[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class spline2d
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | 2-dimensional spline inteprolant
|
---|
| 29 | *************************************************************************/
|
---|
| 30 | public struct spline2dinterpolant
|
---|
| 31 | {
|
---|
| 32 | public int k;
|
---|
| 33 | public double[] c;
|
---|
| 34 | };
|
---|
| 35 |
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 |
|
---|
| 39 | public const int spline2dvnum = 12;
|
---|
| 40 |
|
---|
| 41 |
|
---|
| 42 | /*************************************************************************
|
---|
| 43 | This subroutine builds bilinear spline coefficients table.
|
---|
| 44 |
|
---|
| 45 | Input parameters:
|
---|
| 46 | X - spline abscissas, array[0..N-1]
|
---|
| 47 | Y - spline ordinates, array[0..M-1]
|
---|
| 48 | F - function values, array[0..M-1,0..N-1]
|
---|
| 49 | M,N - grid size, M>=2, N>=2
|
---|
| 50 |
|
---|
| 51 | Output parameters:
|
---|
| 52 | C - spline interpolant
|
---|
| 53 |
|
---|
| 54 | -- ALGLIB PROJECT --
|
---|
| 55 | Copyright 05.07.2007 by Bochkanov Sergey
|
---|
| 56 | *************************************************************************/
|
---|
| 57 | public static void spline2dbuildbilinear(double[] x,
|
---|
| 58 | double[] y,
|
---|
| 59 | double[,] f,
|
---|
| 60 | int m,
|
---|
| 61 | int n,
|
---|
| 62 | ref spline2dinterpolant c)
|
---|
| 63 | {
|
---|
| 64 | int i = 0;
|
---|
| 65 | int j = 0;
|
---|
| 66 | int k = 0;
|
---|
| 67 | int tblsize = 0;
|
---|
| 68 | int shift = 0;
|
---|
| 69 | double t = 0;
|
---|
| 70 | double[,] dx = new double[0,0];
|
---|
| 71 | double[,] dy = new double[0,0];
|
---|
| 72 | double[,] dxy = new double[0,0];
|
---|
| 73 |
|
---|
| 74 | x = (double[])x.Clone();
|
---|
| 75 | y = (double[])y.Clone();
|
---|
| 76 | f = (double[,])f.Clone();
|
---|
| 77 |
|
---|
| 78 | System.Diagnostics.Debug.Assert(n>=2 & m>=2, "Spline2DBuildBilinear: N<2 or M<2!");
|
---|
| 79 |
|
---|
| 80 | //
|
---|
| 81 | // Sort points
|
---|
| 82 | //
|
---|
| 83 | for(j=0; j<=n-1; j++)
|
---|
| 84 | {
|
---|
| 85 | k = j;
|
---|
| 86 | for(i=j+1; i<=n-1; i++)
|
---|
| 87 | {
|
---|
| 88 | if( (double)(x[i])<(double)(x[k]) )
|
---|
| 89 | {
|
---|
| 90 | k = i;
|
---|
| 91 | }
|
---|
| 92 | }
|
---|
| 93 | if( k!=j )
|
---|
| 94 | {
|
---|
| 95 | for(i=0; i<=m-1; i++)
|
---|
| 96 | {
|
---|
| 97 | t = f[i,j];
|
---|
| 98 | f[i,j] = f[i,k];
|
---|
| 99 | f[i,k] = t;
|
---|
| 100 | }
|
---|
| 101 | t = x[j];
|
---|
| 102 | x[j] = x[k];
|
---|
| 103 | x[k] = t;
|
---|
| 104 | }
|
---|
| 105 | }
|
---|
| 106 | for(i=0; i<=m-1; i++)
|
---|
| 107 | {
|
---|
| 108 | k = i;
|
---|
| 109 | for(j=i+1; j<=m-1; j++)
|
---|
| 110 | {
|
---|
| 111 | if( (double)(y[j])<(double)(y[k]) )
|
---|
| 112 | {
|
---|
| 113 | k = j;
|
---|
| 114 | }
|
---|
| 115 | }
|
---|
| 116 | if( k!=i )
|
---|
| 117 | {
|
---|
| 118 | for(j=0; j<=n-1; j++)
|
---|
| 119 | {
|
---|
| 120 | t = f[i,j];
|
---|
| 121 | f[i,j] = f[k,j];
|
---|
| 122 | f[k,j] = t;
|
---|
| 123 | }
|
---|
| 124 | t = y[i];
|
---|
| 125 | y[i] = y[k];
|
---|
| 126 | y[k] = t;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | //
|
---|
| 131 | // Fill C:
|
---|
| 132 | // C[0] - length(C)
|
---|
| 133 | // C[1] - type(C):
|
---|
| 134 | // -1 = bilinear interpolant
|
---|
| 135 | // -3 = general cubic spline
|
---|
| 136 | // (see BuildBicubicSpline)
|
---|
| 137 | // C[2]:
|
---|
| 138 | // N (x count)
|
---|
| 139 | // C[3]:
|
---|
| 140 | // M (y count)
|
---|
| 141 | // C[4]...C[4+N-1]:
|
---|
| 142 | // x[i], i = 0...N-1
|
---|
| 143 | // C[4+N]...C[4+N+M-1]:
|
---|
| 144 | // y[i], i = 0...M-1
|
---|
| 145 | // C[4+N+M]...C[4+N+M+(N*M-1)]:
|
---|
| 146 | // f(i,j) table. f(0,0), f(0, 1), f(0,2) and so on...
|
---|
| 147 | //
|
---|
| 148 | c.k = 1;
|
---|
| 149 | tblsize = 4+n+m+n*m;
|
---|
| 150 | c.c = new double[tblsize-1+1];
|
---|
| 151 | c.c[0] = tblsize;
|
---|
| 152 | c.c[1] = -1;
|
---|
| 153 | c.c[2] = n;
|
---|
| 154 | c.c[3] = m;
|
---|
| 155 | for(i=0; i<=n-1; i++)
|
---|
| 156 | {
|
---|
| 157 | c.c[4+i] = x[i];
|
---|
| 158 | }
|
---|
| 159 | for(i=0; i<=m-1; i++)
|
---|
| 160 | {
|
---|
| 161 | c.c[4+n+i] = y[i];
|
---|
| 162 | }
|
---|
| 163 | for(i=0; i<=m-1; i++)
|
---|
| 164 | {
|
---|
| 165 | for(j=0; j<=n-1; j++)
|
---|
| 166 | {
|
---|
| 167 | shift = i*n+j;
|
---|
| 168 | c.c[4+n+m+shift] = f[i,j];
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 |
|
---|
| 174 | /*************************************************************************
|
---|
| 175 | This subroutine builds bicubic spline coefficients table.
|
---|
| 176 |
|
---|
| 177 | Input parameters:
|
---|
| 178 | X - spline abscissas, array[0..N-1]
|
---|
| 179 | Y - spline ordinates, array[0..M-1]
|
---|
| 180 | F - function values, array[0..M-1,0..N-1]
|
---|
| 181 | M,N - grid size, M>=2, N>=2
|
---|
| 182 |
|
---|
| 183 | Output parameters:
|
---|
| 184 | C - spline interpolant
|
---|
| 185 |
|
---|
| 186 | -- ALGLIB PROJECT --
|
---|
| 187 | Copyright 05.07.2007 by Bochkanov Sergey
|
---|
| 188 | *************************************************************************/
|
---|
| 189 | public static void spline2dbuildbicubic(double[] x,
|
---|
| 190 | double[] y,
|
---|
| 191 | double[,] f,
|
---|
| 192 | int m,
|
---|
| 193 | int n,
|
---|
| 194 | ref spline2dinterpolant c)
|
---|
| 195 | {
|
---|
| 196 | int i = 0;
|
---|
| 197 | int j = 0;
|
---|
| 198 | int k = 0;
|
---|
| 199 | int tblsize = 0;
|
---|
| 200 | int shift = 0;
|
---|
| 201 | double t = 0;
|
---|
| 202 | double[,] dx = new double[0,0];
|
---|
| 203 | double[,] dy = new double[0,0];
|
---|
| 204 | double[,] dxy = new double[0,0];
|
---|
| 205 |
|
---|
| 206 | x = (double[])x.Clone();
|
---|
| 207 | y = (double[])y.Clone();
|
---|
| 208 | f = (double[,])f.Clone();
|
---|
| 209 |
|
---|
| 210 | System.Diagnostics.Debug.Assert(n>=2 & m>=2, "BuildBicubicSpline: N<2 or M<2!");
|
---|
| 211 |
|
---|
| 212 | //
|
---|
| 213 | // Sort points
|
---|
| 214 | //
|
---|
| 215 | for(j=0; j<=n-1; j++)
|
---|
| 216 | {
|
---|
| 217 | k = j;
|
---|
| 218 | for(i=j+1; i<=n-1; i++)
|
---|
| 219 | {
|
---|
| 220 | if( (double)(x[i])<(double)(x[k]) )
|
---|
| 221 | {
|
---|
| 222 | k = i;
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 | if( k!=j )
|
---|
| 226 | {
|
---|
| 227 | for(i=0; i<=m-1; i++)
|
---|
| 228 | {
|
---|
| 229 | t = f[i,j];
|
---|
| 230 | f[i,j] = f[i,k];
|
---|
| 231 | f[i,k] = t;
|
---|
| 232 | }
|
---|
| 233 | t = x[j];
|
---|
| 234 | x[j] = x[k];
|
---|
| 235 | x[k] = t;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | for(i=0; i<=m-1; i++)
|
---|
| 239 | {
|
---|
| 240 | k = i;
|
---|
| 241 | for(j=i+1; j<=m-1; j++)
|
---|
| 242 | {
|
---|
| 243 | if( (double)(y[j])<(double)(y[k]) )
|
---|
| 244 | {
|
---|
| 245 | k = j;
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 | if( k!=i )
|
---|
| 249 | {
|
---|
| 250 | for(j=0; j<=n-1; j++)
|
---|
| 251 | {
|
---|
| 252 | t = f[i,j];
|
---|
| 253 | f[i,j] = f[k,j];
|
---|
| 254 | f[k,j] = t;
|
---|
| 255 | }
|
---|
| 256 | t = y[i];
|
---|
| 257 | y[i] = y[k];
|
---|
| 258 | y[k] = t;
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | //
|
---|
| 263 | // Fill C:
|
---|
| 264 | // C[0] - length(C)
|
---|
| 265 | // C[1] - type(C):
|
---|
| 266 | // -1 = bilinear interpolant
|
---|
| 267 | // (see BuildBilinearInterpolant)
|
---|
| 268 | // -3 = general cubic spline
|
---|
| 269 | // C[2]:
|
---|
| 270 | // N (x count)
|
---|
| 271 | // C[3]:
|
---|
| 272 | // M (y count)
|
---|
| 273 | // C[4]...C[4+N-1]:
|
---|
| 274 | // x[i], i = 0...N-1
|
---|
| 275 | // C[4+N]...C[4+N+M-1]:
|
---|
| 276 | // y[i], i = 0...M-1
|
---|
| 277 | // C[4+N+M]...C[4+N+M+(N*M-1)]:
|
---|
| 278 | // f(i,j) table. f(0,0), f(0, 1), f(0,2) and so on...
|
---|
| 279 | // C[4+N+M+N*M]...C[4+N+M+(2*N*M-1)]:
|
---|
| 280 | // df(i,j)/dx table.
|
---|
| 281 | // C[4+N+M+2*N*M]...C[4+N+M+(3*N*M-1)]:
|
---|
| 282 | // df(i,j)/dy table.
|
---|
| 283 | // C[4+N+M+3*N*M]...C[4+N+M+(4*N*M-1)]:
|
---|
| 284 | // d2f(i,j)/dxdy table.
|
---|
| 285 | //
|
---|
| 286 | c.k = 3;
|
---|
| 287 | tblsize = 4+n+m+4*n*m;
|
---|
| 288 | c.c = new double[tblsize-1+1];
|
---|
| 289 | c.c[0] = tblsize;
|
---|
| 290 | c.c[1] = -3;
|
---|
| 291 | c.c[2] = n;
|
---|
| 292 | c.c[3] = m;
|
---|
| 293 | for(i=0; i<=n-1; i++)
|
---|
| 294 | {
|
---|
| 295 | c.c[4+i] = x[i];
|
---|
| 296 | }
|
---|
| 297 | for(i=0; i<=m-1; i++)
|
---|
| 298 | {
|
---|
| 299 | c.c[4+n+i] = y[i];
|
---|
| 300 | }
|
---|
| 301 | bicubiccalcderivatives(ref f, ref x, ref y, m, n, ref dx, ref dy, ref dxy);
|
---|
| 302 | for(i=0; i<=m-1; i++)
|
---|
| 303 | {
|
---|
| 304 | for(j=0; j<=n-1; j++)
|
---|
| 305 | {
|
---|
| 306 | shift = i*n+j;
|
---|
| 307 | c.c[4+n+m+shift] = f[i,j];
|
---|
| 308 | c.c[4+n+m+n*m+shift] = dx[i,j];
|
---|
| 309 | c.c[4+n+m+2*n*m+shift] = dy[i,j];
|
---|
| 310 | c.c[4+n+m+3*n*m+shift] = dxy[i,j];
|
---|
| 311 | }
|
---|
| 312 | }
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 |
|
---|
| 316 | /*************************************************************************
|
---|
| 317 | This subroutine calculates the value of the bilinear or bicubic spline at
|
---|
| 318 | the given point X.
|
---|
| 319 |
|
---|
| 320 | Input parameters:
|
---|
| 321 | C - coefficients table.
|
---|
| 322 | Built by BuildBilinearSpline or BuildBicubicSpline.
|
---|
| 323 | X, Y- point
|
---|
| 324 |
|
---|
| 325 | Result:
|
---|
| 326 | S(x,y)
|
---|
| 327 |
|
---|
| 328 | -- ALGLIB PROJECT --
|
---|
| 329 | Copyright 05.07.2007 by Bochkanov Sergey
|
---|
| 330 | *************************************************************************/
|
---|
| 331 | public static double spline2dcalc(ref spline2dinterpolant c,
|
---|
| 332 | double x,
|
---|
| 333 | double y)
|
---|
| 334 | {
|
---|
| 335 | double result = 0;
|
---|
| 336 | double v = 0;
|
---|
| 337 | double vx = 0;
|
---|
| 338 | double vy = 0;
|
---|
| 339 | double vxy = 0;
|
---|
| 340 |
|
---|
| 341 | spline2ddiff(ref c, x, y, ref v, ref vx, ref vy, ref vxy);
|
---|
| 342 | result = v;
|
---|
| 343 | return result;
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 |
|
---|
| 347 | /*************************************************************************
|
---|
| 348 | This subroutine calculates the value of the bilinear or bicubic spline at
|
---|
| 349 | the given point X and its derivatives.
|
---|
| 350 |
|
---|
| 351 | Input parameters:
|
---|
| 352 | C - spline interpolant.
|
---|
| 353 | X, Y- point
|
---|
| 354 |
|
---|
| 355 | Output parameters:
|
---|
| 356 | F - S(x,y)
|
---|
| 357 | FX - dS(x,y)/dX
|
---|
| 358 | FY - dS(x,y)/dY
|
---|
| 359 | FXY - d2S(x,y)/dXdY
|
---|
| 360 |
|
---|
| 361 | -- ALGLIB PROJECT --
|
---|
| 362 | Copyright 05.07.2007 by Bochkanov Sergey
|
---|
| 363 | *************************************************************************/
|
---|
| 364 | public static void spline2ddiff(ref spline2dinterpolant c,
|
---|
| 365 | double x,
|
---|
| 366 | double y,
|
---|
| 367 | ref double f,
|
---|
| 368 | ref double fx,
|
---|
| 369 | ref double fy,
|
---|
| 370 | ref double fxy)
|
---|
| 371 | {
|
---|
| 372 | int n = 0;
|
---|
| 373 | int m = 0;
|
---|
| 374 | double t = 0;
|
---|
| 375 | double dt = 0;
|
---|
| 376 | double u = 0;
|
---|
| 377 | double du = 0;
|
---|
| 378 | int i = 0;
|
---|
| 379 | int j = 0;
|
---|
| 380 | int ix = 0;
|
---|
| 381 | int iy = 0;
|
---|
| 382 | int l = 0;
|
---|
| 383 | int r = 0;
|
---|
| 384 | int h = 0;
|
---|
| 385 | int shift1 = 0;
|
---|
| 386 | int s1 = 0;
|
---|
| 387 | int s2 = 0;
|
---|
| 388 | int s3 = 0;
|
---|
| 389 | int s4 = 0;
|
---|
| 390 | int sf = 0;
|
---|
| 391 | int sfx = 0;
|
---|
| 392 | int sfy = 0;
|
---|
| 393 | int sfxy = 0;
|
---|
| 394 | double y1 = 0;
|
---|
| 395 | double y2 = 0;
|
---|
| 396 | double y3 = 0;
|
---|
| 397 | double y4 = 0;
|
---|
| 398 | double v = 0;
|
---|
| 399 | double t0 = 0;
|
---|
| 400 | double t1 = 0;
|
---|
| 401 | double t2 = 0;
|
---|
| 402 | double t3 = 0;
|
---|
| 403 | double u0 = 0;
|
---|
| 404 | double u1 = 0;
|
---|
| 405 | double u2 = 0;
|
---|
| 406 | double u3 = 0;
|
---|
| 407 |
|
---|
| 408 | System.Diagnostics.Debug.Assert((int)Math.Round(c.c[1])==-1 | (int)Math.Round(c.c[1])==-3, "Spline2DDiff: incorrect C!");
|
---|
| 409 | n = (int)Math.Round(c.c[2]);
|
---|
| 410 | m = (int)Math.Round(c.c[3]);
|
---|
| 411 |
|
---|
| 412 | //
|
---|
| 413 | // Binary search in the [ x[0], ..., x[n-2] ] (x[n-1] is not included)
|
---|
| 414 | //
|
---|
| 415 | l = 4;
|
---|
| 416 | r = 4+n-2+1;
|
---|
| 417 | while( l!=r-1 )
|
---|
| 418 | {
|
---|
| 419 | h = (l+r)/2;
|
---|
| 420 | if( (double)(c.c[h])>=(double)(x) )
|
---|
| 421 | {
|
---|
| 422 | r = h;
|
---|
| 423 | }
|
---|
| 424 | else
|
---|
| 425 | {
|
---|
| 426 | l = h;
|
---|
| 427 | }
|
---|
| 428 | }
|
---|
| 429 | t = (x-c.c[l])/(c.c[l+1]-c.c[l]);
|
---|
| 430 | dt = 1.0/(c.c[l+1]-c.c[l]);
|
---|
| 431 | ix = l-4;
|
---|
| 432 |
|
---|
| 433 | //
|
---|
| 434 | // Binary search in the [ y[0], ..., y[m-2] ] (y[m-1] is not included)
|
---|
| 435 | //
|
---|
| 436 | l = 4+n;
|
---|
| 437 | r = 4+n+(m-2)+1;
|
---|
| 438 | while( l!=r-1 )
|
---|
| 439 | {
|
---|
| 440 | h = (l+r)/2;
|
---|
| 441 | if( (double)(c.c[h])>=(double)(y) )
|
---|
| 442 | {
|
---|
| 443 | r = h;
|
---|
| 444 | }
|
---|
| 445 | else
|
---|
| 446 | {
|
---|
| 447 | l = h;
|
---|
| 448 | }
|
---|
| 449 | }
|
---|
| 450 | u = (y-c.c[l])/(c.c[l+1]-c.c[l]);
|
---|
| 451 | du = 1.0/(c.c[l+1]-c.c[l]);
|
---|
| 452 | iy = l-(4+n);
|
---|
| 453 |
|
---|
| 454 | //
|
---|
| 455 | // Prepare F, dF/dX, dF/dY, d2F/dXdY
|
---|
| 456 | //
|
---|
| 457 | f = 0;
|
---|
| 458 | fx = 0;
|
---|
| 459 | fy = 0;
|
---|
| 460 | fxy = 0;
|
---|
| 461 |
|
---|
| 462 | //
|
---|
| 463 | // Bilinear interpolation
|
---|
| 464 | //
|
---|
| 465 | if( (int)Math.Round(c.c[1])==-1 )
|
---|
| 466 | {
|
---|
| 467 | shift1 = 4+n+m;
|
---|
| 468 | y1 = c.c[shift1+n*iy+ix];
|
---|
| 469 | y2 = c.c[shift1+n*iy+(ix+1)];
|
---|
| 470 | y3 = c.c[shift1+n*(iy+1)+(ix+1)];
|
---|
| 471 | y4 = c.c[shift1+n*(iy+1)+ix];
|
---|
| 472 | f = (1-t)*(1-u)*y1+t*(1-u)*y2+t*u*y3+(1-t)*u*y4;
|
---|
| 473 | fx = (-((1-u)*y1)+(1-u)*y2+u*y3-u*y4)*dt;
|
---|
| 474 | fy = (-((1-t)*y1)-t*y2+t*y3+(1-t)*y4)*du;
|
---|
| 475 | fxy = (y1-y2+y3-y4)*du*dt;
|
---|
| 476 | return;
|
---|
| 477 | }
|
---|
| 478 |
|
---|
| 479 | //
|
---|
| 480 | // Bicubic interpolation
|
---|
| 481 | //
|
---|
| 482 | if( (int)Math.Round(c.c[1])==-3 )
|
---|
| 483 | {
|
---|
| 484 |
|
---|
| 485 | //
|
---|
| 486 | // Prepare info
|
---|
| 487 | //
|
---|
| 488 | t0 = 1;
|
---|
| 489 | t1 = t;
|
---|
| 490 | t2 = AP.Math.Sqr(t);
|
---|
| 491 | t3 = t*t2;
|
---|
| 492 | u0 = 1;
|
---|
| 493 | u1 = u;
|
---|
| 494 | u2 = AP.Math.Sqr(u);
|
---|
| 495 | u3 = u*u2;
|
---|
| 496 | sf = 4+n+m;
|
---|
| 497 | sfx = 4+n+m+n*m;
|
---|
| 498 | sfy = 4+n+m+2*n*m;
|
---|
| 499 | sfxy = 4+n+m+3*n*m;
|
---|
| 500 | s1 = n*iy+ix;
|
---|
| 501 | s2 = n*iy+(ix+1);
|
---|
| 502 | s3 = n*(iy+1)+(ix+1);
|
---|
| 503 | s4 = n*(iy+1)+ix;
|
---|
| 504 |
|
---|
| 505 | //
|
---|
| 506 | // Calculate
|
---|
| 507 | //
|
---|
| 508 | v = +(1*c.c[sf+s1]);
|
---|
| 509 | f = f+v*t0*u0;
|
---|
| 510 | v = +(1*c.c[sfy+s1]/du);
|
---|
| 511 | f = f+v*t0*u1;
|
---|
| 512 | fy = fy+1*v*t0*u0*du;
|
---|
| 513 | v = -(3*c.c[sf+s1])+3*c.c[sf+s4]-2*c.c[sfy+s1]/du-1*c.c[sfy+s4]/du;
|
---|
| 514 | f = f+v*t0*u2;
|
---|
| 515 | fy = fy+2*v*t0*u1*du;
|
---|
| 516 | v = +(2*c.c[sf+s1])-2*c.c[sf+s4]+1*c.c[sfy+s1]/du+1*c.c[sfy+s4]/du;
|
---|
| 517 | f = f+v*t0*u3;
|
---|
| 518 | fy = fy+3*v*t0*u2*du;
|
---|
| 519 | v = +(1*c.c[sfx+s1]/dt);
|
---|
| 520 | f = f+v*t1*u0;
|
---|
| 521 | fx = fx+1*v*t0*u0*dt;
|
---|
| 522 | v = +(1*c.c[sfxy+s1]/(dt*du));
|
---|
| 523 | f = f+v*t1*u1;
|
---|
| 524 | fx = fx+1*v*t0*u1*dt;
|
---|
| 525 | fy = fy+1*v*t1*u0*du;
|
---|
| 526 | fxy = fxy+1*v*t0*u0*dt*du;
|
---|
| 527 | v = -(3*c.c[sfx+s1]/dt)+3*c.c[sfx+s4]/dt-2*c.c[sfxy+s1]/(dt*du)-1*c.c[sfxy+s4]/(dt*du);
|
---|
| 528 | f = f+v*t1*u2;
|
---|
| 529 | fx = fx+1*v*t0*u2*dt;
|
---|
| 530 | fy = fy+2*v*t1*u1*du;
|
---|
| 531 | fxy = fxy+2*v*t0*u1*dt*du;
|
---|
| 532 | v = +(2*c.c[sfx+s1]/dt)-2*c.c[sfx+s4]/dt+1*c.c[sfxy+s1]/(dt*du)+1*c.c[sfxy+s4]/(dt*du);
|
---|
| 533 | f = f+v*t1*u3;
|
---|
| 534 | fx = fx+1*v*t0*u3*dt;
|
---|
| 535 | fy = fy+3*v*t1*u2*du;
|
---|
| 536 | fxy = fxy+3*v*t0*u2*dt*du;
|
---|
| 537 | v = -(3*c.c[sf+s1])+3*c.c[sf+s2]-2*c.c[sfx+s1]/dt-1*c.c[sfx+s2]/dt;
|
---|
| 538 | f = f+v*t2*u0;
|
---|
| 539 | fx = fx+2*v*t1*u0*dt;
|
---|
| 540 | v = -(3*c.c[sfy+s1]/du)+3*c.c[sfy+s2]/du-2*c.c[sfxy+s1]/(dt*du)-1*c.c[sfxy+s2]/(dt*du);
|
---|
| 541 | f = f+v*t2*u1;
|
---|
| 542 | fx = fx+2*v*t1*u1*dt;
|
---|
| 543 | fy = fy+1*v*t2*u0*du;
|
---|
| 544 | fxy = fxy+2*v*t1*u0*dt*du;
|
---|
| 545 | v = +(9*c.c[sf+s1])-9*c.c[sf+s2]+9*c.c[sf+s3]-9*c.c[sf+s4]+6*c.c[sfx+s1]/dt+3*c.c[sfx+s2]/dt-3*c.c[sfx+s3]/dt-6*c.c[sfx+s4]/dt+6*c.c[sfy+s1]/du-6*c.c[sfy+s2]/du-3*c.c[sfy+s3]/du+3*c.c[sfy+s4]/du+4*c.c[sfxy+s1]/(dt*du)+2*c.c[sfxy+s2]/(dt*du)+1*c.c[sfxy+s3]/(dt*du)+2*c.c[sfxy+s4]/(dt*du);
|
---|
| 546 | f = f+v*t2*u2;
|
---|
| 547 | fx = fx+2*v*t1*u2*dt;
|
---|
| 548 | fy = fy+2*v*t2*u1*du;
|
---|
| 549 | fxy = fxy+4*v*t1*u1*dt*du;
|
---|
| 550 | v = -(6*c.c[sf+s1])+6*c.c[sf+s2]-6*c.c[sf+s3]+6*c.c[sf+s4]-4*c.c[sfx+s1]/dt-2*c.c[sfx+s2]/dt+2*c.c[sfx+s3]/dt+4*c.c[sfx+s4]/dt-3*c.c[sfy+s1]/du+3*c.c[sfy+s2]/du+3*c.c[sfy+s3]/du-3*c.c[sfy+s4]/du-2*c.c[sfxy+s1]/(dt*du)-1*c.c[sfxy+s2]/(dt*du)-1*c.c[sfxy+s3]/(dt*du)-2*c.c[sfxy+s4]/(dt*du);
|
---|
| 551 | f = f+v*t2*u3;
|
---|
| 552 | fx = fx+2*v*t1*u3*dt;
|
---|
| 553 | fy = fy+3*v*t2*u2*du;
|
---|
| 554 | fxy = fxy+6*v*t1*u2*dt*du;
|
---|
| 555 | v = +(2*c.c[sf+s1])-2*c.c[sf+s2]+1*c.c[sfx+s1]/dt+1*c.c[sfx+s2]/dt;
|
---|
| 556 | f = f+v*t3*u0;
|
---|
| 557 | fx = fx+3*v*t2*u0*dt;
|
---|
| 558 | v = +(2*c.c[sfy+s1]/du)-2*c.c[sfy+s2]/du+1*c.c[sfxy+s1]/(dt*du)+1*c.c[sfxy+s2]/(dt*du);
|
---|
| 559 | f = f+v*t3*u1;
|
---|
| 560 | fx = fx+3*v*t2*u1*dt;
|
---|
| 561 | fy = fy+1*v*t3*u0*du;
|
---|
| 562 | fxy = fxy+3*v*t2*u0*dt*du;
|
---|
| 563 | v = -(6*c.c[sf+s1])+6*c.c[sf+s2]-6*c.c[sf+s3]+6*c.c[sf+s4]-3*c.c[sfx+s1]/dt-3*c.c[sfx+s2]/dt+3*c.c[sfx+s3]/dt+3*c.c[sfx+s4]/dt-4*c.c[sfy+s1]/du+4*c.c[sfy+s2]/du+2*c.c[sfy+s3]/du-2*c.c[sfy+s4]/du-2*c.c[sfxy+s1]/(dt*du)-2*c.c[sfxy+s2]/(dt*du)-1*c.c[sfxy+s3]/(dt*du)-1*c.c[sfxy+s4]/(dt*du);
|
---|
| 564 | f = f+v*t3*u2;
|
---|
| 565 | fx = fx+3*v*t2*u2*dt;
|
---|
| 566 | fy = fy+2*v*t3*u1*du;
|
---|
| 567 | fxy = fxy+6*v*t2*u1*dt*du;
|
---|
| 568 | v = +(4*c.c[sf+s1])-4*c.c[sf+s2]+4*c.c[sf+s3]-4*c.c[sf+s4]+2*c.c[sfx+s1]/dt+2*c.c[sfx+s2]/dt-2*c.c[sfx+s3]/dt-2*c.c[sfx+s4]/dt+2*c.c[sfy+s1]/du-2*c.c[sfy+s2]/du-2*c.c[sfy+s3]/du+2*c.c[sfy+s4]/du+1*c.c[sfxy+s1]/(dt*du)+1*c.c[sfxy+s2]/(dt*du)+1*c.c[sfxy+s3]/(dt*du)+1*c.c[sfxy+s4]/(dt*du);
|
---|
| 569 | f = f+v*t3*u3;
|
---|
| 570 | fx = fx+3*v*t2*u3*dt;
|
---|
| 571 | fy = fy+3*v*t3*u2*du;
|
---|
| 572 | fxy = fxy+9*v*t2*u2*dt*du;
|
---|
| 573 | return;
|
---|
| 574 | }
|
---|
| 575 | }
|
---|
| 576 |
|
---|
| 577 |
|
---|
| 578 | /*************************************************************************
|
---|
| 579 | This subroutine unpacks two-dimensional spline into the coefficients table
|
---|
| 580 |
|
---|
| 581 | Input parameters:
|
---|
| 582 | C - spline interpolant.
|
---|
| 583 |
|
---|
| 584 | Result:
|
---|
| 585 | M, N- grid size (x-axis and y-axis)
|
---|
| 586 | Tbl - coefficients table, unpacked format,
|
---|
| 587 | [0..(N-1)*(M-1)-1, 0..19].
|
---|
| 588 | For I = 0...M-2, J=0..N-2:
|
---|
| 589 | K = I*(N-1)+J
|
---|
| 590 | Tbl[K,0] = X[j]
|
---|
| 591 | Tbl[K,1] = X[j+1]
|
---|
| 592 | Tbl[K,2] = Y[i]
|
---|
| 593 | Tbl[K,3] = Y[i+1]
|
---|
| 594 | Tbl[K,4] = C00
|
---|
| 595 | Tbl[K,5] = C01
|
---|
| 596 | Tbl[K,6] = C02
|
---|
| 597 | Tbl[K,7] = C03
|
---|
| 598 | Tbl[K,8] = C10
|
---|
| 599 | Tbl[K,9] = C11
|
---|
| 600 | ...
|
---|
| 601 | Tbl[K,19] = C33
|
---|
| 602 | On each grid square spline is equals to:
|
---|
| 603 | S(x) = SUM(c[i,j]*(x^i)*(y^j), i=0..3, j=0..3)
|
---|
| 604 | t = x-x[j]
|
---|
| 605 | u = y-y[i]
|
---|
| 606 |
|
---|
| 607 | -- ALGLIB PROJECT --
|
---|
| 608 | Copyright 29.06.2007 by Bochkanov Sergey
|
---|
| 609 | *************************************************************************/
|
---|
| 610 | public static void spline2dunpack(ref spline2dinterpolant c,
|
---|
| 611 | ref int m,
|
---|
| 612 | ref int n,
|
---|
| 613 | ref double[,] tbl)
|
---|
| 614 | {
|
---|
| 615 | int i = 0;
|
---|
| 616 | int j = 0;
|
---|
| 617 | int ci = 0;
|
---|
| 618 | int cj = 0;
|
---|
| 619 | int k = 0;
|
---|
| 620 | int p = 0;
|
---|
| 621 | int shift = 0;
|
---|
| 622 | int s1 = 0;
|
---|
| 623 | int s2 = 0;
|
---|
| 624 | int s3 = 0;
|
---|
| 625 | int s4 = 0;
|
---|
| 626 | int sf = 0;
|
---|
| 627 | int sfx = 0;
|
---|
| 628 | int sfy = 0;
|
---|
| 629 | int sfxy = 0;
|
---|
| 630 | double y1 = 0;
|
---|
| 631 | double y2 = 0;
|
---|
| 632 | double y3 = 0;
|
---|
| 633 | double y4 = 0;
|
---|
| 634 | double dt = 0;
|
---|
| 635 | double du = 0;
|
---|
| 636 |
|
---|
| 637 | System.Diagnostics.Debug.Assert((int)Math.Round(c.c[1])==-3 | (int)Math.Round(c.c[1])==-1, "SplineUnpack2D: incorrect C!");
|
---|
| 638 | n = (int)Math.Round(c.c[2]);
|
---|
| 639 | m = (int)Math.Round(c.c[3]);
|
---|
| 640 | tbl = new double[(n-1)*(m-1)-1+1, 19+1];
|
---|
| 641 |
|
---|
| 642 | //
|
---|
| 643 | // Fill
|
---|
| 644 | //
|
---|
| 645 | for(i=0; i<=m-2; i++)
|
---|
| 646 | {
|
---|
| 647 | for(j=0; j<=n-2; j++)
|
---|
| 648 | {
|
---|
| 649 | p = i*(n-1)+j;
|
---|
| 650 | tbl[p,0] = c.c[4+j];
|
---|
| 651 | tbl[p,1] = c.c[4+j+1];
|
---|
| 652 | tbl[p,2] = c.c[4+n+i];
|
---|
| 653 | tbl[p,3] = c.c[4+n+i+1];
|
---|
| 654 | dt = 1/(tbl[p,1]-tbl[p,0]);
|
---|
| 655 | du = 1/(tbl[p,3]-tbl[p,2]);
|
---|
| 656 |
|
---|
| 657 | //
|
---|
| 658 | // Bilinear interpolation
|
---|
| 659 | //
|
---|
| 660 | if( (int)Math.Round(c.c[1])==-1 )
|
---|
| 661 | {
|
---|
| 662 | for(k=4; k<=19; k++)
|
---|
| 663 | {
|
---|
| 664 | tbl[p,k] = 0;
|
---|
| 665 | }
|
---|
| 666 | shift = 4+n+m;
|
---|
| 667 | y1 = c.c[shift+n*i+j];
|
---|
| 668 | y2 = c.c[shift+n*i+(j+1)];
|
---|
| 669 | y3 = c.c[shift+n*(i+1)+(j+1)];
|
---|
| 670 | y4 = c.c[shift+n*(i+1)+j];
|
---|
| 671 | tbl[p,4] = y1;
|
---|
| 672 | tbl[p,4+1*4+0] = y2-y1;
|
---|
| 673 | tbl[p,4+0*4+1] = y4-y1;
|
---|
| 674 | tbl[p,4+1*4+1] = y3-y2-y4+y1;
|
---|
| 675 | }
|
---|
| 676 |
|
---|
| 677 | //
|
---|
| 678 | // Bicubic interpolation
|
---|
| 679 | //
|
---|
| 680 | if( (int)Math.Round(c.c[1])==-3 )
|
---|
| 681 | {
|
---|
| 682 | sf = 4+n+m;
|
---|
| 683 | sfx = 4+n+m+n*m;
|
---|
| 684 | sfy = 4+n+m+2*n*m;
|
---|
| 685 | sfxy = 4+n+m+3*n*m;
|
---|
| 686 | s1 = n*i+j;
|
---|
| 687 | s2 = n*i+(j+1);
|
---|
| 688 | s3 = n*(i+1)+(j+1);
|
---|
| 689 | s4 = n*(i+1)+j;
|
---|
| 690 | tbl[p,4+0*4+0] = +(1*c.c[sf+s1]);
|
---|
| 691 | tbl[p,4+0*4+1] = +(1*c.c[sfy+s1]/du);
|
---|
| 692 | tbl[p,4+0*4+2] = -(3*c.c[sf+s1])+3*c.c[sf+s4]-2*c.c[sfy+s1]/du-1*c.c[sfy+s4]/du;
|
---|
| 693 | tbl[p,4+0*4+3] = +(2*c.c[sf+s1])-2*c.c[sf+s4]+1*c.c[sfy+s1]/du+1*c.c[sfy+s4]/du;
|
---|
| 694 | tbl[p,4+1*4+0] = +(1*c.c[sfx+s1]/dt);
|
---|
| 695 | tbl[p,4+1*4+1] = +(1*c.c[sfxy+s1]/(dt*du));
|
---|
| 696 | tbl[p,4+1*4+2] = -(3*c.c[sfx+s1]/dt)+3*c.c[sfx+s4]/dt-2*c.c[sfxy+s1]/(dt*du)-1*c.c[sfxy+s4]/(dt*du);
|
---|
| 697 | tbl[p,4+1*4+3] = +(2*c.c[sfx+s1]/dt)-2*c.c[sfx+s4]/dt+1*c.c[sfxy+s1]/(dt*du)+1*c.c[sfxy+s4]/(dt*du);
|
---|
| 698 | tbl[p,4+2*4+0] = -(3*c.c[sf+s1])+3*c.c[sf+s2]-2*c.c[sfx+s1]/dt-1*c.c[sfx+s2]/dt;
|
---|
| 699 | tbl[p,4+2*4+1] = -(3*c.c[sfy+s1]/du)+3*c.c[sfy+s2]/du-2*c.c[sfxy+s1]/(dt*du)-1*c.c[sfxy+s2]/(dt*du);
|
---|
| 700 | tbl[p,4+2*4+2] = +(9*c.c[sf+s1])-9*c.c[sf+s2]+9*c.c[sf+s3]-9*c.c[sf+s4]+6*c.c[sfx+s1]/dt+3*c.c[sfx+s2]/dt-3*c.c[sfx+s3]/dt-6*c.c[sfx+s4]/dt+6*c.c[sfy+s1]/du-6*c.c[sfy+s2]/du-3*c.c[sfy+s3]/du+3*c.c[sfy+s4]/du+4*c.c[sfxy+s1]/(dt*du)+2*c.c[sfxy+s2]/(dt*du)+1*c.c[sfxy+s3]/(dt*du)+2*c.c[sfxy+s4]/(dt*du);
|
---|
| 701 | tbl[p,4+2*4+3] = -(6*c.c[sf+s1])+6*c.c[sf+s2]-6*c.c[sf+s3]+6*c.c[sf+s4]-4*c.c[sfx+s1]/dt-2*c.c[sfx+s2]/dt+2*c.c[sfx+s3]/dt+4*c.c[sfx+s4]/dt-3*c.c[sfy+s1]/du+3*c.c[sfy+s2]/du+3*c.c[sfy+s3]/du-3*c.c[sfy+s4]/du-2*c.c[sfxy+s1]/(dt*du)-1*c.c[sfxy+s2]/(dt*du)-1*c.c[sfxy+s3]/(dt*du)-2*c.c[sfxy+s4]/(dt*du);
|
---|
| 702 | tbl[p,4+3*4+0] = +(2*c.c[sf+s1])-2*c.c[sf+s2]+1*c.c[sfx+s1]/dt+1*c.c[sfx+s2]/dt;
|
---|
| 703 | tbl[p,4+3*4+1] = +(2*c.c[sfy+s1]/du)-2*c.c[sfy+s2]/du+1*c.c[sfxy+s1]/(dt*du)+1*c.c[sfxy+s2]/(dt*du);
|
---|
| 704 | tbl[p,4+3*4+2] = -(6*c.c[sf+s1])+6*c.c[sf+s2]-6*c.c[sf+s3]+6*c.c[sf+s4]-3*c.c[sfx+s1]/dt-3*c.c[sfx+s2]/dt+3*c.c[sfx+s3]/dt+3*c.c[sfx+s4]/dt-4*c.c[sfy+s1]/du+4*c.c[sfy+s2]/du+2*c.c[sfy+s3]/du-2*c.c[sfy+s4]/du-2*c.c[sfxy+s1]/(dt*du)-2*c.c[sfxy+s2]/(dt*du)-1*c.c[sfxy+s3]/(dt*du)-1*c.c[sfxy+s4]/(dt*du);
|
---|
| 705 | tbl[p,4+3*4+3] = +(4*c.c[sf+s1])-4*c.c[sf+s2]+4*c.c[sf+s3]-4*c.c[sf+s4]+2*c.c[sfx+s1]/dt+2*c.c[sfx+s2]/dt-2*c.c[sfx+s3]/dt-2*c.c[sfx+s4]/dt+2*c.c[sfy+s1]/du-2*c.c[sfy+s2]/du-2*c.c[sfy+s3]/du+2*c.c[sfy+s4]/du+1*c.c[sfxy+s1]/(dt*du)+1*c.c[sfxy+s2]/(dt*du)+1*c.c[sfxy+s3]/(dt*du)+1*c.c[sfxy+s4]/(dt*du);
|
---|
| 706 | }
|
---|
| 707 |
|
---|
| 708 | //
|
---|
| 709 | // Rescale Cij
|
---|
| 710 | //
|
---|
| 711 | for(ci=0; ci<=3; ci++)
|
---|
| 712 | {
|
---|
| 713 | for(cj=0; cj<=3; cj++)
|
---|
| 714 | {
|
---|
| 715 | tbl[p,4+ci*4+cj] = tbl[p,4+ci*4+cj]*Math.Pow(dt, ci)*Math.Pow(du, cj);
|
---|
| 716 | }
|
---|
| 717 | }
|
---|
| 718 | }
|
---|
| 719 | }
|
---|
| 720 | }
|
---|
| 721 |
|
---|
| 722 |
|
---|
| 723 | /*************************************************************************
|
---|
| 724 | This subroutine performs linear transformation of the spline argument.
|
---|
| 725 |
|
---|
| 726 | Input parameters:
|
---|
| 727 | C - spline interpolant
|
---|
| 728 | AX, BX - transformation coefficients: x = A*t + B
|
---|
| 729 | AY, BY - transformation coefficients: y = A*u + B
|
---|
| 730 | Result:
|
---|
| 731 | C - transformed spline
|
---|
| 732 |
|
---|
| 733 | -- ALGLIB PROJECT --
|
---|
| 734 | Copyright 30.06.2007 by Bochkanov Sergey
|
---|
| 735 | *************************************************************************/
|
---|
| 736 | public static void spline2dlintransxy(ref spline2dinterpolant c,
|
---|
| 737 | double ax,
|
---|
| 738 | double bx,
|
---|
| 739 | double ay,
|
---|
| 740 | double by)
|
---|
| 741 | {
|
---|
| 742 | int i = 0;
|
---|
| 743 | int j = 0;
|
---|
| 744 | int n = 0;
|
---|
| 745 | int m = 0;
|
---|
| 746 | double v = 0;
|
---|
| 747 | double[] x = new double[0];
|
---|
| 748 | double[] y = new double[0];
|
---|
| 749 | double[,] f = new double[0,0];
|
---|
| 750 | int typec = 0;
|
---|
| 751 |
|
---|
| 752 | typec = (int)Math.Round(c.c[1]);
|
---|
| 753 | System.Diagnostics.Debug.Assert(typec==-3 | typec==-1, "Spline2DLinTransXY: incorrect C!");
|
---|
| 754 | n = (int)Math.Round(c.c[2]);
|
---|
| 755 | m = (int)Math.Round(c.c[3]);
|
---|
| 756 | x = new double[n-1+1];
|
---|
| 757 | y = new double[m-1+1];
|
---|
| 758 | f = new double[m-1+1, n-1+1];
|
---|
| 759 | for(j=0; j<=n-1; j++)
|
---|
| 760 | {
|
---|
| 761 | x[j] = c.c[4+j];
|
---|
| 762 | }
|
---|
| 763 | for(i=0; i<=m-1; i++)
|
---|
| 764 | {
|
---|
| 765 | y[i] = c.c[4+n+i];
|
---|
| 766 | }
|
---|
| 767 | for(i=0; i<=m-1; i++)
|
---|
| 768 | {
|
---|
| 769 | for(j=0; j<=n-1; j++)
|
---|
| 770 | {
|
---|
| 771 | f[i,j] = c.c[4+n+m+i*n+j];
|
---|
| 772 | }
|
---|
| 773 | }
|
---|
| 774 |
|
---|
| 775 | //
|
---|
| 776 | // Special case: AX=0 or AY=0
|
---|
| 777 | //
|
---|
| 778 | if( (double)(ax)==(double)(0) )
|
---|
| 779 | {
|
---|
| 780 | for(i=0; i<=m-1; i++)
|
---|
| 781 | {
|
---|
| 782 | v = spline2dcalc(ref c, bx, y[i]);
|
---|
| 783 | for(j=0; j<=n-1; j++)
|
---|
| 784 | {
|
---|
| 785 | f[i,j] = v;
|
---|
| 786 | }
|
---|
| 787 | }
|
---|
| 788 | if( typec==-3 )
|
---|
| 789 | {
|
---|
| 790 | spline2dbuildbicubic(x, y, f, m, n, ref c);
|
---|
| 791 | }
|
---|
| 792 | if( typec==-1 )
|
---|
| 793 | {
|
---|
| 794 | spline2dbuildbilinear(x, y, f, m, n, ref c);
|
---|
| 795 | }
|
---|
| 796 | ax = 1;
|
---|
| 797 | bx = 0;
|
---|
| 798 | }
|
---|
| 799 | if( (double)(ay)==(double)(0) )
|
---|
| 800 | {
|
---|
| 801 | for(j=0; j<=n-1; j++)
|
---|
| 802 | {
|
---|
| 803 | v = spline2dcalc(ref c, x[j], by);
|
---|
| 804 | for(i=0; i<=m-1; i++)
|
---|
| 805 | {
|
---|
| 806 | f[i,j] = v;
|
---|
| 807 | }
|
---|
| 808 | }
|
---|
| 809 | if( typec==-3 )
|
---|
| 810 | {
|
---|
| 811 | spline2dbuildbicubic(x, y, f, m, n, ref c);
|
---|
| 812 | }
|
---|
| 813 | if( typec==-1 )
|
---|
| 814 | {
|
---|
| 815 | spline2dbuildbilinear(x, y, f, m, n, ref c);
|
---|
| 816 | }
|
---|
| 817 | ay = 1;
|
---|
| 818 | by = 0;
|
---|
| 819 | }
|
---|
| 820 |
|
---|
| 821 | //
|
---|
| 822 | // General case: AX<>0, AY<>0
|
---|
| 823 | // Unpack, scale and pack again.
|
---|
| 824 | //
|
---|
| 825 | for(j=0; j<=n-1; j++)
|
---|
| 826 | {
|
---|
| 827 | x[j] = (x[j]-bx)/ax;
|
---|
| 828 | }
|
---|
| 829 | for(i=0; i<=m-1; i++)
|
---|
| 830 | {
|
---|
| 831 | y[i] = (y[i]-by)/ay;
|
---|
| 832 | }
|
---|
| 833 | if( typec==-3 )
|
---|
| 834 | {
|
---|
| 835 | spline2dbuildbicubic(x, y, f, m, n, ref c);
|
---|
| 836 | }
|
---|
| 837 | if( typec==-1 )
|
---|
| 838 | {
|
---|
| 839 | spline2dbuildbilinear(x, y, f, m, n, ref c);
|
---|
| 840 | }
|
---|
| 841 | }
|
---|
| 842 |
|
---|
| 843 |
|
---|
| 844 | /*************************************************************************
|
---|
| 845 | This subroutine performs linear transformation of the spline.
|
---|
| 846 |
|
---|
| 847 | Input parameters:
|
---|
| 848 | C - spline interpolant.
|
---|
| 849 | A, B- transformation coefficients: S2(x,y) = A*S(x,y) + B
|
---|
| 850 |
|
---|
| 851 | Output parameters:
|
---|
| 852 | C - transformed spline
|
---|
| 853 |
|
---|
| 854 | -- ALGLIB PROJECT --
|
---|
| 855 | Copyright 30.06.2007 by Bochkanov Sergey
|
---|
| 856 | *************************************************************************/
|
---|
| 857 | public static void spline2dlintransf(ref spline2dinterpolant c,
|
---|
| 858 | double a,
|
---|
| 859 | double b)
|
---|
| 860 | {
|
---|
| 861 | int i = 0;
|
---|
| 862 | int j = 0;
|
---|
| 863 | int n = 0;
|
---|
| 864 | int m = 0;
|
---|
| 865 | double v = 0;
|
---|
| 866 | double[] x = new double[0];
|
---|
| 867 | double[] y = new double[0];
|
---|
| 868 | double[,] f = new double[0,0];
|
---|
| 869 | int typec = 0;
|
---|
| 870 |
|
---|
| 871 | typec = (int)Math.Round(c.c[1]);
|
---|
| 872 | System.Diagnostics.Debug.Assert(typec==-3 | typec==-1, "Spline2DLinTransXY: incorrect C!");
|
---|
| 873 | n = (int)Math.Round(c.c[2]);
|
---|
| 874 | m = (int)Math.Round(c.c[3]);
|
---|
| 875 | x = new double[n-1+1];
|
---|
| 876 | y = new double[m-1+1];
|
---|
| 877 | f = new double[m-1+1, n-1+1];
|
---|
| 878 | for(j=0; j<=n-1; j++)
|
---|
| 879 | {
|
---|
| 880 | x[j] = c.c[4+j];
|
---|
| 881 | }
|
---|
| 882 | for(i=0; i<=m-1; i++)
|
---|
| 883 | {
|
---|
| 884 | y[i] = c.c[4+n+i];
|
---|
| 885 | }
|
---|
| 886 | for(i=0; i<=m-1; i++)
|
---|
| 887 | {
|
---|
| 888 | for(j=0; j<=n-1; j++)
|
---|
| 889 | {
|
---|
| 890 | f[i,j] = a*c.c[4+n+m+i*n+j]+b;
|
---|
| 891 | }
|
---|
| 892 | }
|
---|
| 893 | if( typec==-3 )
|
---|
| 894 | {
|
---|
| 895 | spline2dbuildbicubic(x, y, f, m, n, ref c);
|
---|
| 896 | }
|
---|
| 897 | if( typec==-1 )
|
---|
| 898 | {
|
---|
| 899 | spline2dbuildbilinear(x, y, f, m, n, ref c);
|
---|
| 900 | }
|
---|
| 901 | }
|
---|
| 902 |
|
---|
| 903 |
|
---|
| 904 | /*************************************************************************
|
---|
| 905 | This subroutine makes the copy of the spline model.
|
---|
| 906 |
|
---|
| 907 | Input parameters:
|
---|
| 908 | C - spline interpolant
|
---|
| 909 |
|
---|
| 910 | Output parameters:
|
---|
| 911 | CC - spline copy
|
---|
| 912 |
|
---|
| 913 | -- ALGLIB PROJECT --
|
---|
| 914 | Copyright 29.06.2007 by Bochkanov Sergey
|
---|
| 915 | *************************************************************************/
|
---|
| 916 | public static void spline2dcopy(ref spline2dinterpolant c,
|
---|
| 917 | ref spline2dinterpolant cc)
|
---|
| 918 | {
|
---|
| 919 | int n = 0;
|
---|
| 920 | int i_ = 0;
|
---|
| 921 |
|
---|
| 922 | System.Diagnostics.Debug.Assert(c.k==1 | c.k==3, "Spline2DCopy: incorrect C!");
|
---|
| 923 | cc.k = c.k;
|
---|
| 924 | n = (int)Math.Round(c.c[0]);
|
---|
| 925 | cc.c = new double[n];
|
---|
| 926 | for(i_=0; i_<=n-1;i_++)
|
---|
| 927 | {
|
---|
| 928 | cc.c[i_] = c.c[i_];
|
---|
| 929 | }
|
---|
| 930 | }
|
---|
| 931 |
|
---|
| 932 |
|
---|
| 933 | /*************************************************************************
|
---|
| 934 | Serialization of the spline interpolant
|
---|
| 935 |
|
---|
| 936 | INPUT PARAMETERS:
|
---|
| 937 | B - spline interpolant
|
---|
| 938 |
|
---|
| 939 | OUTPUT PARAMETERS:
|
---|
| 940 | RA - array of real numbers which contains interpolant,
|
---|
| 941 | array[0..RLen-1]
|
---|
| 942 | RLen - RA lenght
|
---|
| 943 |
|
---|
| 944 | -- ALGLIB --
|
---|
| 945 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 946 | *************************************************************************/
|
---|
| 947 | public static void spline2dserialize(ref spline2dinterpolant c,
|
---|
| 948 | ref double[] ra,
|
---|
| 949 | ref int ralen)
|
---|
| 950 | {
|
---|
| 951 | int clen = 0;
|
---|
| 952 | int i_ = 0;
|
---|
| 953 | int i1_ = 0;
|
---|
| 954 |
|
---|
| 955 | System.Diagnostics.Debug.Assert(c.k==1 | c.k==3, "Spline2DSerialize: incorrect C!");
|
---|
| 956 | clen = (int)Math.Round(c.c[0]);
|
---|
| 957 | ralen = 3+clen;
|
---|
| 958 | ra = new double[ralen];
|
---|
| 959 | ra[0] = ralen;
|
---|
| 960 | ra[1] = spline2dvnum;
|
---|
| 961 | ra[2] = c.k;
|
---|
| 962 | i1_ = (0) - (3);
|
---|
| 963 | for(i_=3; i_<=3+clen-1;i_++)
|
---|
| 964 | {
|
---|
| 965 | ra[i_] = c.c[i_+i1_];
|
---|
| 966 | }
|
---|
| 967 | }
|
---|
| 968 |
|
---|
| 969 |
|
---|
| 970 | /*************************************************************************
|
---|
| 971 | Unserialization of the spline interpolant
|
---|
| 972 |
|
---|
| 973 | INPUT PARAMETERS:
|
---|
| 974 | RA - array of real numbers which contains interpolant,
|
---|
| 975 |
|
---|
| 976 | OUTPUT PARAMETERS:
|
---|
| 977 | B - spline interpolant
|
---|
| 978 |
|
---|
| 979 | -- ALGLIB --
|
---|
| 980 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 981 | *************************************************************************/
|
---|
| 982 | public static void spline2dunserialize(ref double[] ra,
|
---|
| 983 | ref spline2dinterpolant c)
|
---|
| 984 | {
|
---|
| 985 | int clen = 0;
|
---|
| 986 | int i_ = 0;
|
---|
| 987 | int i1_ = 0;
|
---|
| 988 |
|
---|
| 989 | System.Diagnostics.Debug.Assert((int)Math.Round(ra[1])==spline2dvnum, "Spline2DUnserialize: corrupted array!");
|
---|
| 990 | c.k = (int)Math.Round(ra[2]);
|
---|
| 991 | clen = (int)Math.Round(ra[3]);
|
---|
| 992 | c.c = new double[clen];
|
---|
| 993 | i1_ = (3) - (0);
|
---|
| 994 | for(i_=0; i_<=clen-1;i_++)
|
---|
| 995 | {
|
---|
| 996 | c.c[i_] = ra[i_+i1_];
|
---|
| 997 | }
|
---|
| 998 | }
|
---|
| 999 |
|
---|
| 1000 |
|
---|
| 1001 | /*************************************************************************
|
---|
| 1002 | Bicubic spline resampling
|
---|
| 1003 |
|
---|
| 1004 | Input parameters:
|
---|
| 1005 | A - function values at the old grid,
|
---|
| 1006 | array[0..OldHeight-1, 0..OldWidth-1]
|
---|
| 1007 | OldHeight - old grid height, OldHeight>1
|
---|
| 1008 | OldWidth - old grid width, OldWidth>1
|
---|
| 1009 | NewHeight - new grid height, NewHeight>1
|
---|
| 1010 | NewWidth - new grid width, NewWidth>1
|
---|
| 1011 |
|
---|
| 1012 | Output parameters:
|
---|
| 1013 | B - function values at the new grid,
|
---|
| 1014 | array[0..NewHeight-1, 0..NewWidth-1]
|
---|
| 1015 |
|
---|
| 1016 | -- ALGLIB routine --
|
---|
| 1017 | 15 May, 2007
|
---|
| 1018 | Copyright by Bochkanov Sergey
|
---|
| 1019 | *************************************************************************/
|
---|
| 1020 | public static void spline2dresamplebicubic(ref double[,] a,
|
---|
| 1021 | int oldheight,
|
---|
| 1022 | int oldwidth,
|
---|
| 1023 | ref double[,] b,
|
---|
| 1024 | int newheight,
|
---|
| 1025 | int newwidth)
|
---|
| 1026 | {
|
---|
| 1027 | double[,] buf = new double[0,0];
|
---|
| 1028 | double[] x = new double[0];
|
---|
| 1029 | double[] y = new double[0];
|
---|
| 1030 | spline1d.spline1dinterpolant c = new spline1d.spline1dinterpolant();
|
---|
| 1031 | int i = 0;
|
---|
| 1032 | int j = 0;
|
---|
| 1033 | int mw = 0;
|
---|
| 1034 | int mh = 0;
|
---|
| 1035 |
|
---|
| 1036 | System.Diagnostics.Debug.Assert(oldwidth>1 & oldheight>1, "Spline2DResampleBicubic: width/height less than 1");
|
---|
| 1037 | System.Diagnostics.Debug.Assert(newwidth>1 & newheight>1, "Spline2DResampleBicubic: width/height less than 1");
|
---|
| 1038 |
|
---|
| 1039 | //
|
---|
| 1040 | // Prepare
|
---|
| 1041 | //
|
---|
| 1042 | mw = Math.Max(oldwidth, newwidth);
|
---|
| 1043 | mh = Math.Max(oldheight, newheight);
|
---|
| 1044 | b = new double[newheight-1+1, newwidth-1+1];
|
---|
| 1045 | buf = new double[oldheight-1+1, newwidth-1+1];
|
---|
| 1046 | x = new double[Math.Max(mw, mh)-1+1];
|
---|
| 1047 | y = new double[Math.Max(mw, mh)-1+1];
|
---|
| 1048 |
|
---|
| 1049 | //
|
---|
| 1050 | // Horizontal interpolation
|
---|
| 1051 | //
|
---|
| 1052 | for(i=0; i<=oldheight-1; i++)
|
---|
| 1053 | {
|
---|
| 1054 |
|
---|
| 1055 | //
|
---|
| 1056 | // Fill X, Y
|
---|
| 1057 | //
|
---|
| 1058 | for(j=0; j<=oldwidth-1; j++)
|
---|
| 1059 | {
|
---|
| 1060 | x[j] = (double)(j)/((double)(oldwidth-1));
|
---|
| 1061 | y[j] = a[i,j];
|
---|
| 1062 | }
|
---|
| 1063 |
|
---|
| 1064 | //
|
---|
| 1065 | // Interpolate and place result into temporary matrix
|
---|
| 1066 | //
|
---|
| 1067 | spline1d.spline1dbuildcubic(x, y, oldwidth, 0, 0.0, 0, 0.0, ref c);
|
---|
| 1068 | for(j=0; j<=newwidth-1; j++)
|
---|
| 1069 | {
|
---|
| 1070 | buf[i,j] = spline1d.spline1dcalc(ref c, (double)(j)/((double)(newwidth-1)));
|
---|
| 1071 | }
|
---|
| 1072 | }
|
---|
| 1073 |
|
---|
| 1074 | //
|
---|
| 1075 | // Vertical interpolation
|
---|
| 1076 | //
|
---|
| 1077 | for(j=0; j<=newwidth-1; j++)
|
---|
| 1078 | {
|
---|
| 1079 |
|
---|
| 1080 | //
|
---|
| 1081 | // Fill X, Y
|
---|
| 1082 | //
|
---|
| 1083 | for(i=0; i<=oldheight-1; i++)
|
---|
| 1084 | {
|
---|
| 1085 | x[i] = (double)(i)/((double)(oldheight-1));
|
---|
| 1086 | y[i] = buf[i,j];
|
---|
| 1087 | }
|
---|
| 1088 |
|
---|
| 1089 | //
|
---|
| 1090 | // Interpolate and place result into B
|
---|
| 1091 | //
|
---|
| 1092 | spline1d.spline1dbuildcubic(x, y, oldheight, 0, 0.0, 0, 0.0, ref c);
|
---|
| 1093 | for(i=0; i<=newheight-1; i++)
|
---|
| 1094 | {
|
---|
| 1095 | b[i,j] = spline1d.spline1dcalc(ref c, (double)(i)/((double)(newheight-1)));
|
---|
| 1096 | }
|
---|
| 1097 | }
|
---|
| 1098 | }
|
---|
| 1099 |
|
---|
| 1100 |
|
---|
| 1101 | /*************************************************************************
|
---|
| 1102 | Bilinear spline resampling
|
---|
| 1103 |
|
---|
| 1104 | Input parameters:
|
---|
| 1105 | A - function values at the old grid,
|
---|
| 1106 | array[0..OldHeight-1, 0..OldWidth-1]
|
---|
| 1107 | OldHeight - old grid height, OldHeight>1
|
---|
| 1108 | OldWidth - old grid width, OldWidth>1
|
---|
| 1109 | NewHeight - new grid height, NewHeight>1
|
---|
| 1110 | NewWidth - new grid width, NewWidth>1
|
---|
| 1111 |
|
---|
| 1112 | Output parameters:
|
---|
| 1113 | B - function values at the new grid,
|
---|
| 1114 | array[0..NewHeight-1, 0..NewWidth-1]
|
---|
| 1115 |
|
---|
| 1116 | -- ALGLIB routine --
|
---|
| 1117 | 09.07.2007
|
---|
| 1118 | Copyright by Bochkanov Sergey
|
---|
| 1119 | *************************************************************************/
|
---|
| 1120 | public static void spline2dresamplebilinear(ref double[,] a,
|
---|
| 1121 | int oldheight,
|
---|
| 1122 | int oldwidth,
|
---|
| 1123 | ref double[,] b,
|
---|
| 1124 | int newheight,
|
---|
| 1125 | int newwidth)
|
---|
| 1126 | {
|
---|
| 1127 | int i = 0;
|
---|
| 1128 | int j = 0;
|
---|
| 1129 | int l = 0;
|
---|
| 1130 | int c = 0;
|
---|
| 1131 | double t = 0;
|
---|
| 1132 | double u = 0;
|
---|
| 1133 |
|
---|
| 1134 | b = new double[newheight-1+1, newwidth-1+1];
|
---|
| 1135 | for(i=0; i<=newheight-1; i++)
|
---|
| 1136 | {
|
---|
| 1137 | for(j=0; j<=newwidth-1; j++)
|
---|
| 1138 | {
|
---|
| 1139 | l = i*(oldheight-1)/(newheight-1);
|
---|
| 1140 | if( l==oldheight-1 )
|
---|
| 1141 | {
|
---|
| 1142 | l = oldheight-2;
|
---|
| 1143 | }
|
---|
| 1144 | u = (double)(i)/((double)(newheight-1))*(oldheight-1)-l;
|
---|
| 1145 | c = j*(oldwidth-1)/(newwidth-1);
|
---|
| 1146 | if( c==oldwidth-1 )
|
---|
| 1147 | {
|
---|
| 1148 | c = oldwidth-2;
|
---|
| 1149 | }
|
---|
| 1150 | t = (double)(j*(oldwidth-1))/((double)(newwidth-1))-c;
|
---|
| 1151 | b[i,j] = (1-t)*(1-u)*a[l,c]+t*(1-u)*a[l,c+1]+t*u*a[l+1,c+1]+(1-t)*u*a[l+1,c];
|
---|
| 1152 | }
|
---|
| 1153 | }
|
---|
| 1154 | }
|
---|
| 1155 |
|
---|
| 1156 |
|
---|
| 1157 | /*************************************************************************
|
---|
| 1158 | Internal subroutine.
|
---|
| 1159 | Calculation of the first derivatives and the cross-derivative.
|
---|
| 1160 | *************************************************************************/
|
---|
| 1161 | private static void bicubiccalcderivatives(ref double[,] a,
|
---|
| 1162 | ref double[] x,
|
---|
| 1163 | ref double[] y,
|
---|
| 1164 | int m,
|
---|
| 1165 | int n,
|
---|
| 1166 | ref double[,] dx,
|
---|
| 1167 | ref double[,] dy,
|
---|
| 1168 | ref double[,] dxy)
|
---|
| 1169 | {
|
---|
| 1170 | int i = 0;
|
---|
| 1171 | int j = 0;
|
---|
| 1172 | int k = 0;
|
---|
| 1173 | double[] xt = new double[0];
|
---|
| 1174 | double[] ft = new double[0];
|
---|
| 1175 | double[] c = new double[0];
|
---|
| 1176 | double s = 0;
|
---|
| 1177 | double ds = 0;
|
---|
| 1178 | double d2s = 0;
|
---|
| 1179 | double v = 0;
|
---|
| 1180 |
|
---|
| 1181 | dx = new double[m-1+1, n-1+1];
|
---|
| 1182 | dy = new double[m-1+1, n-1+1];
|
---|
| 1183 | dxy = new double[m-1+1, n-1+1];
|
---|
| 1184 |
|
---|
| 1185 | //
|
---|
| 1186 | // dF/dX
|
---|
| 1187 | //
|
---|
| 1188 | xt = new double[n-1+1];
|
---|
| 1189 | ft = new double[n-1+1];
|
---|
| 1190 | for(i=0; i<=m-1; i++)
|
---|
| 1191 | {
|
---|
| 1192 | for(j=0; j<=n-1; j++)
|
---|
| 1193 | {
|
---|
| 1194 | xt[j] = x[j];
|
---|
| 1195 | ft[j] = a[i,j];
|
---|
| 1196 | }
|
---|
| 1197 | spline3.buildcubicspline(xt, ft, n, 0, 0.0, 0, 0.0, ref c);
|
---|
| 1198 | for(j=0; j<=n-1; j++)
|
---|
| 1199 | {
|
---|
| 1200 | spline3.splinedifferentiation(ref c, x[j], ref s, ref ds, ref d2s);
|
---|
| 1201 | dx[i,j] = ds;
|
---|
| 1202 | }
|
---|
| 1203 | }
|
---|
| 1204 |
|
---|
| 1205 | //
|
---|
| 1206 | // dF/dY
|
---|
| 1207 | //
|
---|
| 1208 | xt = new double[m-1+1];
|
---|
| 1209 | ft = new double[m-1+1];
|
---|
| 1210 | for(j=0; j<=n-1; j++)
|
---|
| 1211 | {
|
---|
| 1212 | for(i=0; i<=m-1; i++)
|
---|
| 1213 | {
|
---|
| 1214 | xt[i] = y[i];
|
---|
| 1215 | ft[i] = a[i,j];
|
---|
| 1216 | }
|
---|
| 1217 | spline3.buildcubicspline(xt, ft, m, 0, 0.0, 0, 0.0, ref c);
|
---|
| 1218 | for(i=0; i<=m-1; i++)
|
---|
| 1219 | {
|
---|
| 1220 | spline3.splinedifferentiation(ref c, y[i], ref s, ref ds, ref d2s);
|
---|
| 1221 | dy[i,j] = ds;
|
---|
| 1222 | }
|
---|
| 1223 | }
|
---|
| 1224 |
|
---|
| 1225 | //
|
---|
| 1226 | // d2F/dXdY
|
---|
| 1227 | //
|
---|
| 1228 | xt = new double[n-1+1];
|
---|
| 1229 | ft = new double[n-1+1];
|
---|
| 1230 | for(i=0; i<=m-1; i++)
|
---|
| 1231 | {
|
---|
| 1232 | for(j=0; j<=n-1; j++)
|
---|
| 1233 | {
|
---|
| 1234 | xt[j] = x[j];
|
---|
| 1235 | ft[j] = dy[i,j];
|
---|
| 1236 | }
|
---|
| 1237 | spline3.buildcubicspline(xt, ft, n, 0, 0.0, 0, 0.0, ref c);
|
---|
| 1238 | for(j=0; j<=n-1; j++)
|
---|
| 1239 | {
|
---|
| 1240 | spline3.splinedifferentiation(ref c, x[j], ref s, ref ds, ref d2s);
|
---|
| 1241 | dxy[i,j] = ds;
|
---|
| 1242 | }
|
---|
| 1243 | }
|
---|
| 1244 | }
|
---|
| 1245 | }
|
---|
| 1246 | }
|
---|