[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class srcond
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | Condition number estimate of a symmetric matrix
|
---|
| 35 |
|
---|
| 36 | The algorithm calculates a lower bound of the condition number. In this
|
---|
| 37 | case, the algorithm does not return a lower bound of the condition number,
|
---|
| 38 | but an inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 39 |
|
---|
| 40 | It should be noted that 1-norm and inf-norm condition numbers of symmetric
|
---|
| 41 | matrices are equal, so the algorithm doesn't take into account the
|
---|
| 42 | differences between these types of norms.
|
---|
| 43 |
|
---|
| 44 | Input parameters:
|
---|
| 45 | A - symmetric definite matrix which is given by its upper or
|
---|
| 46 | lower triangle depending on IsUpper.
|
---|
| 47 | Array with elements [0..N-1, 0..N-1].
|
---|
| 48 | N - size of matrix A.
|
---|
| 49 | IsUpper - storage format.
|
---|
| 50 |
|
---|
| 51 | Result:
|
---|
| 52 | 1/LowerBound(cond(A))
|
---|
| 53 | *************************************************************************/
|
---|
| 54 | public static double smatrixrcond(ref double[,] a,
|
---|
| 55 | int n,
|
---|
| 56 | bool isupper)
|
---|
| 57 | {
|
---|
| 58 | double result = 0;
|
---|
| 59 | int i = 0;
|
---|
| 60 | int j = 0;
|
---|
| 61 | double[,] a1 = new double[0,0];
|
---|
| 62 |
|
---|
| 63 | a1 = new double[n+1, n+1];
|
---|
| 64 | for(i=1; i<=n; i++)
|
---|
| 65 | {
|
---|
| 66 | if( isupper )
|
---|
| 67 | {
|
---|
| 68 | for(j=i; j<=n; j++)
|
---|
| 69 | {
|
---|
| 70 | a1[i,j] = a[i-1,j-1];
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 | else
|
---|
| 74 | {
|
---|
| 75 | for(j=1; j<=i; j++)
|
---|
| 76 | {
|
---|
| 77 | a1[i,j] = a[i-1,j-1];
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | result = rcondsymmetric(a1, n, isupper);
|
---|
| 82 | return result;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 |
|
---|
| 86 | /*************************************************************************
|
---|
| 87 | Condition number estimate of a matrix given by LDLT-decomposition
|
---|
| 88 |
|
---|
| 89 | The algorithm calculates a lower bound of the condition number. In this
|
---|
| 90 | case, the algorithm does not return a lower bound of the condition number,
|
---|
| 91 | but an inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 92 |
|
---|
| 93 | It should be noted that 1-norm and inf-norm condition numbers of symmetric
|
---|
| 94 | matrices are equal, so the algorithm doesn't take into account the
|
---|
| 95 | differences between these types of norms.
|
---|
| 96 |
|
---|
| 97 | Input parameters:
|
---|
| 98 | L - LDLT-decomposition of matrix A given by the upper or lower
|
---|
| 99 | triangle depending on IsUpper.
|
---|
| 100 | Output of SMatrixLDLT subroutine.
|
---|
| 101 | Pivots - table of permutations which were made during LDLT-decomposition,
|
---|
| 102 | Output of SMatrixLDLT subroutine.
|
---|
| 103 | N - size of matrix A.
|
---|
| 104 | IsUpper - storage format.
|
---|
| 105 |
|
---|
| 106 | Result:
|
---|
| 107 | 1/LowerBound(cond(A))
|
---|
| 108 | *************************************************************************/
|
---|
| 109 | public static double smatrixldltrcond(ref double[,] l,
|
---|
| 110 | ref int[] pivots,
|
---|
| 111 | int n,
|
---|
| 112 | bool isupper)
|
---|
| 113 | {
|
---|
| 114 | double result = 0;
|
---|
| 115 | int i = 0;
|
---|
| 116 | int j = 0;
|
---|
| 117 | double[,] l1 = new double[0,0];
|
---|
| 118 | int[] p1 = new int[0];
|
---|
| 119 |
|
---|
| 120 | l1 = new double[n+1, n+1];
|
---|
| 121 | for(i=1; i<=n; i++)
|
---|
| 122 | {
|
---|
| 123 | if( isupper )
|
---|
| 124 | {
|
---|
| 125 | for(j=i; j<=n; j++)
|
---|
| 126 | {
|
---|
| 127 | l1[i,j] = l[i-1,j-1];
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | else
|
---|
| 131 | {
|
---|
| 132 | for(j=1; j<=i; j++)
|
---|
| 133 | {
|
---|
| 134 | l1[i,j] = l[i-1,j-1];
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 | p1 = new int[n+1];
|
---|
| 139 | for(i=1; i<=n; i++)
|
---|
| 140 | {
|
---|
| 141 | if( pivots[i-1]>=0 )
|
---|
| 142 | {
|
---|
| 143 | p1[i] = pivots[i-1]+1;
|
---|
| 144 | }
|
---|
| 145 | else
|
---|
| 146 | {
|
---|
| 147 | p1[i] = -(pivots[i-1]+n+1);
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | result = rcondldlt(ref l1, ref p1, n, isupper);
|
---|
| 151 | return result;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 |
|
---|
| 155 | public static double rcondsymmetric(double[,] a,
|
---|
| 156 | int n,
|
---|
| 157 | bool isupper)
|
---|
| 158 | {
|
---|
| 159 | double result = 0;
|
---|
| 160 | int i = 0;
|
---|
| 161 | int j = 0;
|
---|
| 162 | int im = 0;
|
---|
| 163 | int jm = 0;
|
---|
| 164 | double v = 0;
|
---|
| 165 | double nrm = 0;
|
---|
| 166 | int[] pivots = new int[0];
|
---|
| 167 |
|
---|
| 168 | a = (double[,])a.Clone();
|
---|
| 169 |
|
---|
| 170 | nrm = 0;
|
---|
| 171 | for(j=1; j<=n; j++)
|
---|
| 172 | {
|
---|
| 173 | v = 0;
|
---|
| 174 | for(i=1; i<=n; i++)
|
---|
| 175 | {
|
---|
| 176 | im = i;
|
---|
| 177 | jm = j;
|
---|
| 178 | if( isupper & j<i )
|
---|
| 179 | {
|
---|
| 180 | im = j;
|
---|
| 181 | jm = i;
|
---|
| 182 | }
|
---|
| 183 | if( !isupper & j>i )
|
---|
| 184 | {
|
---|
| 185 | im = j;
|
---|
| 186 | jm = i;
|
---|
| 187 | }
|
---|
| 188 | v = v+Math.Abs(a[im,jm]);
|
---|
| 189 | }
|
---|
| 190 | nrm = Math.Max(nrm, v);
|
---|
| 191 | }
|
---|
| 192 | ldlt.ldltdecomposition(ref a, n, isupper, ref pivots);
|
---|
| 193 | internalldltrcond(ref a, ref pivots, n, isupper, true, nrm, ref v);
|
---|
| 194 | result = v;
|
---|
| 195 | return result;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 |
|
---|
| 199 | public static double rcondldlt(ref double[,] l,
|
---|
| 200 | ref int[] pivots,
|
---|
| 201 | int n,
|
---|
| 202 | bool isupper)
|
---|
| 203 | {
|
---|
| 204 | double result = 0;
|
---|
| 205 | double v = 0;
|
---|
| 206 |
|
---|
| 207 | internalldltrcond(ref l, ref pivots, n, isupper, false, 0, ref v);
|
---|
| 208 | result = v;
|
---|
| 209 | return result;
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 |
|
---|
| 213 | public static void internalldltrcond(ref double[,] l,
|
---|
| 214 | ref int[] pivots,
|
---|
| 215 | int n,
|
---|
| 216 | bool isupper,
|
---|
| 217 | bool isnormprovided,
|
---|
| 218 | double anorm,
|
---|
| 219 | ref double rcond)
|
---|
| 220 | {
|
---|
| 221 | int i = 0;
|
---|
| 222 | int ix = 0;
|
---|
| 223 | int kase = 0;
|
---|
| 224 | int k = 0;
|
---|
| 225 | int km1 = 0;
|
---|
| 226 | int km2 = 0;
|
---|
| 227 | int kp1 = 0;
|
---|
| 228 | int kp2 = 0;
|
---|
| 229 | double ainvnm = 0;
|
---|
| 230 | double[] work0 = new double[0];
|
---|
| 231 | double[] work1 = new double[0];
|
---|
| 232 | double[] work2 = new double[0];
|
---|
| 233 | int[] iwork = new int[0];
|
---|
| 234 | double v = 0;
|
---|
| 235 | int i_ = 0;
|
---|
| 236 |
|
---|
| 237 | System.Diagnostics.Debug.Assert(n>=0);
|
---|
| 238 |
|
---|
| 239 | //
|
---|
| 240 | // Check that the diagonal matrix D is nonsingular.
|
---|
| 241 | //
|
---|
| 242 | rcond = 0;
|
---|
| 243 | if( isupper )
|
---|
| 244 | {
|
---|
| 245 | for(i=n; i>=1; i--)
|
---|
| 246 | {
|
---|
| 247 | if( pivots[i]>0 & (double)(l[i,i])==(double)(0) )
|
---|
| 248 | {
|
---|
| 249 | return;
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | else
|
---|
| 254 | {
|
---|
| 255 | for(i=1; i<=n; i++)
|
---|
| 256 | {
|
---|
| 257 | if( pivots[i]>0 & (double)(l[i,i])==(double)(0) )
|
---|
| 258 | {
|
---|
| 259 | return;
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | //
|
---|
| 265 | // Estimate the norm of A.
|
---|
| 266 | //
|
---|
| 267 | if( !isnormprovided )
|
---|
| 268 | {
|
---|
| 269 | kase = 0;
|
---|
| 270 | anorm = 0;
|
---|
| 271 | while( true )
|
---|
| 272 | {
|
---|
| 273 | estnorm.iterativeestimate1norm(n, ref work1, ref work0, ref iwork, ref anorm, ref kase);
|
---|
| 274 | if( kase==0 )
|
---|
| 275 | {
|
---|
| 276 | break;
|
---|
| 277 | }
|
---|
| 278 | if( isupper )
|
---|
| 279 | {
|
---|
| 280 |
|
---|
| 281 | //
|
---|
| 282 | // Multiply by U'
|
---|
| 283 | //
|
---|
| 284 | k = n;
|
---|
| 285 | while( k>=1 )
|
---|
| 286 | {
|
---|
| 287 | if( pivots[k]>0 )
|
---|
| 288 | {
|
---|
| 289 |
|
---|
| 290 | //
|
---|
| 291 | // P(k)
|
---|
| 292 | //
|
---|
| 293 | v = work0[k];
|
---|
| 294 | work0[k] = work0[pivots[k]];
|
---|
| 295 | work0[pivots[k]] = v;
|
---|
| 296 |
|
---|
| 297 | //
|
---|
| 298 | // U(k)
|
---|
| 299 | //
|
---|
| 300 | km1 = k-1;
|
---|
| 301 | v = 0.0;
|
---|
| 302 | for(i_=1; i_<=km1;i_++)
|
---|
| 303 | {
|
---|
| 304 | v += work0[i_]*l[i_,k];
|
---|
| 305 | }
|
---|
| 306 | work0[k] = work0[k]+v;
|
---|
| 307 |
|
---|
| 308 | //
|
---|
| 309 | // Next k
|
---|
| 310 | //
|
---|
| 311 | k = k-1;
|
---|
| 312 | }
|
---|
| 313 | else
|
---|
| 314 | {
|
---|
| 315 |
|
---|
| 316 | //
|
---|
| 317 | // P(k)
|
---|
| 318 | //
|
---|
| 319 | v = work0[k-1];
|
---|
| 320 | work0[k-1] = work0[-pivots[k-1]];
|
---|
| 321 | work0[-pivots[k-1]] = v;
|
---|
| 322 |
|
---|
| 323 | //
|
---|
| 324 | // U(k)
|
---|
| 325 | //
|
---|
| 326 | km1 = k-1;
|
---|
| 327 | km2 = k-2;
|
---|
| 328 | v = 0.0;
|
---|
| 329 | for(i_=1; i_<=km2;i_++)
|
---|
| 330 | {
|
---|
| 331 | v += work0[i_]*l[i_,km1];
|
---|
| 332 | }
|
---|
| 333 | work0[km1] = work0[km1]+v;
|
---|
| 334 | v = 0.0;
|
---|
| 335 | for(i_=1; i_<=km2;i_++)
|
---|
| 336 | {
|
---|
| 337 | v += work0[i_]*l[i_,k];
|
---|
| 338 | }
|
---|
| 339 | work0[k] = work0[k]+v;
|
---|
| 340 |
|
---|
| 341 | //
|
---|
| 342 | // Next k
|
---|
| 343 | //
|
---|
| 344 | k = k-2;
|
---|
| 345 | }
|
---|
| 346 | }
|
---|
| 347 |
|
---|
| 348 | //
|
---|
| 349 | // Multiply by D
|
---|
| 350 | //
|
---|
| 351 | k = n;
|
---|
| 352 | while( k>=1 )
|
---|
| 353 | {
|
---|
| 354 | if( pivots[k]>0 )
|
---|
| 355 | {
|
---|
| 356 | work0[k] = work0[k]*l[k,k];
|
---|
| 357 | k = k-1;
|
---|
| 358 | }
|
---|
| 359 | else
|
---|
| 360 | {
|
---|
| 361 | v = work0[k-1];
|
---|
| 362 | work0[k-1] = l[k-1,k-1]*work0[k-1]+l[k-1,k]*work0[k];
|
---|
| 363 | work0[k] = l[k-1,k]*v+l[k,k]*work0[k];
|
---|
| 364 | k = k-2;
|
---|
| 365 | }
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | //
|
---|
| 369 | // Multiply by U
|
---|
| 370 | //
|
---|
| 371 | k = 1;
|
---|
| 372 | while( k<=n )
|
---|
| 373 | {
|
---|
| 374 | if( pivots[k]>0 )
|
---|
| 375 | {
|
---|
| 376 |
|
---|
| 377 | //
|
---|
| 378 | // U(k)
|
---|
| 379 | //
|
---|
| 380 | km1 = k-1;
|
---|
| 381 | v = work0[k];
|
---|
| 382 | for(i_=1; i_<=km1;i_++)
|
---|
| 383 | {
|
---|
| 384 | work0[i_] = work0[i_] + v*l[i_,k];
|
---|
| 385 | }
|
---|
| 386 |
|
---|
| 387 | //
|
---|
| 388 | // P(k)
|
---|
| 389 | //
|
---|
| 390 | v = work0[k];
|
---|
| 391 | work0[k] = work0[pivots[k]];
|
---|
| 392 | work0[pivots[k]] = v;
|
---|
| 393 |
|
---|
| 394 | //
|
---|
| 395 | // Next k
|
---|
| 396 | //
|
---|
| 397 | k = k+1;
|
---|
| 398 | }
|
---|
| 399 | else
|
---|
| 400 | {
|
---|
| 401 |
|
---|
| 402 | //
|
---|
| 403 | // U(k)
|
---|
| 404 | //
|
---|
| 405 | km1 = k-1;
|
---|
| 406 | kp1 = k+1;
|
---|
| 407 | v = work0[k];
|
---|
| 408 | for(i_=1; i_<=km1;i_++)
|
---|
| 409 | {
|
---|
| 410 | work0[i_] = work0[i_] + v*l[i_,k];
|
---|
| 411 | }
|
---|
| 412 | v = work0[kp1];
|
---|
| 413 | for(i_=1; i_<=km1;i_++)
|
---|
| 414 | {
|
---|
| 415 | work0[i_] = work0[i_] + v*l[i_,kp1];
|
---|
| 416 | }
|
---|
| 417 |
|
---|
| 418 | //
|
---|
| 419 | // P(k)
|
---|
| 420 | //
|
---|
| 421 | v = work0[k];
|
---|
| 422 | work0[k] = work0[-pivots[k]];
|
---|
| 423 | work0[-pivots[k]] = v;
|
---|
| 424 |
|
---|
| 425 | //
|
---|
| 426 | // Next k
|
---|
| 427 | //
|
---|
| 428 | k = k+2;
|
---|
| 429 | }
|
---|
| 430 | }
|
---|
| 431 | }
|
---|
| 432 | else
|
---|
| 433 | {
|
---|
| 434 |
|
---|
| 435 | //
|
---|
| 436 | // Multiply by L'
|
---|
| 437 | //
|
---|
| 438 | k = 1;
|
---|
| 439 | while( k<=n )
|
---|
| 440 | {
|
---|
| 441 | if( pivots[k]>0 )
|
---|
| 442 | {
|
---|
| 443 |
|
---|
| 444 | //
|
---|
| 445 | // P(k)
|
---|
| 446 | //
|
---|
| 447 | v = work0[k];
|
---|
| 448 | work0[k] = work0[pivots[k]];
|
---|
| 449 | work0[pivots[k]] = v;
|
---|
| 450 |
|
---|
| 451 | //
|
---|
| 452 | // L(k)
|
---|
| 453 | //
|
---|
| 454 | kp1 = k+1;
|
---|
| 455 | v = 0.0;
|
---|
| 456 | for(i_=kp1; i_<=n;i_++)
|
---|
| 457 | {
|
---|
| 458 | v += work0[i_]*l[i_,k];
|
---|
| 459 | }
|
---|
| 460 | work0[k] = work0[k]+v;
|
---|
| 461 |
|
---|
| 462 | //
|
---|
| 463 | // Next k
|
---|
| 464 | //
|
---|
| 465 | k = k+1;
|
---|
| 466 | }
|
---|
| 467 | else
|
---|
| 468 | {
|
---|
| 469 |
|
---|
| 470 | //
|
---|
| 471 | // P(k)
|
---|
| 472 | //
|
---|
| 473 | v = work0[k+1];
|
---|
| 474 | work0[k+1] = work0[-pivots[k+1]];
|
---|
| 475 | work0[-pivots[k+1]] = v;
|
---|
| 476 |
|
---|
| 477 | //
|
---|
| 478 | // L(k)
|
---|
| 479 | //
|
---|
| 480 | kp1 = k+1;
|
---|
| 481 | kp2 = k+2;
|
---|
| 482 | v = 0.0;
|
---|
| 483 | for(i_=kp2; i_<=n;i_++)
|
---|
| 484 | {
|
---|
| 485 | v += work0[i_]*l[i_,k];
|
---|
| 486 | }
|
---|
| 487 | work0[k] = work0[k]+v;
|
---|
| 488 | v = 0.0;
|
---|
| 489 | for(i_=kp2; i_<=n;i_++)
|
---|
| 490 | {
|
---|
| 491 | v += work0[i_]*l[i_,kp1];
|
---|
| 492 | }
|
---|
| 493 | work0[kp1] = work0[kp1]+v;
|
---|
| 494 |
|
---|
| 495 | //
|
---|
| 496 | // Next k
|
---|
| 497 | //
|
---|
| 498 | k = k+2;
|
---|
| 499 | }
|
---|
| 500 | }
|
---|
| 501 |
|
---|
| 502 | //
|
---|
| 503 | // Multiply by D
|
---|
| 504 | //
|
---|
| 505 | k = n;
|
---|
| 506 | while( k>=1 )
|
---|
| 507 | {
|
---|
| 508 | if( pivots[k]>0 )
|
---|
| 509 | {
|
---|
| 510 | work0[k] = work0[k]*l[k,k];
|
---|
| 511 | k = k-1;
|
---|
| 512 | }
|
---|
| 513 | else
|
---|
| 514 | {
|
---|
| 515 | v = work0[k-1];
|
---|
| 516 | work0[k-1] = l[k-1,k-1]*work0[k-1]+l[k,k-1]*work0[k];
|
---|
| 517 | work0[k] = l[k,k-1]*v+l[k,k]*work0[k];
|
---|
| 518 | k = k-2;
|
---|
| 519 | }
|
---|
| 520 | }
|
---|
| 521 |
|
---|
| 522 | //
|
---|
| 523 | // Multiply by L
|
---|
| 524 | //
|
---|
| 525 | k = n;
|
---|
| 526 | while( k>=1 )
|
---|
| 527 | {
|
---|
| 528 | if( pivots[k]>0 )
|
---|
| 529 | {
|
---|
| 530 |
|
---|
| 531 | //
|
---|
| 532 | // L(k)
|
---|
| 533 | //
|
---|
| 534 | kp1 = k+1;
|
---|
| 535 | v = work0[k];
|
---|
| 536 | for(i_=kp1; i_<=n;i_++)
|
---|
| 537 | {
|
---|
| 538 | work0[i_] = work0[i_] + v*l[i_,k];
|
---|
| 539 | }
|
---|
| 540 |
|
---|
| 541 | //
|
---|
| 542 | // P(k)
|
---|
| 543 | //
|
---|
| 544 | v = work0[k];
|
---|
| 545 | work0[k] = work0[pivots[k]];
|
---|
| 546 | work0[pivots[k]] = v;
|
---|
| 547 |
|
---|
| 548 | //
|
---|
| 549 | // Next k
|
---|
| 550 | //
|
---|
| 551 | k = k-1;
|
---|
| 552 | }
|
---|
| 553 | else
|
---|
| 554 | {
|
---|
| 555 |
|
---|
| 556 | //
|
---|
| 557 | // L(k)
|
---|
| 558 | //
|
---|
| 559 | kp1 = k+1;
|
---|
| 560 | km1 = k-1;
|
---|
| 561 | v = work0[k];
|
---|
| 562 | for(i_=kp1; i_<=n;i_++)
|
---|
| 563 | {
|
---|
| 564 | work0[i_] = work0[i_] + v*l[i_,k];
|
---|
| 565 | }
|
---|
| 566 | v = work0[km1];
|
---|
| 567 | for(i_=kp1; i_<=n;i_++)
|
---|
| 568 | {
|
---|
| 569 | work0[i_] = work0[i_] + v*l[i_,km1];
|
---|
| 570 | }
|
---|
| 571 |
|
---|
| 572 | //
|
---|
| 573 | // P(k)
|
---|
| 574 | //
|
---|
| 575 | v = work0[k];
|
---|
| 576 | work0[k] = work0[-pivots[k]];
|
---|
| 577 | work0[-pivots[k]] = v;
|
---|
| 578 |
|
---|
| 579 | //
|
---|
| 580 | // Next k
|
---|
| 581 | //
|
---|
| 582 | k = k-2;
|
---|
| 583 | }
|
---|
| 584 | }
|
---|
| 585 | }
|
---|
| 586 | }
|
---|
| 587 | }
|
---|
| 588 |
|
---|
| 589 | //
|
---|
| 590 | // Quick return if possible
|
---|
| 591 | //
|
---|
| 592 | rcond = 0;
|
---|
| 593 | if( n==0 )
|
---|
| 594 | {
|
---|
| 595 | rcond = 1;
|
---|
| 596 | return;
|
---|
| 597 | }
|
---|
| 598 | if( (double)(anorm)==(double)(0) )
|
---|
| 599 | {
|
---|
| 600 | return;
|
---|
| 601 | }
|
---|
| 602 |
|
---|
| 603 | //
|
---|
| 604 | // Estimate the 1-norm of inv(A).
|
---|
| 605 | //
|
---|
| 606 | kase = 0;
|
---|
| 607 | while( true )
|
---|
| 608 | {
|
---|
| 609 | estnorm.iterativeestimate1norm(n, ref work1, ref work0, ref iwork, ref ainvnm, ref kase);
|
---|
| 610 | if( kase==0 )
|
---|
| 611 | {
|
---|
| 612 | break;
|
---|
| 613 | }
|
---|
| 614 | ssolve.solvesystemldlt(ref l, ref pivots, work0, n, isupper, ref work2);
|
---|
| 615 | for(i_=1; i_<=n;i_++)
|
---|
| 616 | {
|
---|
| 617 | work0[i_] = work2[i_];
|
---|
| 618 | }
|
---|
| 619 | }
|
---|
| 620 |
|
---|
| 621 | //
|
---|
| 622 | // Compute the estimate of the reciprocal condition number.
|
---|
| 623 | //
|
---|
| 624 | if( (double)(ainvnm)!=(double)(0) )
|
---|
| 625 | {
|
---|
| 626 | v = 1/ainvnm;
|
---|
| 627 | rcond = v/anorm;
|
---|
| 628 | }
|
---|
| 629 | }
|
---|
| 630 | }
|
---|
| 631 | }
|
---|