[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class spdrcond
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | Condition number estimate of a symmetric positive definite matrix.
|
---|
| 35 |
|
---|
| 36 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
| 37 | the algorithm does not return a lower bound of the condition number, but an
|
---|
| 38 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 39 |
|
---|
| 40 | It should be noted that 1-norm and inf-norm of condition numbers of symmetric
|
---|
| 41 | matrices are equal, so the algorithm doesn't take into account the
|
---|
| 42 | differences between these types of norms.
|
---|
| 43 |
|
---|
| 44 | Input parameters:
|
---|
| 45 | A - symmetric positive definite matrix which is given by its
|
---|
| 46 | upper or lower triangle depending on the value of
|
---|
| 47 | IsUpper. Array with elements [0..N-1, 0..N-1].
|
---|
| 48 | N - size of matrix A.
|
---|
| 49 | IsUpper - storage format.
|
---|
| 50 |
|
---|
| 51 | Result:
|
---|
| 52 | 1/LowerBound(cond(A)), if matrix A is positive definite,
|
---|
| 53 | -1, if matrix A is not positive definite, and its condition number
|
---|
| 54 | could not be found by this algorithm.
|
---|
| 55 | *************************************************************************/
|
---|
| 56 | public static double spdmatrixrcond(ref double[,] a,
|
---|
| 57 | int n,
|
---|
| 58 | bool isupper)
|
---|
| 59 | {
|
---|
| 60 | double result = 0;
|
---|
| 61 | double[,] a1 = new double[0,0];
|
---|
| 62 | int i = 0;
|
---|
| 63 | int j = 0;
|
---|
| 64 | int im = 0;
|
---|
| 65 | int jm = 0;
|
---|
| 66 | double v = 0;
|
---|
| 67 | double nrm = 0;
|
---|
| 68 | int[] pivots = new int[0];
|
---|
| 69 |
|
---|
| 70 | a1 = new double[n+1, n+1];
|
---|
| 71 | for(i=1; i<=n; i++)
|
---|
| 72 | {
|
---|
| 73 | if( isupper )
|
---|
| 74 | {
|
---|
| 75 | for(j=i; j<=n; j++)
|
---|
| 76 | {
|
---|
| 77 | a1[i,j] = a[i-1,j-1];
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 | else
|
---|
| 81 | {
|
---|
| 82 | for(j=1; j<=i; j++)
|
---|
| 83 | {
|
---|
| 84 | a1[i,j] = a[i-1,j-1];
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | nrm = 0;
|
---|
| 89 | for(j=1; j<=n; j++)
|
---|
| 90 | {
|
---|
| 91 | v = 0;
|
---|
| 92 | for(i=1; i<=n; i++)
|
---|
| 93 | {
|
---|
| 94 | im = i;
|
---|
| 95 | jm = j;
|
---|
| 96 | if( isupper & j<i )
|
---|
| 97 | {
|
---|
| 98 | im = j;
|
---|
| 99 | jm = i;
|
---|
| 100 | }
|
---|
| 101 | if( !isupper & j>i )
|
---|
| 102 | {
|
---|
| 103 | im = j;
|
---|
| 104 | jm = i;
|
---|
| 105 | }
|
---|
| 106 | v = v+Math.Abs(a1[im,jm]);
|
---|
| 107 | }
|
---|
| 108 | nrm = Math.Max(nrm, v);
|
---|
| 109 | }
|
---|
| 110 | if( cholesky.choleskydecomposition(ref a1, n, isupper) )
|
---|
| 111 | {
|
---|
| 112 | internalcholeskyrcond(ref a1, n, isupper, true, nrm, ref v);
|
---|
| 113 | result = v;
|
---|
| 114 | }
|
---|
| 115 | else
|
---|
| 116 | {
|
---|
| 117 | result = -1;
|
---|
| 118 | }
|
---|
| 119 | return result;
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 |
|
---|
| 123 | /*************************************************************************
|
---|
| 124 | Condition number estimate of a symmetric positive definite matrix given by
|
---|
| 125 | Cholesky decomposition.
|
---|
| 126 |
|
---|
| 127 | The algorithm calculates a lower bound of the condition number. In this
|
---|
| 128 | case, the algorithm does not return a lower bound of the condition number,
|
---|
| 129 | but an inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 130 |
|
---|
| 131 | It should be noted that 1-norm and inf-norm condition numbers of symmetric
|
---|
| 132 | matrices are equal, so the algorithm doesn't take into account the
|
---|
| 133 | differences between these types of norms.
|
---|
| 134 |
|
---|
| 135 | Input parameters:
|
---|
| 136 | CD - Cholesky decomposition of matrix A,
|
---|
| 137 | output of SMatrixCholesky subroutine.
|
---|
| 138 | N - size of matrix A.
|
---|
| 139 |
|
---|
| 140 | Result: 1/LowerBound(cond(A))
|
---|
| 141 | *************************************************************************/
|
---|
| 142 | public static double spdmatrixcholeskyrcond(ref double[,] a,
|
---|
| 143 | int n,
|
---|
| 144 | bool isupper)
|
---|
| 145 | {
|
---|
| 146 | double result = 0;
|
---|
| 147 | double[,] a1 = new double[0,0];
|
---|
| 148 | int i = 0;
|
---|
| 149 | int j = 0;
|
---|
| 150 | double v = 0;
|
---|
| 151 |
|
---|
| 152 | a1 = new double[n+1, n+1];
|
---|
| 153 | for(i=1; i<=n; i++)
|
---|
| 154 | {
|
---|
| 155 | if( isupper )
|
---|
| 156 | {
|
---|
| 157 | for(j=i; j<=n; j++)
|
---|
| 158 | {
|
---|
| 159 | a1[i,j] = a[i-1,j-1];
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | else
|
---|
| 163 | {
|
---|
| 164 | for(j=1; j<=i; j++)
|
---|
| 165 | {
|
---|
| 166 | a1[i,j] = a[i-1,j-1];
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 | internalcholeskyrcond(ref a1, n, isupper, false, 0, ref v);
|
---|
| 171 | result = v;
|
---|
| 172 | return result;
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 |
|
---|
| 176 | public static double rcondspd(double[,] a,
|
---|
| 177 | int n,
|
---|
| 178 | bool isupper)
|
---|
| 179 | {
|
---|
| 180 | double result = 0;
|
---|
| 181 | int i = 0;
|
---|
| 182 | int j = 0;
|
---|
| 183 | int im = 0;
|
---|
| 184 | int jm = 0;
|
---|
| 185 | double v = 0;
|
---|
| 186 | double nrm = 0;
|
---|
| 187 | int[] pivots = new int[0];
|
---|
| 188 |
|
---|
| 189 | a = (double[,])a.Clone();
|
---|
| 190 |
|
---|
| 191 | nrm = 0;
|
---|
| 192 | for(j=1; j<=n; j++)
|
---|
| 193 | {
|
---|
| 194 | v = 0;
|
---|
| 195 | for(i=1; i<=n; i++)
|
---|
| 196 | {
|
---|
| 197 | im = i;
|
---|
| 198 | jm = j;
|
---|
| 199 | if( isupper & j<i )
|
---|
| 200 | {
|
---|
| 201 | im = j;
|
---|
| 202 | jm = i;
|
---|
| 203 | }
|
---|
| 204 | if( !isupper & j>i )
|
---|
| 205 | {
|
---|
| 206 | im = j;
|
---|
| 207 | jm = i;
|
---|
| 208 | }
|
---|
| 209 | v = v+Math.Abs(a[im,jm]);
|
---|
| 210 | }
|
---|
| 211 | nrm = Math.Max(nrm, v);
|
---|
| 212 | }
|
---|
| 213 | if( cholesky.choleskydecomposition(ref a, n, isupper) )
|
---|
| 214 | {
|
---|
| 215 | internalcholeskyrcond(ref a, n, isupper, true, nrm, ref v);
|
---|
| 216 | result = v;
|
---|
| 217 | }
|
---|
| 218 | else
|
---|
| 219 | {
|
---|
| 220 | result = -1;
|
---|
| 221 | }
|
---|
| 222 | return result;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 |
|
---|
| 226 | public static double rcondcholesky(ref double[,] cd,
|
---|
| 227 | int n,
|
---|
| 228 | bool isupper)
|
---|
| 229 | {
|
---|
| 230 | double result = 0;
|
---|
| 231 | double v = 0;
|
---|
| 232 |
|
---|
| 233 | internalcholeskyrcond(ref cd, n, isupper, false, 0, ref v);
|
---|
| 234 | result = v;
|
---|
| 235 | return result;
|
---|
| 236 | }
|
---|
| 237 |
|
---|
| 238 |
|
---|
| 239 | public static void internalcholeskyrcond(ref double[,] chfrm,
|
---|
| 240 | int n,
|
---|
| 241 | bool isupper,
|
---|
| 242 | bool isnormprovided,
|
---|
| 243 | double anorm,
|
---|
| 244 | ref double rcond)
|
---|
| 245 | {
|
---|
| 246 | bool normin = new bool();
|
---|
| 247 | int i = 0;
|
---|
| 248 | int ix = 0;
|
---|
| 249 | int kase = 0;
|
---|
| 250 | double ainvnm = 0;
|
---|
| 251 | double scl = 0;
|
---|
| 252 | double scalel = 0;
|
---|
| 253 | double scaleu = 0;
|
---|
| 254 | double smlnum = 0;
|
---|
| 255 | double[] work0 = new double[0];
|
---|
| 256 | double[] work1 = new double[0];
|
---|
| 257 | double[] work2 = new double[0];
|
---|
| 258 | int[] iwork = new int[0];
|
---|
| 259 | double v = 0;
|
---|
| 260 | int i_ = 0;
|
---|
| 261 |
|
---|
| 262 | System.Diagnostics.Debug.Assert(n>=0);
|
---|
| 263 |
|
---|
| 264 | //
|
---|
| 265 | // Estimate the norm of A.
|
---|
| 266 | //
|
---|
| 267 | if( !isnormprovided )
|
---|
| 268 | {
|
---|
| 269 | kase = 0;
|
---|
| 270 | anorm = 0;
|
---|
| 271 | while( true )
|
---|
| 272 | {
|
---|
| 273 | estnorm.iterativeestimate1norm(n, ref work1, ref work0, ref iwork, ref anorm, ref kase);
|
---|
| 274 | if( kase==0 )
|
---|
| 275 | {
|
---|
| 276 | break;
|
---|
| 277 | }
|
---|
| 278 | if( isupper )
|
---|
| 279 | {
|
---|
| 280 |
|
---|
| 281 | //
|
---|
| 282 | // Multiply by U
|
---|
| 283 | //
|
---|
| 284 | for(i=1; i<=n; i++)
|
---|
| 285 | {
|
---|
| 286 | v = 0.0;
|
---|
| 287 | for(i_=i; i_<=n;i_++)
|
---|
| 288 | {
|
---|
| 289 | v += chfrm[i,i_]*work0[i_];
|
---|
| 290 | }
|
---|
| 291 | work0[i] = v;
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | //
|
---|
| 295 | // Multiply by U'
|
---|
| 296 | //
|
---|
| 297 | for(i=n; i>=1; i--)
|
---|
| 298 | {
|
---|
| 299 | v = 0.0;
|
---|
| 300 | for(i_=1; i_<=i;i_++)
|
---|
| 301 | {
|
---|
| 302 | v += chfrm[i_,i]*work0[i_];
|
---|
| 303 | }
|
---|
| 304 | work0[i] = v;
|
---|
| 305 | }
|
---|
| 306 | }
|
---|
| 307 | else
|
---|
| 308 | {
|
---|
| 309 |
|
---|
| 310 | //
|
---|
| 311 | // Multiply by L'
|
---|
| 312 | //
|
---|
| 313 | for(i=1; i<=n; i++)
|
---|
| 314 | {
|
---|
| 315 | v = 0.0;
|
---|
| 316 | for(i_=i; i_<=n;i_++)
|
---|
| 317 | {
|
---|
| 318 | v += chfrm[i_,i]*work0[i_];
|
---|
| 319 | }
|
---|
| 320 | work0[i] = v;
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | //
|
---|
| 324 | // Multiply by L
|
---|
| 325 | //
|
---|
| 326 | for(i=n; i>=1; i--)
|
---|
| 327 | {
|
---|
| 328 | v = 0.0;
|
---|
| 329 | for(i_=1; i_<=i;i_++)
|
---|
| 330 | {
|
---|
| 331 | v += chfrm[i,i_]*work0[i_];
|
---|
| 332 | }
|
---|
| 333 | work0[i] = v;
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | //
|
---|
| 340 | // Quick return if possible
|
---|
| 341 | //
|
---|
| 342 | rcond = 0;
|
---|
| 343 | if( n==0 )
|
---|
| 344 | {
|
---|
| 345 | rcond = 1;
|
---|
| 346 | return;
|
---|
| 347 | }
|
---|
| 348 | if( (double)(anorm)==(double)(0) )
|
---|
| 349 | {
|
---|
| 350 | return;
|
---|
| 351 | }
|
---|
| 352 | smlnum = AP.Math.MinRealNumber;
|
---|
| 353 |
|
---|
| 354 | //
|
---|
| 355 | // Estimate the 1-norm of inv(A).
|
---|
| 356 | //
|
---|
| 357 | kase = 0;
|
---|
| 358 | normin = false;
|
---|
| 359 | while( true )
|
---|
| 360 | {
|
---|
| 361 | estnorm.iterativeestimate1norm(n, ref work1, ref work0, ref iwork, ref ainvnm, ref kase);
|
---|
| 362 | if( kase==0 )
|
---|
| 363 | {
|
---|
| 364 | break;
|
---|
| 365 | }
|
---|
| 366 | if( isupper )
|
---|
| 367 | {
|
---|
| 368 |
|
---|
| 369 | //
|
---|
| 370 | // Multiply by inv(U').
|
---|
| 371 | //
|
---|
| 372 | trlinsolve.safesolvetriangular(ref chfrm, n, ref work0, ref scalel, isupper, true, false, normin, ref work2);
|
---|
| 373 | normin = true;
|
---|
| 374 |
|
---|
| 375 | //
|
---|
| 376 | // Multiply by inv(U).
|
---|
| 377 | //
|
---|
| 378 | trlinsolve.safesolvetriangular(ref chfrm, n, ref work0, ref scaleu, isupper, false, false, normin, ref work2);
|
---|
| 379 | }
|
---|
| 380 | else
|
---|
| 381 | {
|
---|
| 382 |
|
---|
| 383 | //
|
---|
| 384 | // Multiply by inv(L).
|
---|
| 385 | //
|
---|
| 386 | trlinsolve.safesolvetriangular(ref chfrm, n, ref work0, ref scalel, isupper, false, false, normin, ref work2);
|
---|
| 387 | normin = true;
|
---|
| 388 |
|
---|
| 389 | //
|
---|
| 390 | // Multiply by inv(L').
|
---|
| 391 | //
|
---|
| 392 | trlinsolve.safesolvetriangular(ref chfrm, n, ref work0, ref scaleu, isupper, true, false, normin, ref work2);
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 | //
|
---|
| 396 | // Multiply by 1/SCALE if doing so will not cause overflow.
|
---|
| 397 | //
|
---|
| 398 | scl = scalel*scaleu;
|
---|
| 399 | if( (double)(scl)!=(double)(1) )
|
---|
| 400 | {
|
---|
| 401 | ix = 1;
|
---|
| 402 | for(i=2; i<=n; i++)
|
---|
| 403 | {
|
---|
| 404 | if( (double)(Math.Abs(work0[i]))>(double)(Math.Abs(work0[ix])) )
|
---|
| 405 | {
|
---|
| 406 | ix = i;
|
---|
| 407 | }
|
---|
| 408 | }
|
---|
| 409 | if( (double)(scl)<(double)(Math.Abs(work0[ix])*smlnum) | (double)(scl)==(double)(0) )
|
---|
| 410 | {
|
---|
| 411 | return;
|
---|
| 412 | }
|
---|
| 413 | for(i=1; i<=n; i++)
|
---|
| 414 | {
|
---|
| 415 | work0[i] = work0[i]/scl;
|
---|
| 416 | }
|
---|
| 417 | }
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | //
|
---|
| 421 | // Compute the estimate of the reciprocal condition number.
|
---|
| 422 | //
|
---|
| 423 | if( (double)(ainvnm)!=(double)(0) )
|
---|
| 424 | {
|
---|
| 425 | v = 1/ainvnm;
|
---|
| 426 | rcond = v/anorm;
|
---|
| 427 | }
|
---|
| 428 | }
|
---|
| 429 | }
|
---|
| 430 | }
|
---|