[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class sdet
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Determinant calculation of the matrix given by LDLT decomposition.
|
---|
| 29 |
|
---|
| 30 | Input parameters:
|
---|
| 31 | A - LDLT-decomposition of the matrix,
|
---|
| 32 | output of subroutine SMatrixLDLT.
|
---|
| 33 | Pivots - table of permutations which were made during
|
---|
| 34 | LDLT decomposition, output of subroutine SMatrixLDLT.
|
---|
| 35 | N - size of matrix A.
|
---|
| 36 | IsUpper - matrix storage format. The value is equal to the input
|
---|
| 37 | parameter of subroutine SMatrixLDLT.
|
---|
| 38 |
|
---|
| 39 | Result:
|
---|
| 40 | matrix determinant.
|
---|
| 41 |
|
---|
| 42 | -- ALGLIB --
|
---|
| 43 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
| 44 | *************************************************************************/
|
---|
| 45 | public static double smatrixldltdet(ref double[,] a,
|
---|
| 46 | ref int[] pivots,
|
---|
| 47 | int n,
|
---|
| 48 | bool isupper)
|
---|
| 49 | {
|
---|
| 50 | double result = 0;
|
---|
| 51 | int k = 0;
|
---|
| 52 |
|
---|
| 53 | result = 1;
|
---|
| 54 | if( isupper )
|
---|
| 55 | {
|
---|
| 56 | k = 0;
|
---|
| 57 | while( k<n )
|
---|
| 58 | {
|
---|
| 59 | if( pivots[k]>=0 )
|
---|
| 60 | {
|
---|
| 61 | result = result*a[k,k];
|
---|
| 62 | k = k+1;
|
---|
| 63 | }
|
---|
| 64 | else
|
---|
| 65 | {
|
---|
| 66 | result = result*(a[k,k]*a[k+1,k+1]-a[k,k+1]*a[k,k+1]);
|
---|
| 67 | k = k+2;
|
---|
| 68 | }
|
---|
| 69 | }
|
---|
| 70 | }
|
---|
| 71 | else
|
---|
| 72 | {
|
---|
| 73 | k = n-1;
|
---|
| 74 | while( k>=0 )
|
---|
| 75 | {
|
---|
| 76 | if( pivots[k]>=0 )
|
---|
| 77 | {
|
---|
| 78 | result = result*a[k,k];
|
---|
| 79 | k = k-1;
|
---|
| 80 | }
|
---|
| 81 | else
|
---|
| 82 | {
|
---|
| 83 | result = result*(a[k-1,k-1]*a[k,k]-a[k,k-1]*a[k,k-1]);
|
---|
| 84 | k = k-2;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | return result;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 |
|
---|
| 92 | /*************************************************************************
|
---|
| 93 | Determinant calculation of the symmetric matrix
|
---|
| 94 |
|
---|
| 95 | Input parameters:
|
---|
| 96 | A - matrix. Array with elements [0..N-1, 0..N-1].
|
---|
| 97 | N - size of matrix A.
|
---|
| 98 | IsUpper - if IsUpper = True, then symmetric matrix A is given by its
|
---|
| 99 | upper triangle, and the lower triangle isnt used by
|
---|
| 100 | subroutine. Similarly, if IsUpper = False, then A is given
|
---|
| 101 | by its lower triangle.
|
---|
| 102 |
|
---|
| 103 | Result:
|
---|
| 104 | determinant of matrix A.
|
---|
| 105 |
|
---|
| 106 | -- ALGLIB --
|
---|
| 107 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
| 108 | *************************************************************************/
|
---|
| 109 | public static double smatrixdet(double[,] a,
|
---|
| 110 | int n,
|
---|
| 111 | bool isupper)
|
---|
| 112 | {
|
---|
| 113 | double result = 0;
|
---|
| 114 | int[] pivots = new int[0];
|
---|
| 115 |
|
---|
| 116 | a = (double[,])a.Clone();
|
---|
| 117 |
|
---|
| 118 | ldlt.smatrixldlt(ref a, n, isupper, ref pivots);
|
---|
| 119 | result = smatrixldltdet(ref a, ref pivots, n, isupper);
|
---|
| 120 | return result;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 |
|
---|
| 124 | public static double determinantldlt(ref double[,] a,
|
---|
| 125 | ref int[] pivots,
|
---|
| 126 | int n,
|
---|
| 127 | bool isupper)
|
---|
| 128 | {
|
---|
| 129 | double result = 0;
|
---|
| 130 | int k = 0;
|
---|
| 131 |
|
---|
| 132 | result = 1;
|
---|
| 133 | if( isupper )
|
---|
| 134 | {
|
---|
| 135 | k = 1;
|
---|
| 136 | while( k<=n )
|
---|
| 137 | {
|
---|
| 138 | if( pivots[k]>0 )
|
---|
| 139 | {
|
---|
| 140 | result = result*a[k,k];
|
---|
| 141 | k = k+1;
|
---|
| 142 | }
|
---|
| 143 | else
|
---|
| 144 | {
|
---|
| 145 | result = result*(a[k,k]*a[k+1,k+1]-a[k,k+1]*a[k,k+1]);
|
---|
| 146 | k = k+2;
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | else
|
---|
| 151 | {
|
---|
| 152 | k = n;
|
---|
| 153 | while( k>=1 )
|
---|
| 154 | {
|
---|
| 155 | if( pivots[k]>0 )
|
---|
| 156 | {
|
---|
| 157 | result = result*a[k,k];
|
---|
| 158 | k = k-1;
|
---|
| 159 | }
|
---|
| 160 | else
|
---|
| 161 | {
|
---|
| 162 | result = result*(a[k-1,k-1]*a[k,k]-a[k,k-1]*a[k,k-1]);
|
---|
| 163 | k = k-2;
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 | }
|
---|
| 167 | return result;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | public static double determinantsymmetric(double[,] a,
|
---|
| 172 | int n,
|
---|
| 173 | bool isupper)
|
---|
| 174 | {
|
---|
| 175 | double result = 0;
|
---|
| 176 | int[] pivots = new int[0];
|
---|
| 177 |
|
---|
| 178 | a = (double[,])a.Clone();
|
---|
| 179 |
|
---|
| 180 | ldlt.ldltdecomposition(ref a, n, isupper, ref pivots);
|
---|
| 181 | result = determinantldlt(ref a, ref pivots, n, isupper);
|
---|
| 182 | return result;
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 | }
|
---|