1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class rcond
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Estimate of a matrix condition number (1-norm)
|
---|
35 |
|
---|
36 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
37 | the algorithm does not return a lower bound of the condition number, but an
|
---|
38 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
39 |
|
---|
40 | Input parameters:
|
---|
41 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
42 | N - size of matrix A.
|
---|
43 |
|
---|
44 | Result: 1/LowerBound(cond(A))
|
---|
45 | *************************************************************************/
|
---|
46 | public static double rmatrixrcond1(ref double[,] a,
|
---|
47 | int n)
|
---|
48 | {
|
---|
49 | double result = 0;
|
---|
50 | int i = 0;
|
---|
51 | double[,] a1 = new double[0,0];
|
---|
52 | int i_ = 0;
|
---|
53 | int i1_ = 0;
|
---|
54 |
|
---|
55 | System.Diagnostics.Debug.Assert(n>=1, "RMatrixRCond1: N<1!");
|
---|
56 | a1 = new double[n+1, n+1];
|
---|
57 | for(i=1; i<=n; i++)
|
---|
58 | {
|
---|
59 | i1_ = (0) - (1);
|
---|
60 | for(i_=1; i_<=n;i_++)
|
---|
61 | {
|
---|
62 | a1[i,i_] = a[i-1,i_+i1_];
|
---|
63 | }
|
---|
64 | }
|
---|
65 | result = rcond1(a1, n);
|
---|
66 | return result;
|
---|
67 | }
|
---|
68 |
|
---|
69 |
|
---|
70 | /*************************************************************************
|
---|
71 | Estimate of the condition number of a matrix given by its LU decomposition (1-norm)
|
---|
72 |
|
---|
73 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
74 | the algorithm does not return a lower bound of the condition number, but an
|
---|
75 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
76 |
|
---|
77 | Input parameters:
|
---|
78 | LUDcmp - LU decomposition of a matrix in compact form. Output of
|
---|
79 | the RMatrixLU subroutine.
|
---|
80 | N - size of matrix A.
|
---|
81 |
|
---|
82 | Result: 1/LowerBound(cond(A))
|
---|
83 | *************************************************************************/
|
---|
84 | public static double rmatrixlurcond1(ref double[,] ludcmp,
|
---|
85 | int n)
|
---|
86 | {
|
---|
87 | double result = 0;
|
---|
88 | int i = 0;
|
---|
89 | double[,] a1 = new double[0,0];
|
---|
90 | int i_ = 0;
|
---|
91 | int i1_ = 0;
|
---|
92 |
|
---|
93 | System.Diagnostics.Debug.Assert(n>=1, "RMatrixLURCond1: N<1!");
|
---|
94 | a1 = new double[n+1, n+1];
|
---|
95 | for(i=1; i<=n; i++)
|
---|
96 | {
|
---|
97 | i1_ = (0) - (1);
|
---|
98 | for(i_=1; i_<=n;i_++)
|
---|
99 | {
|
---|
100 | a1[i,i_] = ludcmp[i-1,i_+i1_];
|
---|
101 | }
|
---|
102 | }
|
---|
103 | result = rcond1lu(ref a1, n);
|
---|
104 | return result;
|
---|
105 | }
|
---|
106 |
|
---|
107 |
|
---|
108 | /*************************************************************************
|
---|
109 | Estimate of a matrix condition number (infinity-norm).
|
---|
110 |
|
---|
111 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
112 | the algorithm does not return a lower bound of the condition number, but an
|
---|
113 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
114 |
|
---|
115 | Input parameters:
|
---|
116 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
117 | N - size of matrix A.
|
---|
118 |
|
---|
119 | Result: 1/LowerBound(cond(A))
|
---|
120 | *************************************************************************/
|
---|
121 | public static double rmatrixrcondinf(ref double[,] a,
|
---|
122 | int n)
|
---|
123 | {
|
---|
124 | double result = 0;
|
---|
125 | int i = 0;
|
---|
126 | double[,] a1 = new double[0,0];
|
---|
127 | int i_ = 0;
|
---|
128 | int i1_ = 0;
|
---|
129 |
|
---|
130 | System.Diagnostics.Debug.Assert(n>=1, "RMatrixRCondInf: N<1!");
|
---|
131 | a1 = new double[n+1, n+1];
|
---|
132 | for(i=1; i<=n; i++)
|
---|
133 | {
|
---|
134 | i1_ = (0) - (1);
|
---|
135 | for(i_=1; i_<=n;i_++)
|
---|
136 | {
|
---|
137 | a1[i,i_] = a[i-1,i_+i1_];
|
---|
138 | }
|
---|
139 | }
|
---|
140 | result = rcondinf(a1, n);
|
---|
141 | return result;
|
---|
142 | }
|
---|
143 |
|
---|
144 |
|
---|
145 | /*************************************************************************
|
---|
146 | Estimate of the condition number of a matrix given by its LU decomposition
|
---|
147 | (infinity norm).
|
---|
148 |
|
---|
149 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
150 | the algorithm does not return a lower bound of the condition number, but an
|
---|
151 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
152 |
|
---|
153 | Input parameters:
|
---|
154 | LUDcmp - LU decomposition of a matrix in compact form. Output of
|
---|
155 | the RMatrixLU subroutine.
|
---|
156 | N - size of matrix A.
|
---|
157 |
|
---|
158 | Result: 1/LowerBound(cond(A))
|
---|
159 | *************************************************************************/
|
---|
160 | public static double rmatrixlurcondinf(ref double[,] ludcmp,
|
---|
161 | int n)
|
---|
162 | {
|
---|
163 | double result = 0;
|
---|
164 | int i = 0;
|
---|
165 | double[,] a1 = new double[0,0];
|
---|
166 | int i_ = 0;
|
---|
167 | int i1_ = 0;
|
---|
168 |
|
---|
169 | System.Diagnostics.Debug.Assert(n>=1, "RMatrixLURCondInf: N<1!");
|
---|
170 | a1 = new double[n+1, n+1];
|
---|
171 | for(i=1; i<=n; i++)
|
---|
172 | {
|
---|
173 | i1_ = (0) - (1);
|
---|
174 | for(i_=1; i_<=n;i_++)
|
---|
175 | {
|
---|
176 | a1[i,i_] = ludcmp[i-1,i_+i1_];
|
---|
177 | }
|
---|
178 | }
|
---|
179 | result = rcondinflu(ref a1, n);
|
---|
180 | return result;
|
---|
181 | }
|
---|
182 |
|
---|
183 |
|
---|
184 | public static double rcond1(double[,] a,
|
---|
185 | int n)
|
---|
186 | {
|
---|
187 | double result = 0;
|
---|
188 | int i = 0;
|
---|
189 | int j = 0;
|
---|
190 | double v = 0;
|
---|
191 | double nrm = 0;
|
---|
192 | int[] pivots = new int[0];
|
---|
193 |
|
---|
194 | a = (double[,])a.Clone();
|
---|
195 |
|
---|
196 | nrm = 0;
|
---|
197 | for(j=1; j<=n; j++)
|
---|
198 | {
|
---|
199 | v = 0;
|
---|
200 | for(i=1; i<=n; i++)
|
---|
201 | {
|
---|
202 | v = v+Math.Abs(a[i,j]);
|
---|
203 | }
|
---|
204 | nrm = Math.Max(nrm, v);
|
---|
205 | }
|
---|
206 | lu.ludecomposition(ref a, n, n, ref pivots);
|
---|
207 | internalestimatercondlu(ref a, n, true, true, nrm, ref v);
|
---|
208 | result = v;
|
---|
209 | return result;
|
---|
210 | }
|
---|
211 |
|
---|
212 |
|
---|
213 | public static double rcond1lu(ref double[,] ludcmp,
|
---|
214 | int n)
|
---|
215 | {
|
---|
216 | double result = 0;
|
---|
217 | double v = 0;
|
---|
218 |
|
---|
219 | internalestimatercondlu(ref ludcmp, n, true, false, 0, ref v);
|
---|
220 | result = v;
|
---|
221 | return result;
|
---|
222 | }
|
---|
223 |
|
---|
224 |
|
---|
225 | public static double rcondinf(double[,] a,
|
---|
226 | int n)
|
---|
227 | {
|
---|
228 | double result = 0;
|
---|
229 | int i = 0;
|
---|
230 | int j = 0;
|
---|
231 | double v = 0;
|
---|
232 | double nrm = 0;
|
---|
233 | int[] pivots = new int[0];
|
---|
234 |
|
---|
235 | a = (double[,])a.Clone();
|
---|
236 |
|
---|
237 | nrm = 0;
|
---|
238 | for(i=1; i<=n; i++)
|
---|
239 | {
|
---|
240 | v = 0;
|
---|
241 | for(j=1; j<=n; j++)
|
---|
242 | {
|
---|
243 | v = v+Math.Abs(a[i,j]);
|
---|
244 | }
|
---|
245 | nrm = Math.Max(nrm, v);
|
---|
246 | }
|
---|
247 | lu.ludecomposition(ref a, n, n, ref pivots);
|
---|
248 | internalestimatercondlu(ref a, n, false, true, nrm, ref v);
|
---|
249 | result = v;
|
---|
250 | return result;
|
---|
251 | }
|
---|
252 |
|
---|
253 |
|
---|
254 | public static double rcondinflu(ref double[,] ludcmp,
|
---|
255 | int n)
|
---|
256 | {
|
---|
257 | double result = 0;
|
---|
258 | double v = 0;
|
---|
259 |
|
---|
260 | internalestimatercondlu(ref ludcmp, n, false, false, 0, ref v);
|
---|
261 | result = v;
|
---|
262 | return result;
|
---|
263 | }
|
---|
264 |
|
---|
265 |
|
---|
266 | private static void internalestimatercondlu(ref double[,] ludcmp,
|
---|
267 | int n,
|
---|
268 | bool onenorm,
|
---|
269 | bool isanormprovided,
|
---|
270 | double anorm,
|
---|
271 | ref double rc)
|
---|
272 | {
|
---|
273 | double[] work0 = new double[0];
|
---|
274 | double[] work1 = new double[0];
|
---|
275 | double[] work2 = new double[0];
|
---|
276 | double[] work3 = new double[0];
|
---|
277 | int[] iwork = new int[0];
|
---|
278 | double v = 0;
|
---|
279 | bool normin = new bool();
|
---|
280 | int i = 0;
|
---|
281 | int im1 = 0;
|
---|
282 | int ip1 = 0;
|
---|
283 | int ix = 0;
|
---|
284 | int kase = 0;
|
---|
285 | int kase1 = 0;
|
---|
286 | double ainvnm = 0;
|
---|
287 | double ascale = 0;
|
---|
288 | double sl = 0;
|
---|
289 | double smlnum = 0;
|
---|
290 | double su = 0;
|
---|
291 | bool mupper = new bool();
|
---|
292 | bool mtrans = new bool();
|
---|
293 | bool munit = new bool();
|
---|
294 | int i_ = 0;
|
---|
295 |
|
---|
296 |
|
---|
297 | //
|
---|
298 | // Quick return if possible
|
---|
299 | //
|
---|
300 | if( n==0 )
|
---|
301 | {
|
---|
302 | rc = 1;
|
---|
303 | return;
|
---|
304 | }
|
---|
305 |
|
---|
306 | //
|
---|
307 | // init
|
---|
308 | //
|
---|
309 | if( onenorm )
|
---|
310 | {
|
---|
311 | kase1 = 1;
|
---|
312 | }
|
---|
313 | else
|
---|
314 | {
|
---|
315 | kase1 = 2;
|
---|
316 | }
|
---|
317 | mupper = true;
|
---|
318 | mtrans = true;
|
---|
319 | munit = true;
|
---|
320 | work0 = new double[n+1];
|
---|
321 | work1 = new double[n+1];
|
---|
322 | work2 = new double[n+1];
|
---|
323 | work3 = new double[n+1];
|
---|
324 | iwork = new int[n+1];
|
---|
325 |
|
---|
326 | //
|
---|
327 | // Estimate the norm of A.
|
---|
328 | //
|
---|
329 | if( !isanormprovided )
|
---|
330 | {
|
---|
331 | kase = 0;
|
---|
332 | anorm = 0;
|
---|
333 | while( true )
|
---|
334 | {
|
---|
335 | internalestimatenorm(n, ref work1, ref work0, ref iwork, ref anorm, ref kase);
|
---|
336 | if( kase==0 )
|
---|
337 | {
|
---|
338 | break;
|
---|
339 | }
|
---|
340 | if( kase==kase1 )
|
---|
341 | {
|
---|
342 |
|
---|
343 | //
|
---|
344 | // Multiply by U
|
---|
345 | //
|
---|
346 | for(i=1; i<=n; i++)
|
---|
347 | {
|
---|
348 | v = 0.0;
|
---|
349 | for(i_=i; i_<=n;i_++)
|
---|
350 | {
|
---|
351 | v += ludcmp[i,i_]*work0[i_];
|
---|
352 | }
|
---|
353 | work0[i] = v;
|
---|
354 | }
|
---|
355 |
|
---|
356 | //
|
---|
357 | // Multiply by L
|
---|
358 | //
|
---|
359 | for(i=n; i>=1; i--)
|
---|
360 | {
|
---|
361 | im1 = i-1;
|
---|
362 | if( i>1 )
|
---|
363 | {
|
---|
364 | v = 0.0;
|
---|
365 | for(i_=1; i_<=im1;i_++)
|
---|
366 | {
|
---|
367 | v += ludcmp[i,i_]*work0[i_];
|
---|
368 | }
|
---|
369 | }
|
---|
370 | else
|
---|
371 | {
|
---|
372 | v = 0;
|
---|
373 | }
|
---|
374 | work0[i] = work0[i]+v;
|
---|
375 | }
|
---|
376 | }
|
---|
377 | else
|
---|
378 | {
|
---|
379 |
|
---|
380 | //
|
---|
381 | // Multiply by L'
|
---|
382 | //
|
---|
383 | for(i=1; i<=n; i++)
|
---|
384 | {
|
---|
385 | ip1 = i+1;
|
---|
386 | v = 0.0;
|
---|
387 | for(i_=ip1; i_<=n;i_++)
|
---|
388 | {
|
---|
389 | v += ludcmp[i_,i]*work0[i_];
|
---|
390 | }
|
---|
391 | work0[i] = work0[i]+v;
|
---|
392 | }
|
---|
393 |
|
---|
394 | //
|
---|
395 | // Multiply by U'
|
---|
396 | //
|
---|
397 | for(i=n; i>=1; i--)
|
---|
398 | {
|
---|
399 | v = 0.0;
|
---|
400 | for(i_=1; i_<=i;i_++)
|
---|
401 | {
|
---|
402 | v += ludcmp[i_,i]*work0[i_];
|
---|
403 | }
|
---|
404 | work0[i] = v;
|
---|
405 | }
|
---|
406 | }
|
---|
407 | }
|
---|
408 | }
|
---|
409 |
|
---|
410 | //
|
---|
411 | // Quick return if possible
|
---|
412 | //
|
---|
413 | rc = 0;
|
---|
414 | if( (double)(anorm)==(double)(0) )
|
---|
415 | {
|
---|
416 | return;
|
---|
417 | }
|
---|
418 |
|
---|
419 | //
|
---|
420 | // Estimate the norm of inv(A).
|
---|
421 | //
|
---|
422 | smlnum = AP.Math.MinRealNumber;
|
---|
423 | ainvnm = 0;
|
---|
424 | normin = false;
|
---|
425 | kase = 0;
|
---|
426 | while( true )
|
---|
427 | {
|
---|
428 | internalestimatenorm(n, ref work1, ref work0, ref iwork, ref ainvnm, ref kase);
|
---|
429 | if( kase==0 )
|
---|
430 | {
|
---|
431 | break;
|
---|
432 | }
|
---|
433 | if( kase==kase1 )
|
---|
434 | {
|
---|
435 |
|
---|
436 | //
|
---|
437 | // Multiply by inv(L).
|
---|
438 | //
|
---|
439 | trlinsolve.safesolvetriangular(ref ludcmp, n, ref work0, ref sl, !mupper, !mtrans, munit, normin, ref work2);
|
---|
440 |
|
---|
441 | //
|
---|
442 | // Multiply by inv(U).
|
---|
443 | //
|
---|
444 | trlinsolve.safesolvetriangular(ref ludcmp, n, ref work0, ref su, mupper, !mtrans, !munit, normin, ref work3);
|
---|
445 | }
|
---|
446 | else
|
---|
447 | {
|
---|
448 |
|
---|
449 | //
|
---|
450 | // Multiply by inv(U').
|
---|
451 | //
|
---|
452 | trlinsolve.safesolvetriangular(ref ludcmp, n, ref work0, ref su, mupper, mtrans, !munit, normin, ref work3);
|
---|
453 |
|
---|
454 | //
|
---|
455 | // Multiply by inv(L').
|
---|
456 | //
|
---|
457 | trlinsolve.safesolvetriangular(ref ludcmp, n, ref work0, ref sl, !mupper, mtrans, munit, normin, ref work2);
|
---|
458 | }
|
---|
459 |
|
---|
460 | //
|
---|
461 | // Divide X by 1/(SL*SU) if doing so will not cause overflow.
|
---|
462 | //
|
---|
463 | ascale = sl*su;
|
---|
464 | normin = true;
|
---|
465 | if( (double)(ascale)!=(double)(1) )
|
---|
466 | {
|
---|
467 | ix = 1;
|
---|
468 | for(i=2; i<=n; i++)
|
---|
469 | {
|
---|
470 | if( (double)(Math.Abs(work0[i]))>(double)(Math.Abs(work0[ix])) )
|
---|
471 | {
|
---|
472 | ix = i;
|
---|
473 | }
|
---|
474 | }
|
---|
475 | if( (double)(ascale)<(double)(Math.Abs(work0[ix])*smlnum) | (double)(ascale)==(double)(0) )
|
---|
476 | {
|
---|
477 | return;
|
---|
478 | }
|
---|
479 | for(i=1; i<=n; i++)
|
---|
480 | {
|
---|
481 | work0[i] = work0[i]/ascale;
|
---|
482 | }
|
---|
483 | }
|
---|
484 | }
|
---|
485 |
|
---|
486 | //
|
---|
487 | // Compute the estimate of the reciprocal condition number.
|
---|
488 | //
|
---|
489 | if( (double)(ainvnm)!=(double)(0) )
|
---|
490 | {
|
---|
491 | rc = 1/ainvnm;
|
---|
492 | rc = rc/anorm;
|
---|
493 | }
|
---|
494 | }
|
---|
495 |
|
---|
496 |
|
---|
497 | private static void internalestimatenorm(int n,
|
---|
498 | ref double[] v,
|
---|
499 | ref double[] x,
|
---|
500 | ref int[] isgn,
|
---|
501 | ref double est,
|
---|
502 | ref int kase)
|
---|
503 | {
|
---|
504 | int itmax = 0;
|
---|
505 | int i = 0;
|
---|
506 | double t = 0;
|
---|
507 | bool flg = new bool();
|
---|
508 | int positer = 0;
|
---|
509 | int posj = 0;
|
---|
510 | int posjlast = 0;
|
---|
511 | int posjump = 0;
|
---|
512 | int posaltsgn = 0;
|
---|
513 | int posestold = 0;
|
---|
514 | int postemp = 0;
|
---|
515 | int i_ = 0;
|
---|
516 |
|
---|
517 | itmax = 5;
|
---|
518 | posaltsgn = n+1;
|
---|
519 | posestold = n+2;
|
---|
520 | postemp = n+3;
|
---|
521 | positer = n+1;
|
---|
522 | posj = n+2;
|
---|
523 | posjlast = n+3;
|
---|
524 | posjump = n+4;
|
---|
525 | if( kase==0 )
|
---|
526 | {
|
---|
527 | v = new double[n+3+1];
|
---|
528 | x = new double[n+1];
|
---|
529 | isgn = new int[n+4+1];
|
---|
530 | t = (double)(1)/(double)(n);
|
---|
531 | for(i=1; i<=n; i++)
|
---|
532 | {
|
---|
533 | x[i] = t;
|
---|
534 | }
|
---|
535 | kase = 1;
|
---|
536 | isgn[posjump] = 1;
|
---|
537 | return;
|
---|
538 | }
|
---|
539 |
|
---|
540 | //
|
---|
541 | // ................ ENTRY (JUMP = 1)
|
---|
542 | // FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
|
---|
543 | //
|
---|
544 | if( isgn[posjump]==1 )
|
---|
545 | {
|
---|
546 | if( n==1 )
|
---|
547 | {
|
---|
548 | v[1] = x[1];
|
---|
549 | est = Math.Abs(v[1]);
|
---|
550 | kase = 0;
|
---|
551 | return;
|
---|
552 | }
|
---|
553 | est = 0;
|
---|
554 | for(i=1; i<=n; i++)
|
---|
555 | {
|
---|
556 | est = est+Math.Abs(x[i]);
|
---|
557 | }
|
---|
558 | for(i=1; i<=n; i++)
|
---|
559 | {
|
---|
560 | if( (double)(x[i])>=(double)(0) )
|
---|
561 | {
|
---|
562 | x[i] = 1;
|
---|
563 | }
|
---|
564 | else
|
---|
565 | {
|
---|
566 | x[i] = -1;
|
---|
567 | }
|
---|
568 | isgn[i] = Math.Sign(x[i]);
|
---|
569 | }
|
---|
570 | kase = 2;
|
---|
571 | isgn[posjump] = 2;
|
---|
572 | return;
|
---|
573 | }
|
---|
574 |
|
---|
575 | //
|
---|
576 | // ................ ENTRY (JUMP = 2)
|
---|
577 | // FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X.
|
---|
578 | //
|
---|
579 | if( isgn[posjump]==2 )
|
---|
580 | {
|
---|
581 | isgn[posj] = 1;
|
---|
582 | for(i=2; i<=n; i++)
|
---|
583 | {
|
---|
584 | if( (double)(Math.Abs(x[i]))>(double)(Math.Abs(x[isgn[posj]])) )
|
---|
585 | {
|
---|
586 | isgn[posj] = i;
|
---|
587 | }
|
---|
588 | }
|
---|
589 | isgn[positer] = 2;
|
---|
590 |
|
---|
591 | //
|
---|
592 | // MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
|
---|
593 | //
|
---|
594 | for(i=1; i<=n; i++)
|
---|
595 | {
|
---|
596 | x[i] = 0;
|
---|
597 | }
|
---|
598 | x[isgn[posj]] = 1;
|
---|
599 | kase = 1;
|
---|
600 | isgn[posjump] = 3;
|
---|
601 | return;
|
---|
602 | }
|
---|
603 |
|
---|
604 | //
|
---|
605 | // ................ ENTRY (JUMP = 3)
|
---|
606 | // X HAS BEEN OVERWRITTEN BY A*X.
|
---|
607 | //
|
---|
608 | if( isgn[posjump]==3 )
|
---|
609 | {
|
---|
610 | for(i_=1; i_<=n;i_++)
|
---|
611 | {
|
---|
612 | v[i_] = x[i_];
|
---|
613 | }
|
---|
614 | v[posestold] = est;
|
---|
615 | est = 0;
|
---|
616 | for(i=1; i<=n; i++)
|
---|
617 | {
|
---|
618 | est = est+Math.Abs(v[i]);
|
---|
619 | }
|
---|
620 | flg = false;
|
---|
621 | for(i=1; i<=n; i++)
|
---|
622 | {
|
---|
623 | if( (double)(x[i])>=(double)(0) & isgn[i]<0 | (double)(x[i])<(double)(0) & isgn[i]>=0 )
|
---|
624 | {
|
---|
625 | flg = true;
|
---|
626 | }
|
---|
627 | }
|
---|
628 |
|
---|
629 | //
|
---|
630 | // REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
|
---|
631 | // OR MAY BE CYCLING.
|
---|
632 | //
|
---|
633 | if( !flg | (double)(est)<=(double)(v[posestold]) )
|
---|
634 | {
|
---|
635 | v[posaltsgn] = 1;
|
---|
636 | for(i=1; i<=n; i++)
|
---|
637 | {
|
---|
638 | x[i] = v[posaltsgn]*(1+((double)(i-1))/((double)(n-1)));
|
---|
639 | v[posaltsgn] = -v[posaltsgn];
|
---|
640 | }
|
---|
641 | kase = 1;
|
---|
642 | isgn[posjump] = 5;
|
---|
643 | return;
|
---|
644 | }
|
---|
645 | for(i=1; i<=n; i++)
|
---|
646 | {
|
---|
647 | if( (double)(x[i])>=(double)(0) )
|
---|
648 | {
|
---|
649 | x[i] = 1;
|
---|
650 | isgn[i] = 1;
|
---|
651 | }
|
---|
652 | else
|
---|
653 | {
|
---|
654 | x[i] = -1;
|
---|
655 | isgn[i] = -1;
|
---|
656 | }
|
---|
657 | }
|
---|
658 | kase = 2;
|
---|
659 | isgn[posjump] = 4;
|
---|
660 | return;
|
---|
661 | }
|
---|
662 |
|
---|
663 | //
|
---|
664 | // ................ ENTRY (JUMP = 4)
|
---|
665 | // X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X.
|
---|
666 | //
|
---|
667 | if( isgn[posjump]==4 )
|
---|
668 | {
|
---|
669 | isgn[posjlast] = isgn[posj];
|
---|
670 | isgn[posj] = 1;
|
---|
671 | for(i=2; i<=n; i++)
|
---|
672 | {
|
---|
673 | if( (double)(Math.Abs(x[i]))>(double)(Math.Abs(x[isgn[posj]])) )
|
---|
674 | {
|
---|
675 | isgn[posj] = i;
|
---|
676 | }
|
---|
677 | }
|
---|
678 | if( (double)(x[isgn[posjlast]])!=(double)(Math.Abs(x[isgn[posj]])) & isgn[positer]<itmax )
|
---|
679 | {
|
---|
680 | isgn[positer] = isgn[positer]+1;
|
---|
681 | for(i=1; i<=n; i++)
|
---|
682 | {
|
---|
683 | x[i] = 0;
|
---|
684 | }
|
---|
685 | x[isgn[posj]] = 1;
|
---|
686 | kase = 1;
|
---|
687 | isgn[posjump] = 3;
|
---|
688 | return;
|
---|
689 | }
|
---|
690 |
|
---|
691 | //
|
---|
692 | // ITERATION COMPLETE. FINAL STAGE.
|
---|
693 | //
|
---|
694 | v[posaltsgn] = 1;
|
---|
695 | for(i=1; i<=n; i++)
|
---|
696 | {
|
---|
697 | x[i] = v[posaltsgn]*(1+((double)(i-1))/((double)(n-1)));
|
---|
698 | v[posaltsgn] = -v[posaltsgn];
|
---|
699 | }
|
---|
700 | kase = 1;
|
---|
701 | isgn[posjump] = 5;
|
---|
702 | return;
|
---|
703 | }
|
---|
704 |
|
---|
705 | //
|
---|
706 | // ................ ENTRY (JUMP = 5)
|
---|
707 | // X HAS BEEN OVERWRITTEN BY A*X.
|
---|
708 | //
|
---|
709 | if( isgn[posjump]==5 )
|
---|
710 | {
|
---|
711 | v[postemp] = 0;
|
---|
712 | for(i=1; i<=n; i++)
|
---|
713 | {
|
---|
714 | v[postemp] = v[postemp]+Math.Abs(x[i]);
|
---|
715 | }
|
---|
716 | v[postemp] = 2*v[postemp]/(3*n);
|
---|
717 | if( (double)(v[postemp])>(double)(est) )
|
---|
718 | {
|
---|
719 | for(i_=1; i_<=n;i_++)
|
---|
720 | {
|
---|
721 | v[i_] = x[i_];
|
---|
722 | }
|
---|
723 | est = v[postemp];
|
---|
724 | }
|
---|
725 | kase = 0;
|
---|
726 | return;
|
---|
727 | }
|
---|
728 | }
|
---|
729 | }
|
---|
730 | }
|
---|