1 | /*************************************************************************
|
---|
2 | This file is a part of ALGLIB project.
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class spdsolve
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Solving a system of linear equations with a system matrix given by its
|
---|
29 | Cholesky decomposition.
|
---|
30 |
|
---|
31 | The algorithm solves systems with a square matrix only.
|
---|
32 |
|
---|
33 | Input parameters:
|
---|
34 | A - Cholesky decomposition of a system matrix (the result of
|
---|
35 | the SMatrixCholesky subroutine).
|
---|
36 | B - right side of a system.
|
---|
37 | Array whose index ranges within [0..N-1].
|
---|
38 | N - size of matrix A.
|
---|
39 | IsUpper - points to the triangle of matrix A in which the Cholesky
|
---|
40 | decomposition is stored. If IsUpper=True, the Cholesky
|
---|
41 | decomposition has the form of U'*U, and the upper triangle
|
---|
42 | of matrix A stores matrix U (in that case, the lower
|
---|
43 | triangle isnt used and isnt changed by the subroutine)
|
---|
44 | Similarly, if IsUpper = False, the Cholesky decomposition
|
---|
45 | has the form of L*L', and the lower triangle stores
|
---|
46 | matrix L.
|
---|
47 |
|
---|
48 | Output parameters:
|
---|
49 | X - solution of a system.
|
---|
50 | Array whose index ranges within [0..N-1].
|
---|
51 |
|
---|
52 | Result:
|
---|
53 | True, if the system is not singular. X contains the solution.
|
---|
54 | False, if the system is singular (there is a zero element on the main
|
---|
55 | diagonal). In this case, X doesn't contain a solution.
|
---|
56 |
|
---|
57 | -- ALGLIB --
|
---|
58 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
59 | *************************************************************************/
|
---|
60 | public static bool spdmatrixcholeskysolve(ref double[,] a,
|
---|
61 | double[] b,
|
---|
62 | int n,
|
---|
63 | bool isupper,
|
---|
64 | ref double[] x)
|
---|
65 | {
|
---|
66 | bool result = new bool();
|
---|
67 | int i = 0;
|
---|
68 | double v = 0;
|
---|
69 | int i_ = 0;
|
---|
70 |
|
---|
71 | b = (double[])b.Clone();
|
---|
72 |
|
---|
73 | System.Diagnostics.Debug.Assert(n>0, "Error: N<=0 in SolveSystemCholesky");
|
---|
74 |
|
---|
75 | //
|
---|
76 | // det(A)=0?
|
---|
77 | //
|
---|
78 | result = true;
|
---|
79 | for(i=0; i<=n-1; i++)
|
---|
80 | {
|
---|
81 | if( (double)(a[i,i])==(double)(0) )
|
---|
82 | {
|
---|
83 | result = false;
|
---|
84 | return result;
|
---|
85 | }
|
---|
86 | }
|
---|
87 |
|
---|
88 | //
|
---|
89 | // det(A)<>0
|
---|
90 | //
|
---|
91 | x = new double[n-1+1];
|
---|
92 | if( isupper )
|
---|
93 | {
|
---|
94 |
|
---|
95 | //
|
---|
96 | // A = U'*U, solve U'*y = b first
|
---|
97 | //
|
---|
98 | b[0] = b[0]/a[0,0];
|
---|
99 | for(i=1; i<=n-1; i++)
|
---|
100 | {
|
---|
101 | v = 0.0;
|
---|
102 | for(i_=0; i_<=i-1;i_++)
|
---|
103 | {
|
---|
104 | v += a[i_,i]*b[i_];
|
---|
105 | }
|
---|
106 | b[i] = (b[i]-v)/a[i,i];
|
---|
107 | }
|
---|
108 |
|
---|
109 | //
|
---|
110 | // Solve U*x = y
|
---|
111 | //
|
---|
112 | b[n-1] = b[n-1]/a[n-1,n-1];
|
---|
113 | for(i=n-2; i>=0; i--)
|
---|
114 | {
|
---|
115 | v = 0.0;
|
---|
116 | for(i_=i+1; i_<=n-1;i_++)
|
---|
117 | {
|
---|
118 | v += a[i,i_]*b[i_];
|
---|
119 | }
|
---|
120 | b[i] = (b[i]-v)/a[i,i];
|
---|
121 | }
|
---|
122 | for(i_=0; i_<=n-1;i_++)
|
---|
123 | {
|
---|
124 | x[i_] = b[i_];
|
---|
125 | }
|
---|
126 | }
|
---|
127 | else
|
---|
128 | {
|
---|
129 |
|
---|
130 | //
|
---|
131 | // A = L*L', solve L'*y = b first
|
---|
132 | //
|
---|
133 | b[0] = b[0]/a[0,0];
|
---|
134 | for(i=1; i<=n-1; i++)
|
---|
135 | {
|
---|
136 | v = 0.0;
|
---|
137 | for(i_=0; i_<=i-1;i_++)
|
---|
138 | {
|
---|
139 | v += a[i,i_]*b[i_];
|
---|
140 | }
|
---|
141 | b[i] = (b[i]-v)/a[i,i];
|
---|
142 | }
|
---|
143 |
|
---|
144 | //
|
---|
145 | // Solve L'*x = y
|
---|
146 | //
|
---|
147 | b[n-1] = b[n-1]/a[n-1,n-1];
|
---|
148 | for(i=n-2; i>=0; i--)
|
---|
149 | {
|
---|
150 | v = 0.0;
|
---|
151 | for(i_=i+1; i_<=n-1;i_++)
|
---|
152 | {
|
---|
153 | v += a[i_,i]*b[i_];
|
---|
154 | }
|
---|
155 | b[i] = (b[i]-v)/a[i,i];
|
---|
156 | }
|
---|
157 | for(i_=0; i_<=n-1;i_++)
|
---|
158 | {
|
---|
159 | x[i_] = b[i_];
|
---|
160 | }
|
---|
161 | }
|
---|
162 | return result;
|
---|
163 | }
|
---|
164 |
|
---|
165 |
|
---|
166 | /*************************************************************************
|
---|
167 | Solving a system of linear equations with a symmetric positive-definite
|
---|
168 | matrix by using the Cholesky decomposition.
|
---|
169 |
|
---|
170 | The algorithm solves a system of linear equations whose matrix is symmetric
|
---|
171 | and positive-definite.
|
---|
172 |
|
---|
173 | Input parameters:
|
---|
174 | A - upper or lower triangle part of a symmetric system matrix.
|
---|
175 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
176 | B - right side of a system.
|
---|
177 | Array whose index ranges within [0..N-1].
|
---|
178 | N - size of matrix A.
|
---|
179 | IsUpper - points to the triangle of matrix A in which the matrix is stored.
|
---|
180 |
|
---|
181 | Output parameters:
|
---|
182 | X - solution of a system.
|
---|
183 | Array whose index ranges within [0..N-1].
|
---|
184 |
|
---|
185 | Result:
|
---|
186 | True, if the system is not singular.
|
---|
187 | False, if the system is singular. In this case, X doesn't contain a
|
---|
188 | solution.
|
---|
189 |
|
---|
190 | -- ALGLIB --
|
---|
191 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
192 | *************************************************************************/
|
---|
193 | public static bool spdmatrixsolve(double[,] a,
|
---|
194 | double[] b,
|
---|
195 | int n,
|
---|
196 | bool isupper,
|
---|
197 | ref double[] x)
|
---|
198 | {
|
---|
199 | bool result = new bool();
|
---|
200 |
|
---|
201 | a = (double[,])a.Clone();
|
---|
202 | b = (double[])b.Clone();
|
---|
203 |
|
---|
204 | result = cholesky.spdmatrixcholesky(ref a, n, isupper);
|
---|
205 | if( !result )
|
---|
206 | {
|
---|
207 | return result;
|
---|
208 | }
|
---|
209 | result = spdmatrixcholeskysolve(ref a, b, n, isupper, ref x);
|
---|
210 | return result;
|
---|
211 | }
|
---|
212 |
|
---|
213 |
|
---|
214 | public static bool solvesystemcholesky(ref double[,] a,
|
---|
215 | double[] b,
|
---|
216 | int n,
|
---|
217 | bool isupper,
|
---|
218 | ref double[] x)
|
---|
219 | {
|
---|
220 | bool result = new bool();
|
---|
221 | int i = 0;
|
---|
222 | int im1 = 0;
|
---|
223 | int ip1 = 0;
|
---|
224 | double v = 0;
|
---|
225 | int i_ = 0;
|
---|
226 |
|
---|
227 | b = (double[])b.Clone();
|
---|
228 |
|
---|
229 | System.Diagnostics.Debug.Assert(n>0, "Error: N<=0 in SolveSystemCholesky");
|
---|
230 |
|
---|
231 | //
|
---|
232 | // det(A)=0?
|
---|
233 | //
|
---|
234 | result = true;
|
---|
235 | for(i=1; i<=n; i++)
|
---|
236 | {
|
---|
237 | if( (double)(a[i,i])==(double)(0) )
|
---|
238 | {
|
---|
239 | result = false;
|
---|
240 | return result;
|
---|
241 | }
|
---|
242 | }
|
---|
243 |
|
---|
244 | //
|
---|
245 | // det(A)<>0
|
---|
246 | //
|
---|
247 | x = new double[n+1];
|
---|
248 | if( isupper )
|
---|
249 | {
|
---|
250 |
|
---|
251 | //
|
---|
252 | // A = U'*U, solve U'*y = b first
|
---|
253 | //
|
---|
254 | b[1] = b[1]/a[1,1];
|
---|
255 | for(i=2; i<=n; i++)
|
---|
256 | {
|
---|
257 | im1 = i-1;
|
---|
258 | v = 0.0;
|
---|
259 | for(i_=1; i_<=im1;i_++)
|
---|
260 | {
|
---|
261 | v += a[i_,i]*b[i_];
|
---|
262 | }
|
---|
263 | b[i] = (b[i]-v)/a[i,i];
|
---|
264 | }
|
---|
265 |
|
---|
266 | //
|
---|
267 | // Solve U*x = y
|
---|
268 | //
|
---|
269 | b[n] = b[n]/a[n,n];
|
---|
270 | for(i=n-1; i>=1; i--)
|
---|
271 | {
|
---|
272 | ip1 = i+1;
|
---|
273 | v = 0.0;
|
---|
274 | for(i_=ip1; i_<=n;i_++)
|
---|
275 | {
|
---|
276 | v += a[i,i_]*b[i_];
|
---|
277 | }
|
---|
278 | b[i] = (b[i]-v)/a[i,i];
|
---|
279 | }
|
---|
280 | for(i_=1; i_<=n;i_++)
|
---|
281 | {
|
---|
282 | x[i_] = b[i_];
|
---|
283 | }
|
---|
284 | }
|
---|
285 | else
|
---|
286 | {
|
---|
287 |
|
---|
288 | //
|
---|
289 | // A = L*L', solve L'*y = b first
|
---|
290 | //
|
---|
291 | b[1] = b[1]/a[1,1];
|
---|
292 | for(i=2; i<=n; i++)
|
---|
293 | {
|
---|
294 | im1 = i-1;
|
---|
295 | v = 0.0;
|
---|
296 | for(i_=1; i_<=im1;i_++)
|
---|
297 | {
|
---|
298 | v += a[i,i_]*b[i_];
|
---|
299 | }
|
---|
300 | b[i] = (b[i]-v)/a[i,i];
|
---|
301 | }
|
---|
302 |
|
---|
303 | //
|
---|
304 | // Solve L'*x = y
|
---|
305 | //
|
---|
306 | b[n] = b[n]/a[n,n];
|
---|
307 | for(i=n-1; i>=1; i--)
|
---|
308 | {
|
---|
309 | ip1 = i+1;
|
---|
310 | v = 0.0;
|
---|
311 | for(i_=ip1; i_<=n;i_++)
|
---|
312 | {
|
---|
313 | v += a[i_,i]*b[i_];
|
---|
314 | }
|
---|
315 | b[i] = (b[i]-v)/a[i,i];
|
---|
316 | }
|
---|
317 | for(i_=1; i_<=n;i_++)
|
---|
318 | {
|
---|
319 | x[i_] = b[i_];
|
---|
320 | }
|
---|
321 | }
|
---|
322 | return result;
|
---|
323 | }
|
---|
324 |
|
---|
325 |
|
---|
326 | public static bool solvespdsystem(double[,] a,
|
---|
327 | double[] b,
|
---|
328 | int n,
|
---|
329 | bool isupper,
|
---|
330 | ref double[] x)
|
---|
331 | {
|
---|
332 | bool result = new bool();
|
---|
333 |
|
---|
334 | a = (double[,])a.Clone();
|
---|
335 | b = (double[])b.Clone();
|
---|
336 |
|
---|
337 | result = cholesky.choleskydecomposition(ref a, n, isupper);
|
---|
338 | if( !result )
|
---|
339 | {
|
---|
340 | return result;
|
---|
341 | }
|
---|
342 | result = solvesystemcholesky(ref a, b, n, isupper, ref x);
|
---|
343 | return result;
|
---|
344 | }
|
---|
345 | }
|
---|
346 | }
|
---|