1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class studentttests
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | One-sample t-test
|
---|
29 |
|
---|
30 | This test checks three hypotheses about the mean of the given sample. The
|
---|
31 | following tests are performed:
|
---|
32 | * two-tailed test (null hypothesis - the mean is equal to the given
|
---|
33 | value)
|
---|
34 | * left-tailed test (null hypothesis - the mean is greater than or
|
---|
35 | equal to the given value)
|
---|
36 | * right-tailed test (null hypothesis - the mean is less than or equal
|
---|
37 | to the given value).
|
---|
38 |
|
---|
39 | The test is based on the assumption that a given sample has a normal
|
---|
40 | distribution and an unknown dispersion. If the distribution sharply
|
---|
41 | differs from normal, the test will work incorrectly.
|
---|
42 |
|
---|
43 | Input parameters:
|
---|
44 | X - sample. Array whose index goes from 0 to N-1.
|
---|
45 | N - size of sample.
|
---|
46 | Mean - assumed value of the mean.
|
---|
47 |
|
---|
48 | Output parameters:
|
---|
49 | BothTails - p-value for two-tailed test.
|
---|
50 | If BothTails is less than the given significance level
|
---|
51 | the null hypothesis is rejected.
|
---|
52 | LeftTail - p-value for left-tailed test.
|
---|
53 | If LeftTail is less than the given significance level,
|
---|
54 | the null hypothesis is rejected.
|
---|
55 | RightTail - p-value for right-tailed test.
|
---|
56 | If RightTail is less than the given significance level
|
---|
57 | the null hypothesis is rejected.
|
---|
58 |
|
---|
59 | -- ALGLIB --
|
---|
60 | Copyright 08.09.2006 by Bochkanov Sergey
|
---|
61 | *************************************************************************/
|
---|
62 | public static void studentttest1(ref double[] x,
|
---|
63 | int n,
|
---|
64 | double mean,
|
---|
65 | ref double bothtails,
|
---|
66 | ref double lefttail,
|
---|
67 | ref double righttail)
|
---|
68 | {
|
---|
69 | int i = 0;
|
---|
70 | double xmean = 0;
|
---|
71 | double xvariance = 0;
|
---|
72 | double xstddev = 0;
|
---|
73 | double v1 = 0;
|
---|
74 | double v2 = 0;
|
---|
75 | double stat = 0;
|
---|
76 | double s = 0;
|
---|
77 |
|
---|
78 | if( n<=1 )
|
---|
79 | {
|
---|
80 | bothtails = 1.0;
|
---|
81 | lefttail = 1.0;
|
---|
82 | righttail = 1.0;
|
---|
83 | return;
|
---|
84 | }
|
---|
85 |
|
---|
86 | //
|
---|
87 | // Mean
|
---|
88 | //
|
---|
89 | xmean = 0;
|
---|
90 | for(i=0; i<=n-1; i++)
|
---|
91 | {
|
---|
92 | xmean = xmean+x[i];
|
---|
93 | }
|
---|
94 | xmean = xmean/n;
|
---|
95 |
|
---|
96 | //
|
---|
97 | // Variance (using corrected two-pass algorithm)
|
---|
98 | //
|
---|
99 | xvariance = 0;
|
---|
100 | xstddev = 0;
|
---|
101 | if( n!=1 )
|
---|
102 | {
|
---|
103 | v1 = 0;
|
---|
104 | for(i=0; i<=n-1; i++)
|
---|
105 | {
|
---|
106 | v1 = v1+AP.Math.Sqr(x[i]-xmean);
|
---|
107 | }
|
---|
108 | v2 = 0;
|
---|
109 | for(i=0; i<=n-1; i++)
|
---|
110 | {
|
---|
111 | v2 = v2+(x[i]-xmean);
|
---|
112 | }
|
---|
113 | v2 = AP.Math.Sqr(v2)/n;
|
---|
114 | xvariance = (v1-v2)/(n-1);
|
---|
115 | if( (double)(xvariance)<(double)(0) )
|
---|
116 | {
|
---|
117 | xvariance = 0;
|
---|
118 | }
|
---|
119 | xstddev = Math.Sqrt(xvariance);
|
---|
120 | }
|
---|
121 | if( (double)(xstddev)==(double)(0) )
|
---|
122 | {
|
---|
123 | bothtails = 1.0;
|
---|
124 | lefttail = 1.0;
|
---|
125 | righttail = 1.0;
|
---|
126 | return;
|
---|
127 | }
|
---|
128 |
|
---|
129 | //
|
---|
130 | // Statistic
|
---|
131 | //
|
---|
132 | stat = (xmean-mean)/(xstddev/Math.Sqrt(n));
|
---|
133 | s = studenttdistr.studenttdistribution(n-1, stat);
|
---|
134 | bothtails = 2*Math.Min(s, 1-s);
|
---|
135 | lefttail = s;
|
---|
136 | righttail = 1-s;
|
---|
137 | }
|
---|
138 |
|
---|
139 |
|
---|
140 | /*************************************************************************
|
---|
141 | Two-sample pooled test
|
---|
142 |
|
---|
143 | This test checks three hypotheses about the mean of the given samples. The
|
---|
144 | following tests are performed:
|
---|
145 | * two-tailed test (null hypothesis - the means are equal)
|
---|
146 | * left-tailed test (null hypothesis - the mean of the first sample is
|
---|
147 | greater than or equal to the mean of the second sample)
|
---|
148 | * right-tailed test (null hypothesis - the mean of the first sample is
|
---|
149 | less than or equal to the mean of the second sample).
|
---|
150 |
|
---|
151 | Test is based on the following assumptions:
|
---|
152 | * given samples have normal distributions
|
---|
153 | * dispersions are equal
|
---|
154 | * samples are independent.
|
---|
155 |
|
---|
156 | Input parameters:
|
---|
157 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
158 | N - size of sample.
|
---|
159 | Y - sample 2. Array whose index goes from 0 to M-1.
|
---|
160 | M - size of sample.
|
---|
161 |
|
---|
162 | Output parameters:
|
---|
163 | BothTails - p-value for two-tailed test.
|
---|
164 | If BothTails is less than the given significance level
|
---|
165 | the null hypothesis is rejected.
|
---|
166 | LeftTail - p-value for left-tailed test.
|
---|
167 | If LeftTail is less than the given significance level,
|
---|
168 | the null hypothesis is rejected.
|
---|
169 | RightTail - p-value for right-tailed test.
|
---|
170 | If RightTail is less than the given significance level
|
---|
171 | the null hypothesis is rejected.
|
---|
172 |
|
---|
173 | -- ALGLIB --
|
---|
174 | Copyright 18.09.2006 by Bochkanov Sergey
|
---|
175 | *************************************************************************/
|
---|
176 | public static void studentttest2(ref double[] x,
|
---|
177 | int n,
|
---|
178 | ref double[] y,
|
---|
179 | int m,
|
---|
180 | ref double bothtails,
|
---|
181 | ref double lefttail,
|
---|
182 | ref double righttail)
|
---|
183 | {
|
---|
184 | int i = 0;
|
---|
185 | double xmean = 0;
|
---|
186 | double ymean = 0;
|
---|
187 | double stat = 0;
|
---|
188 | double s = 0;
|
---|
189 | double p = 0;
|
---|
190 |
|
---|
191 | if( n<=1 | m<=1 )
|
---|
192 | {
|
---|
193 | bothtails = 1.0;
|
---|
194 | lefttail = 1.0;
|
---|
195 | righttail = 1.0;
|
---|
196 | return;
|
---|
197 | }
|
---|
198 |
|
---|
199 | //
|
---|
200 | // Mean
|
---|
201 | //
|
---|
202 | xmean = 0;
|
---|
203 | for(i=0; i<=n-1; i++)
|
---|
204 | {
|
---|
205 | xmean = xmean+x[i];
|
---|
206 | }
|
---|
207 | xmean = xmean/n;
|
---|
208 | ymean = 0;
|
---|
209 | for(i=0; i<=m-1; i++)
|
---|
210 | {
|
---|
211 | ymean = ymean+y[i];
|
---|
212 | }
|
---|
213 | ymean = ymean/m;
|
---|
214 |
|
---|
215 | //
|
---|
216 | // S
|
---|
217 | //
|
---|
218 | s = 0;
|
---|
219 | for(i=0; i<=n-1; i++)
|
---|
220 | {
|
---|
221 | s = s+AP.Math.Sqr(x[i]-xmean);
|
---|
222 | }
|
---|
223 | for(i=0; i<=m-1; i++)
|
---|
224 | {
|
---|
225 | s = s+AP.Math.Sqr(y[i]-ymean);
|
---|
226 | }
|
---|
227 | s = Math.Sqrt(s*((double)(1)/(double)(n)+(double)(1)/(double)(m))/(n+m-2));
|
---|
228 | if( (double)(s)==(double)(0) )
|
---|
229 | {
|
---|
230 | bothtails = 1.0;
|
---|
231 | lefttail = 1.0;
|
---|
232 | righttail = 1.0;
|
---|
233 | return;
|
---|
234 | }
|
---|
235 |
|
---|
236 | //
|
---|
237 | // Statistic
|
---|
238 | //
|
---|
239 | stat = (xmean-ymean)/s;
|
---|
240 | p = studenttdistr.studenttdistribution(n+m-2, stat);
|
---|
241 | bothtails = 2*Math.Min(p, 1-p);
|
---|
242 | lefttail = p;
|
---|
243 | righttail = 1-p;
|
---|
244 | }
|
---|
245 |
|
---|
246 |
|
---|
247 | /*************************************************************************
|
---|
248 | Two-sample unpooled test
|
---|
249 |
|
---|
250 | This test checks three hypotheses about the mean of the given samples. The
|
---|
251 | following tests are performed:
|
---|
252 | * two-tailed test (null hypothesis - the means are equal)
|
---|
253 | * left-tailed test (null hypothesis - the mean of the first sample is
|
---|
254 | greater than or equal to the mean of the second sample)
|
---|
255 | * right-tailed test (null hypothesis - the mean of the first sample is
|
---|
256 | less than or equal to the mean of the second sample).
|
---|
257 |
|
---|
258 | Test is based on the following assumptions:
|
---|
259 | * given samples have normal distributions
|
---|
260 | * samples are independent.
|
---|
261 | Dispersion equality is not required
|
---|
262 |
|
---|
263 | Input parameters:
|
---|
264 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
265 | N - size of the sample.
|
---|
266 | Y - sample 2. Array whose index goes from 0 to M-1.
|
---|
267 | M - size of the sample.
|
---|
268 |
|
---|
269 | Output parameters:
|
---|
270 | BothTails - p-value for two-tailed test.
|
---|
271 | If BothTails is less than the given significance level
|
---|
272 | the null hypothesis is rejected.
|
---|
273 | LeftTail - p-value for left-tailed test.
|
---|
274 | If LeftTail is less than the given significance level,
|
---|
275 | the null hypothesis is rejected.
|
---|
276 | RightTail - p-value for right-tailed test.
|
---|
277 | If RightTail is less than the given significance level
|
---|
278 | the null hypothesis is rejected.
|
---|
279 |
|
---|
280 | -- ALGLIB --
|
---|
281 | Copyright 18.09.2006 by Bochkanov Sergey
|
---|
282 | *************************************************************************/
|
---|
283 | public static void unequalvariancettest(ref double[] x,
|
---|
284 | int n,
|
---|
285 | ref double[] y,
|
---|
286 | int m,
|
---|
287 | ref double bothtails,
|
---|
288 | ref double lefttail,
|
---|
289 | ref double righttail)
|
---|
290 | {
|
---|
291 | int i = 0;
|
---|
292 | double xmean = 0;
|
---|
293 | double ymean = 0;
|
---|
294 | double xvar = 0;
|
---|
295 | double yvar = 0;
|
---|
296 | double df = 0;
|
---|
297 | double p = 0;
|
---|
298 | double stat = 0;
|
---|
299 | double c = 0;
|
---|
300 |
|
---|
301 | if( n<=1 | m<=1 )
|
---|
302 | {
|
---|
303 | bothtails = 1.0;
|
---|
304 | lefttail = 1.0;
|
---|
305 | righttail = 1.0;
|
---|
306 | return;
|
---|
307 | }
|
---|
308 |
|
---|
309 | //
|
---|
310 | // Mean
|
---|
311 | //
|
---|
312 | xmean = 0;
|
---|
313 | for(i=0; i<=n-1; i++)
|
---|
314 | {
|
---|
315 | xmean = xmean+x[i];
|
---|
316 | }
|
---|
317 | xmean = xmean/n;
|
---|
318 | ymean = 0;
|
---|
319 | for(i=0; i<=m-1; i++)
|
---|
320 | {
|
---|
321 | ymean = ymean+y[i];
|
---|
322 | }
|
---|
323 | ymean = ymean/m;
|
---|
324 |
|
---|
325 | //
|
---|
326 | // Variance (using corrected two-pass algorithm)
|
---|
327 | //
|
---|
328 | xvar = 0;
|
---|
329 | for(i=0; i<=n-1; i++)
|
---|
330 | {
|
---|
331 | xvar = xvar+AP.Math.Sqr(x[i]-xmean);
|
---|
332 | }
|
---|
333 | xvar = xvar/(n-1);
|
---|
334 | yvar = 0;
|
---|
335 | for(i=0; i<=m-1; i++)
|
---|
336 | {
|
---|
337 | yvar = yvar+AP.Math.Sqr(y[i]-ymean);
|
---|
338 | }
|
---|
339 | yvar = yvar/(m-1);
|
---|
340 | if( (double)(xvar)==(double)(0) | (double)(yvar)==(double)(0) )
|
---|
341 | {
|
---|
342 | bothtails = 1.0;
|
---|
343 | lefttail = 1.0;
|
---|
344 | righttail = 1.0;
|
---|
345 | return;
|
---|
346 | }
|
---|
347 |
|
---|
348 | //
|
---|
349 | // Statistic
|
---|
350 | //
|
---|
351 | stat = (xmean-ymean)/Math.Sqrt(xvar/n+yvar/m);
|
---|
352 | c = xvar/n/(xvar/n+yvar/m);
|
---|
353 | df = (n-1)*(m-1)/((m-1)*AP.Math.Sqr(c)+(n-1)*(1-AP.Math.Sqr(c)));
|
---|
354 | if( (double)(stat)>(double)(0) )
|
---|
355 | {
|
---|
356 | p = 1-0.5*ibetaf.incompletebeta(df/2, 0.5, df/(df+AP.Math.Sqr(stat)));
|
---|
357 | }
|
---|
358 | else
|
---|
359 | {
|
---|
360 | p = 0.5*ibetaf.incompletebeta(df/2, 0.5, df/(df+AP.Math.Sqr(stat)));
|
---|
361 | }
|
---|
362 | bothtails = 2*Math.Min(p, 1-p);
|
---|
363 | lefttail = p;
|
---|
364 | righttail = 1-p;
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|