
1910 | if( nblk==1 )
|
---|
1911 | {
|
---|
1912 | b1 = 1;
|
---|
1913 | }
|
---|
1914 | else
|
---|
1915 | {
|
---|
1916 | b1 = isplit[nblk-1]+1;
|
---|
1917 | }
|
---|
1918 | bn = isplit[nblk];
|
---|
1919 | blksiz = bn-b1+1;
|
---|
1920 | if( blksiz!=1 )
|
---|
1921 | {
|
---|
1922 |
|
---|
1923 | //
|
---|
1924 | // Compute reorthogonalization criterion and stopping criterion.
|
---|
1925 | //
|
---|
1926 | gpind = b1;
|
---|
1927 | onenrm = Math.Abs(d[b1])+Math.Abs(e[b1]);
|
---|
1928 | onenrm = Math.Max(onenrm, Math.Abs(d[bn])+Math.Abs(e[bn-1]));
|
---|
1929 | for(i=b1+1; i<=bn-1; i++)
|
---|
1930 | {
|
---|
1931 | onenrm = Math.Max(onenrm, Math.Abs(d[i])+Math.Abs(e[i-1])+Math.Abs(e[i]));
|
---|
1932 | }
|
---|
1933 | ortol = 0.001*onenrm;
|
---|
1934 | dtpcrt = Math.Sqrt(0.1/blksiz);
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 | //
|
---|
1938 | // Loop through eigenvalues of block nblk.
|
---|
1939 | //
|
---|
1940 | jblk = 0;
|
---|
1941 | for(j=j1; j<=m; j++)
|
---|
1942 | {
|
---|
1943 | if( iblock[j]!=nblk )
|
---|
1944 | {
|
---|
1945 | j1 = j;
|
---|
1946 | break;
|
---|
1947 | }
|
---|
1948 | jblk = jblk+1;
|
---|
1949 | xj = w[j];
|
---|
1950 | if( blksiz==1 )
|
---|
1951 | {
|
---|
1952 |
|
---|
1953 | //
|
---|
1954 | // Skip all the work if the block size is one.
|
---|
1955 | //
|
---|
1956 | work1[1] = 1;
|
---|
1957 | }
|
---|
1958 | else
|
---|
1959 | {
|
---|
1960 |
|
---|
1961 | //
|
---|
1962 | // If eigenvalues j and j-1 are too close, add a relatively
|
---|
1963 | // small perturbation.
|
---|
1964 | //
|
---|
1965 | if( jblk>1 )
|
---|
1966 | {
|
---|
1967 | eps1 = Math.Abs(eps*xj);
|
---|
1968 | pertol = 10*eps1;
|
---|
1969 | sep = xj-xjm;
|
---|
1970 | if( (double)(sep)<(double)(pertol) )
|
---|
1971 | {
|
---|
1972 | xj = xjm+pertol;
|
---|
1973 | }
|
---|
1974 | }
|
---|
1975 | its = 0;
|
---|
1976 | nrmchk = 0;
|
---|
1977 |
|
---|
1978 | //
|
---|
1979 | // Get random starting vector.
|
---|
1980 | //
|
---|
1981 | for(ti=1; ti<=blksiz; ti++)
|
---|
1982 | {
|
---|
1983 | work1[ti] = 2*AP.Math.RandomReal()-1;
|
---|
1984 | }
|
---|
1985 |
|
---|
1986 | //
|
---|
1987 | // Copy the matrix T so it won't be destroyed in factorization.
|
---|
1988 | //
|
---|
1989 | for(ti=1; ti<=blksiz-1; ti++)
|
---|
1990 | {
|
---|
1991 | work2[ti] = e[b1+ti-1];
|
---|
1992 | work3[ti] = e[b1+ti-1];
|
---|
1993 | work4[ti] = d[b1+ti-1];
|
---|
1994 | }
|
---|
1995 | work4[blksiz] = d[b1+blksiz-1];
|
---|
1996 |
|
---|
1997 | //
|
---|
1998 | // Compute LU factors with partial pivoting ( PT = LU )
|
---|
1999 | //
|
---|
2000 | tol = 0;
|
---|
2001 | tdininternaldlagtf(blksiz, ref work4, xj, ref work2, ref work3, tol, ref work5, ref iwork, ref iinfo);
|
---|
2002 |
|
---|
2003 | //
|
---|
2004 | // Update iteration count.
|
---|
2005 | //
|
---|
2006 | do
|
---|
2007 | {
|
---|
2008 | its = its+1;
|
---|
2009 | if( its>maxits )
|
---|
2010 | {
|
---|
2011 |
|
---|
2012 | //
|
---|
2013 | // If stopping criterion was not satisfied, update info and
|
---|
2014 | // store eigenvector number in array ifail.
|
---|
2015 | //
|
---|
2016 | info = info+1;
|
---|
2017 | ifail[info] = j;
|
---|
2018 | break;
|
---|
2019 | }
|
---|
2020 |
|
---|
2021 | //
|
---|
2022 | // Normalize and scale the righthand side vector Pb.
|
---|
2023 | //
|
---|
2024 | v = 0;
|
---|
2025 | for(ti=1; ti<=blksiz; ti++)
|
---|
2026 | {
|
---|
2027 | v = v+Math.Abs(work1[ti]);
|
---|
2028 | }
|
---|
2029 | scl = blksiz*onenrm*Math.Max(eps, Math.Abs(work4[blksiz]))/v;
|
---|
2030 | for(i_=1; i_<=blksiz;i_++)
|
---|
2031 | {
|
---|
2032 | work1[i_] = scl*work1[i_];
|
---|
2033 | }
|
---|
2034 |
|
---|
2035 | //
|
---|
2036 | // Solve the system LU = Pb.
|
---|
2037 | //
|
---|
2038 | tdininternaldlagts(blksiz, ref work4, ref work2, ref work3, ref work5, ref iwork, ref work1, ref tol, ref iinfo);
|
---|
2039 |
|
---|
2040 | //
|
---|
2041 | // Reorthogonalize by modified Gram-Schmidt if eigenvalues are
|
---|
2042 | // close enough.
|
---|
2043 | //
|
---|
2044 | if( jblk!=1 )
|
---|
2045 | {
|
---|
2046 | if( (double)(Math.Abs(xj-xjm))>(double)(ortol) )
|
---|
2047 | {
|
---|
2048 | gpind = j;
|
---|
2049 | }
|
---|
2050 | if( gpind!=j )
|
---|
2051 | {
|
---|
2052 | for(i=gpind; i<=j-1; i++)
|
---|
2053 | {
|
---|
2054 | i1 = b1;
|
---|
2055 | i2 = b1+blksiz-1;
|
---|
2056 | i1_ = (i1)-(1);
|
---|
2057 | ztr = 0.0;
|
---|
2058 | for(i_=1; i_<=blksiz;i_++)
|
---|
2059 | {
|
---|
2060 | ztr += work1[i_]*z[i_+i1_,i];
|
---|
2061 | }
|
---|
2062 | i1_ = (i1) - (1);
|
---|
2063 | for(i_=1; i_<=blksiz;i_++)
|
---|
2064 | {
|
---|
2065 | work1[i_] = work1[i_] - ztr*z[i_+i1_,i];
|
---|
2066 | }
|
---|
2067 | }
|
---|
2068 | }
|
---|
2069 | }
|
---|
2070 |
|
---|
2071 | //
|
---|
2072 | // Check the infinity norm of the iterate.
|
---|
2073 | //
|
---|
2074 | jmax = blas.vectoridxabsmax(ref work1, 1, blksiz);
|
---|
2075 | nrm = Math.Abs(work1[jmax]);
|
---|
2076 |
|
---|
2077 | //
|
---|
2078 | // Continue for additional iterations after norm reaches
|
---|
2079 | // stopping criterion.
|
---|
2080 | //
|
---|
2081 | tmpcriterion = false;
|
---|
2082 | if( (double)(nrm)<(double)(dtpcrt) )
|
---|
2083 | {
|
---|
2084 | tmpcriterion = true;
|
---|
2085 | }
|
---|
2086 | else
|
---|
2087 | {
|
---|
2088 | nrmchk = nrmchk+1;
|
---|
2089 | if( nrmchk<extra+1 )
|
---|
2090 | {
|
---|
2091 | tmpcriterion = true;
|
---|
2092 | }
|
---|
2093 | }
|
---|
2094 | }
|
---|
2095 | while( tmpcriterion );
|
---|
2096 |
|
---|
2097 | //
|
---|
2098 | // Accept iterate as jth eigenvector.
|
---|
2099 | //
|
---|
2100 | scl = 1/blas.vectornorm2(ref work1, 1, blksiz);
|
---|
2101 | jmax = blas.vectoridxabsmax(ref work1, 1, blksiz);
|
---|
2102 | if( (double)(work1[jmax])<(double)(0) )
|
---|
2103 | {
|
---|
2104 | scl = -scl;
|
---|
2105 | }
|
---|
2106 | for(i_=1; i_<=blksiz;i_++)
|
---|
2107 | {
|
---|
2108 | work1[i_] = scl*work1[i_];
|
---|
2109 | }
|
---|
2110 | }
|
---|
2111 | for(i=1; i<=n; i++)
|
---|
2112 | {
|
---|
2113 | z[i,j] = 0;
|
---|
2114 | }
|
---|
2115 | for(i=1; i<=blksiz; i++)
|
---|
2116 | {
|
---|
2117 | z[b1+i-1,j] = work1[i];
|
---|
2118 | }
|
---|
2119 |
|
---|
2120 | //
|
---|
2121 | // Save the shift to check eigenvalue spacing at next
|
---|
2122 | // iteration.
|
---|
2123 | //
|
---|
2124 | xjm = xj;
|
---|
2125 | }
|
---|
2126 | }
|
---|
2127 | }
|
---|
2128 |
|
---|
2129 |
|
---|
2130 | private static void tdininternaldlagtf(int n,
|
---|
2131 | ref double[] a,
|
---|
2132 | double lambda,
|
---|
2133 | ref double[] b,
|
---|
2134 | ref double[] c,
|
---|
2135 | double tol,
|
---|
2136 | ref double[] d,
|
---|
2137 | ref int[] iin,
|
---|
2138 | ref int info)
|
---|
2139 | {
|
---|
2140 | int k = 0;
|
---|
2141 | double eps = 0;
|
---|
2142 | double mult = 0;
|
---|
2143 | double piv1 = 0;
|
---|
2144 | double piv2 = 0;
|
---|
2145 | double scale1 = 0;
|
---|
2146 | double scale2 = 0;
|
---|
2147 | double temp = 0;
|
---|
2148 | double tl = 0;
|
---|
2149 |
|
---|
2150 | info = 0;
|
---|
2151 | if( n<0 )
|
---|
2152 | {
|
---|
2153 | info = -1;
|
---|
2154 | return;
|
---|
2155 | }
|
---|
2156 | if( n==0 )
|
---|
2157 | {
|
---|
2158 | return;
|
---|
2159 | }
|
---|
2160 | a[1] = a[1]-lambda;
|
---|
2161 | iin[n] = 0;
|
---|
2162 | if( n==1 )
|
---|
2163 | {
|
---|
2164 | if( (double)(a[1])==(double)(0) )
|
---|
2165 | {
|
---|
2166 | iin[1] = 1;
|
---|
2167 | }
|
---|
2168 | return;
|
---|
2169 | }
|
---|
2170 | eps = AP.Math.MachineEpsilon;
|
---|
2171 | tl = Math.Max(tol, eps);
|
---|
2172 | scale1 = Math.Abs(a[1])+Math.Abs(b[1]);
|
---|
2173 | for(k=1; k<=n-1; k++)
|
---|
2174 | {
|
---|
2175 | a[k+1] = a[k+1]-lambda;
|
---|
2176 | scale2 = Math.Abs(c[k])+Math.Abs(a[k+1]);
|
---|
2177 | if( k<n-1 )
|
---|
2178 | {
|
---|
2179 | scale2 = scale2+Math.Abs(b[k+1]);
|
---|
2180 | }
|
---|
2181 | if( (double)(a[k])==(double)(0) )
|
---|
2182 | {
|
---|
2183 | piv1 = 0;
|
---|
2184 | }
|
---|
2185 | else
|
---|
2186 | {
|
---|
2187 | piv1 = Math.Abs(a[k])/scale1;
|
---|
2188 | }
|
---|
2189 | if( (double)(c[k])==(double)(0) )
|
---|
2190 | {
|
---|
2191 | iin[k] = 0;
|
---|
2192 | piv2 = 0;
|
---|
2193 | scale1 = scale2;
|
---|
2194 | if( k<n-1 )
|
---|
2195 | {
|
---|
2196 | d[k] = 0;
|
---|
2197 | }
|
---|
2198 | }
|
---|
2199 | else
|
---|
2200 | {
|
---|
2201 | piv2 = Math.Abs(c[k])/scale2;
|
---|
2202 | if( (double)(piv2)<=(double)(piv1) )
|
---|
2203 | {
|
---|
2204 | iin[k] = 0;
|
---|
2205 | scale1 = scale2;
|
---|
2206 | c[k] = c[k]/a[k];
|
---|
2207 | a[k+1] = a[k+1]-c[k]*b[k];
|
---|
2208 | if( k<n-1 )
|
---|
2209 | {
|
---|
2210 | d[k] = 0;
|
---|
2211 | }
|
---|
2212 | }
|
---|
2213 | else
|
---|
2214 | {
|
---|
2215 | iin[k] = 1;
|
---|
2216 | mult = a[k]/c[k];
|
---|
2217 | a[k] = c[k];
|
---|
2218 | temp = a[k+1];
|
---|
2219 | a[k+1] = b[k]-mult*temp;
|
---|
2220 | if( k<n-1 )
|
---|
2221 | {
|
---|
2222 | d[k] = b[k+1];
|
---|
2223 | b[k+1] = -(mult*d[k]);
|
---|
2224 | }
|
---|
2225 | b[k] = temp;
|
---|
2226 | c[k] = mult;
|
---|
2227 | }
|
---|
2228 | }
|
---|
2229 | if( (double)(Math.Max(piv1, piv2))<=(double)(tl) & iin[n]==0 )
|
---|
2230 | {
|
---|
2231 | iin[n] = k;
|
---|
2232 | }
|
---|
2233 | }
|
---|
2234 | if( (double)(Math.Abs(a[n]))<=(double)(scale1*tl) & iin[n]==0 )
|
---|
2235 | {
|
---|
2236 | iin[n] = n;
|
---|
2237 | }
|
---|
2238 | }
|
---|
2239 |
|
---|
2240 |
|
---|
2241 | private static void tdininternaldlagts(int n,
|
---|
2242 | ref double[] a,
|
---|
2243 | ref double[] b,
|
---|
2244 | ref double[] c,
|
---|
2245 | ref double[] d,
|
---|
2246 | ref int[] iin,
|
---|
2247 | ref double[] y,
|
---|
2248 | ref double tol,
|
---|
2249 | ref int info)
|
---|
2250 | {
|
---|
2251 | int k = 0;
|
---|
2252 | double absak = 0;
|
---|
2253 | double ak = 0;
|
---|
2254 | double bignum = 0;
|
---|
2255 | double eps = 0;
|
---|
2256 | double pert = 0;
|
---|
2257 | double sfmin = 0;
|
---|
2258 | double temp = 0;
|
---|
2259 |
|
---|
2260 | info = 0;
|
---|
2261 | if( n<0 )
|
---|
2262 | {
|
---|
2263 | info = -1;
|
---|
2264 | return;
|
---|
2265 | }
|
---|
2266 | if( n==0 )
|
---|
2267 | {
|
---|
2268 | return;
|
---|
2269 | }
|
---|
2270 | eps = AP.Math.MachineEpsilon;
|
---|
2271 | sfmin = AP.Math.MinRealNumber;
|
---|
2272 | bignum = 1/sfmin;
|
---|
2273 | if( (double)(tol)<=(double)(0) )
|
---|
2274 | {
|
---|
2275 | tol = Math.Abs(a[1]);
|
---|
2276 | if( n>1 )
|
---|
2277 | {
|
---|
2278 | tol = Math.Max(tol, Math.Max(Math.Abs(a[2]), Math.Abs(b[1])));
|
---|
2279 | }
|
---|
2280 | for(k=3; k<=n; k++)
|
---|
2281 | {
|
---|
2282 | tol = Math.Max(tol, Math.Max(Math.Abs(a[k]), Math.Max(Math.Abs(b[k-1]), Math.Abs(d[k-2]))));
|
---|
2283 | }
|
---|
2284 | tol = tol*eps;
|
---|
2285 | if( (double)(tol)==(double)(0) )
|
---|
2286 | {
|
---|
2287 | tol = eps;
|
---|
2288 | }
|
---|
2289 | }
|
---|
2290 | for(k=2; k<=n; k++)
|
---|
2291 | {
|
---|
2292 | if( iin[k-1]==0 )
|
---|
2293 | {
|
---|
2294 | y[k] = y[k]-c[k-1]*y[k-1];
|
---|
2295 | }
|
---|
2296 | else
|
---|
2297 | {
|
---|
2298 | temp = y[k-1];
|
---|
2299 | y[k-1] = y[k];
|
---|
2300 | y[k] = temp-c[k-1]*y[k];
|
---|
2301 | }
|
---|
2302 | }
|
---|
2303 | for(k=n; k>=1; k--)
|
---|
2304 | {
|
---|
2305 | if( k<=n-2 )
|
---|
2306 | {
|
---|
2307 | temp = y[k]-b[k]*y[k+1]-d[k]*y[k+2];
|
---|
2308 | }
|
---|
2309 | else
|
---|
2310 | {
|
---|
2311 | if( k==n-1 )
|
---|
2312 | {
|
---|
2313 | temp = y[k]-b[k]*y[k+1];
|
---|
2314 | }
|
---|
2315 | else
|
---|
2316 | {
|
---|
2317 | temp = y[k];
|
---|
2318 | }
|
---|
2319 | }
|
---|
2320 | ak = a[k];
|
---|
2321 | pert = Math.Abs(tol);
|
---|
2322 | if( (double)(ak)<(double)(0) )
|
---|
2323 | {
|
---|
2324 | pert = -pert;
|
---|
2325 | }
|
---|
2326 | while( true )
|
---|
2327 | {
|
---|
2328 | absak = Math.Abs(ak);
|
---|
2329 | if( (double)(absak)<(double)(1) )
|
---|
2330 | {
|
---|
2331 | if( (double)(absak)<(double)(sfmin) )
|
---|
2332 | {
|
---|
2333 | if( (double)(absak)==(double)(0) | (double)(Math.Abs(temp)*sfmin)>(double)(absak) )
|
---|
2334 | {
|
---|
2335 | ak = ak+pert;
|
---|
2336 | pert = 2*pert;
|
---|
2337 | continue;
|
---|
2338 | }
|
---|
2339 | else
|
---|
2340 | {
|
---|
2341 | temp = temp*bignum;
|
---|
2342 | ak = ak*bignum;
|
---|
2343 | }
|
---|
2344 | }
|
---|
2345 | else
|
---|
2346 | {
|
---|
2347 | if( (double)(Math.Abs(temp))>(double)(absak*bignum) )
|
---|
2348 | {
|
---|
2349 | ak = ak+pert;
|
---|
2350 | pert = 2*pert;
|
---|
2351 | continue;
|
---|
2352 | }
|
---|
2353 | }
|
---|
2354 | }
|
---|
2355 | break;
|
---|
2356 | }
|
---|
2357 | y[k] = temp/ak;
|
---|
2358 | }
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 |
|
---|
2362 | private static void internaldlaebz(int ijob,
|
---|
2363 | int nitmax,
|
---|
2364 | int n,
|
---|
2365 | int mmax,
|
---|
2366 | int minp,
|
---|
2367 | double abstol,
|
---|
2368 | double reltol,
|
---|
2369 | double pivmin,
|
---|
2370 | ref double[] d,
|
---|
2371 | ref double[] e,
|
---|
2372 | ref double[] e2,
|
---|
2373 | ref int[] nval,
|
---|
2374 | ref double[,] ab,
|
---|
2375 | ref double[] c,
|
---|
2376 | ref int mout,
|
---|
2377 | ref int[,] nab,
|
---|
2378 | ref double[] work,
|
---|
2379 | ref int[] iwork,
|
---|
2380 | ref int info)
|
---|
2381 | {
|
---|
2382 | int itmp1 = 0;
|
---|
2383 | int itmp2 = 0;
|
---|
2384 | int j = 0;
|
---|
2385 | int ji = 0;
|
---|
2386 | int jit = 0;
|
---|
2387 | int jp = 0;
|
---|
2388 | int kf = 0;
|
---|
2389 | int kfnew = 0;
|
---|
2390 | int kl = 0;
|
---|
2391 | int klnew = 0;
|
---|
2392 | double tmp1 = 0;
|
---|
2393 | double tmp2 = 0;
|
---|
2394 |
|
---|
2395 | info = 0;
|
---|
2396 | if( ijob<1 | ijob>3 )
|
---|
2397 | {
|
---|
2398 | info = -1;
|
---|
2399 | return;
|
---|
2400 | }
|
---|
2401 |
|
---|
2402 | //
|
---|
2403 | // Initialize NAB
|
---|
2404 | //
|
---|
2405 | if( ijob==1 )
|
---|
2406 | {
|
---|
2407 |
|
---|
2408 | //
|
---|
2409 | // Compute the number of eigenvalues in the initial intervals.
|
---|
2410 | //
|
---|
2411 | mout = 0;
|
---|
2412 |
|
---|
2413 | //
|
---|
2414 | //DIR$ NOVECTOR
|
---|
2415 | //
|
---|
2416 | for(ji=1; ji<=minp; ji++)
|
---|
2417 | {
|
---|
2418 | for(jp=1; jp<=2; jp++)
|
---|
2419 | {
|
---|
2420 | tmp1 = d[1]-ab[ji,jp];
|
---|
2421 | if( (double)(Math.Abs(tmp1))<(double)(pivmin) )
|
---|
2422 | {
|
---|
2423 | tmp1 = -pivmin;
|
---|
2424 | }
|
---|
2425 | nab[ji,jp] = 0;
|
---|
2426 | if( (double)(tmp1)<=(double)(0) )
|
---|
2427 | {
|
---|
2428 | nab[ji,jp] = 1;
|
---|
2429 | }
|
---|
2430 | for(j=2; j<=n; j++)
|
---|
2431 | {
|
---|
2432 | tmp1 = d[j]-e2[j-1]/tmp1-ab[ji,jp];
|
---|
2433 | if( (double)(Math.Abs(tmp1))<(double)(pivmin) )
|
---|
2434 | {
|
---|
2435 | tmp1 = -pivmin;
|
---|
2436 | }
|
---|
2437 | if( (double)(tmp1)<=(double)(0) )
|
---|
2438 | {
|
---|
2439 | nab[ji,jp] = nab[ji,jp]+1;
|
---|
2440 | }
|
---|
2441 | }
|
---|
2442 | }
|
---|
2443 | mout = mout+nab[ji,2]-nab[ji,1];
|
---|
2444 | }
|
---|
2445 | return;
|
---|
2446 | }
|
---|
2447 |
|
---|
2448 | //
|
---|
2449 | // Initialize for loop
|
---|
2450 | //
|
---|
2451 | // KF and KL have the following meaning:
|
---|
2452 | // Intervals 1,...,KF-1 have converged.
|
---|
2453 | // Intervals KF,...,KL still need to be refined.
|
---|
2454 | //
|
---|
2455 | kf = 1;
|
---|
2456 | kl = minp;
|
---|
2457 |
|
---|
2458 | //
|
---|
2459 | // If IJOB=2, initialize C.
|
---|
2460 | // If IJOB=3, use the user-supplied starting point.
|
---|
2461 | //
|
---|
2462 | if( ijob==2 )
|
---|
2463 | {
|
---|
2464 | for(ji=1; ji<=minp; ji++)
|
---|
2465 | {
|
---|
2466 | c[ji] = 0.5*(ab[ji,1]+ab[ji,2]);
|
---|
2467 | }
|
---|
2468 | }
|
---|
2469 |
|
---|
2470 | //
|
---|
2471 | // Iteration loop
|
---|
2472 | //
|
---|
2473 | for(jit=1; jit<=nitmax; jit++)
|
---|
2474 | {
|
---|
2475 |
|
---|
2476 | //
|
---|
2477 | // Loop over intervals
|
---|
2478 | //
|
---|
2479 | //
|
---|
2480 | // Serial Version of the loop
|
---|
2481 | //
|
---|
2482 | klnew = kl;
|
---|
2483 | for(ji=kf; ji<=kl; ji++)
|
---|
2484 | {
|
---|
2485 |
|
---|
2486 | //
|
---|
2487 | // Compute N(w), the number of eigenvalues less than w
|
---|
2488 | //
|
---|
2489 | tmp1 = c[ji];
|
---|
2490 | tmp2 = d[1]-tmp1;
|
---|
2491 | itmp1 = 0;
|
---|
2492 | if( (double)(tmp2)<=(double)(pivmin) )
|
---|
2493 | {
|
---|
2494 | itmp1 = 1;
|
---|
2495 | tmp2 = Math.Min(tmp2, -pivmin);
|
---|
2496 | }
|
---|
2497 |
|
---|
2498 | //
|
---|
2499 | // A series of compiler directives to defeat vectorization
|
---|
2500 | // for the next loop
|
---|
2501 | //
|
---|
2502 | //*$PL$ CMCHAR=' '
|
---|
2503 | //CDIR$ NEXTSCALAR
|
---|
2504 | //C$DIR SCALAR
|
---|
2505 | //CDIR$ NEXT SCALAR
|
---|
2506 | //CVD$L NOVECTOR
|
---|
2507 | //CDEC$ NOVECTOR
|
---|
2508 | //CVD$ NOVECTOR
|
---|
2509 | //*VDIR NOVECTOR
|
---|
2510 | //*VOCL LOOP,SCALAR
|
---|
2511 | //CIBM PREFER SCALAR
|
---|
2512 | //*$PL$ CMCHAR='*'
|
---|
2513 | //
|
---|
2514 | for(j=2; j<=n; j++)
|
---|
2515 | {
|
---|
2516 | tmp2 = d[j]-e2[j-1]/tmp2-tmp1;
|
---|
2517 | if( (double)(tmp2)<=(double)(pivmin) )
|
---|
2518 | {
|
---|
2519 | itmp1 = itmp1+1;
|
---|
2520 | tmp2 = Math.Min(tmp2, -pivmin);
|
---|
2521 | }
|
---|
2522 | }
|
---|
2523 | if( ijob<=2 )
|
---|
2524 | {
|
---|
2525 |
|
---|
2526 | //
|
---|
2527 | // IJOB=2: Choose all intervals containing eigenvalues.
|
---|
2528 | //
|
---|
2529 | // Insure that N(w) is monotone
|
---|
2530 | //
|
---|
2531 | itmp1 = Math.Min(nab[ji,2], Math.Max(nab[ji,1], itmp1));
|
---|
2532 |
|
---|
2533 | //
|
---|
2534 | // Update the Queue -- add intervals if both halves
|
---|
2535 | // contain eigenvalues.
|
---|
2536 | //
|
---|
2537 | if( itmp1==nab[ji,2] )
|
---|
2538 | {
|
---|
2539 |
|
---|
2540 | //
|
---|
2541 | // No eigenvalue in the upper interval:
|
---|
2542 | // just use the lower interval.
|
---|
2543 | //
|
---|
2544 | ab[ji,2] = tmp1;
|
---|
2545 | }
|
---|
2546 | else
|
---|
2547 | {
|
---|
2548 | if( itmp1==nab[ji,1] )
|
---|
2549 | {
|
---|
2550 |
|
---|
2551 | //
|
---|
2552 | // No eigenvalue in the lower interval:
|
---|
2553 | // just use the upper interval.
|
---|
2554 | //
|
---|
2555 | ab[ji,1] = tmp1;
|
---|
2556 | }
|
---|
2557 | else
|
---|
2558 | {
|
---|
2559 | if( klnew<mmax )
|
---|
2560 | {
|
---|
2561 |
|
---|
2562 | //
|
---|
2563 | // Eigenvalue in both intervals -- add upper to queue.
|
---|
2564 | //
|
---|
2565 | klnew = klnew+1;
|
---|
2566 | ab[klnew,2] = ab[ji,2];
|
---|
2567 | nab[klnew,2] = nab[ji,2];
|
---|
2568 | ab[klnew,1] = tmp1;
|
---|
2569 | nab[klnew,1] = itmp1;
|
---|
2570 | ab[ji,2] = tmp1;
|
---|
2571 | nab[ji,2] = itmp1;
|
---|
2572 | }
|
---|
2573 | else
|
---|
2574 | {
|
---|
2575 | info = mmax+1;
|
---|
2576 | return;
|
---|
2577 | }
|
---|
2578 | }
|
---|
2579 | }
|
---|
2580 | }
|
---|
2581 | else
|
---|
2582 | {
|
---|
2583 |
|
---|
2584 | //
|
---|
2585 | // IJOB=3: Binary search. Keep only the interval
|
---|
2586 | // containing w s.t. N(w) = NVAL
|
---|
2587 | //
|
---|
2588 | if( itmp1<=nval[ji] )
|
---|
2589 | {
|
---|
2590 | ab[ji,1] = tmp1;
|
---|
2591 | nab[ji,1] = itmp1;
|
---|
2592 | }
|
---|
2593 | if( itmp1>=nval[ji] )
|
---|
2594 | {
|
---|
2595 | ab[ji,2] = tmp1;
|
---|
2596 | nab[ji,2] = itmp1;
|
---|
2597 | }
|
---|
2598 | }
|
---|
2599 | }
|
---|
2600 | kl = klnew;
|
---|
2601 |
|
---|
2602 | //
|
---|
2603 | // Check for convergence
|
---|
2604 | //
|
---|
2605 | kfnew = kf;
|
---|
2606 | for(ji=kf; ji<=kl; ji++)
|
---|
2607 | {
|
---|
2608 | tmp1 = Math.Abs(ab[ji,2]-ab[ji,1]);
|
---|
2609 | tmp2 = Math.Max(Math.Abs(ab[ji,2]), Math.Abs(ab[ji,1]));
|
---|
2610 | if( (double)(tmp1)<(double)(Math.Max(abstol, Math.Max(pivmin, reltol*tmp2))) | nab[ji,1]>=nab[ji,2] )
|
---|
2611 | {
|
---|
2612 |
|
---|
2613 | //
|
---|
2614 | // Converged -- Swap with position KFNEW,
|
---|
2615 | // then increment KFNEW
|
---|
2616 | //
|
---|
2617 | if( ji>kfnew )
|
---|
2618 | {
|
---|
2619 | tmp1 = ab[ji,1];
|
---|
2620 | tmp2 = ab[ji,2];
|
---|
2621 | itmp1 = nab[ji,1];
|
---|
2622 | itmp2 = nab[ji,2];
|
---|
2623 | ab[ji,1] = ab[kfnew,1];
|
---|
2624 | ab[ji,2] = ab[kfnew,2];
|
---|
2625 | nab[ji,1] = nab[kfnew,1];
|
---|
2626 | nab[ji,2] = nab[kfnew,2];
|
---|
2627 | ab[kfnew,1] = tmp1;
|
---|
2628 | ab[kfnew,2] = tmp2;
|
---|
2629 | nab[kfnew,1] = itmp1;
|
---|
2630 | nab[kfnew,2] = itmp2;
|
---|
2631 | if( ijob==3 )
|
---|
2632 | {
|
---|
2633 | itmp1 = nval[ji];
|
---|
2634 | nval[ji] = nval[kfnew];
|
---|
2635 | nval[kfnew] = itmp1;
|
---|
2636 | }
|
---|
2637 | }
|
---|
2638 | kfnew = kfnew+1;
|
---|
2639 | }
|
---|
2640 | }
|
---|
2641 | kf = kfnew;
|
---|
2642 |
|
---|
2643 | //
|
---|
2644 | // Choose Midpoints
|
---|
2645 | //
|
---|
2646 | for(ji=kf; ji<=kl; ji++)
|
---|
2647 | {
|
---|
2648 | c[ji] = 0.5*(ab[ji,1]+ab[ji,2]);
|
---|
2649 | }
|
---|
2650 |
|
---|
2651 | //
|
---|
2652 | // If no more intervals to refine, quit.
|
---|
2653 | //
|
---|
2654 | if( kf>kl )
|
---|
2655 | {
|
---|
2656 | break;
|
---|
2657 | }
|
---|
2658 | }
|
---|
2659 |
|
---|
2660 | //
|
---|
2661 | // Converged
|
---|
2662 | //
|
---|
2663 | info = Math.Max(kl+1-kf, 0);
|
---|
2664 | mout = kl;
|
---|
2665 | }
|
---|
2666 | }
|
---|
2667 | }
|
---|