1 | /*************************************************************************
|
---|
2 | Cephes Math Library Release 2.8: June, 2000
|
---|
3 | Copyright by Stephen L. Moshier
|
---|
4 |
|
---|
5 | Contributors:
|
---|
6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
7 | pseudocode.
|
---|
8 |
|
---|
9 | See subroutines comments for additional copyrights.
|
---|
10 |
|
---|
11 | >>> SOURCE LICENSE >>>
|
---|
12 | This program is free software; you can redistribute it and/or modify
|
---|
13 | it under the terms of the GNU General Public License as published by
|
---|
14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
15 | License, or (at your option) any later version.
|
---|
16 |
|
---|
17 | This program is distributed in the hope that it will be useful,
|
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | GNU General Public License for more details.
|
---|
21 |
|
---|
22 | A copy of the GNU General Public License is available at
|
---|
23 | http://www.fsf.org/licensing/licenses
|
---|
24 |
|
---|
25 | >>> END OF LICENSE >>>
|
---|
26 | *************************************************************************/
|
---|
27 |
|
---|
28 | using System;
|
---|
29 |
|
---|
30 | namespace alglib
|
---|
31 | {
|
---|
32 | public class psif
|
---|
33 | {
|
---|
34 | /*************************************************************************
|
---|
35 | Psi (digamma) function
|
---|
36 |
|
---|
37 | d -
|
---|
38 | psi(x) = -- ln | (x)
|
---|
39 | dx
|
---|
40 |
|
---|
41 | is the logarithmic derivative of the gamma function.
|
---|
42 | For integer x,
|
---|
43 | n-1
|
---|
44 | -
|
---|
45 | psi(n) = -EUL + > 1/k.
|
---|
46 | -
|
---|
47 | k=1
|
---|
48 |
|
---|
49 | This formula is used for 0 < n <= 10. If x is negative, it
|
---|
50 | is transformed to a positive argument by the reflection
|
---|
51 | formula psi(1-x) = psi(x) + pi cot(pi x).
|
---|
52 | For general positive x, the argument is made greater than 10
|
---|
53 | using the recurrence psi(x+1) = psi(x) + 1/x.
|
---|
54 | Then the following asymptotic expansion is applied:
|
---|
55 |
|
---|
56 | inf. B
|
---|
57 | - 2k
|
---|
58 | psi(x) = log(x) - 1/2x - > -------
|
---|
59 | - 2k
|
---|
60 | k=1 2k x
|
---|
61 |
|
---|
62 | where the B2k are Bernoulli numbers.
|
---|
63 |
|
---|
64 | ACCURACY:
|
---|
65 | Relative error (except absolute when |psi| < 1):
|
---|
66 | arithmetic domain # trials peak rms
|
---|
67 | IEEE 0,30 30000 1.3e-15 1.4e-16
|
---|
68 | IEEE -30,0 40000 1.5e-15 2.2e-16
|
---|
69 |
|
---|
70 | Cephes Math Library Release 2.8: June, 2000
|
---|
71 | Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
|
---|
72 | *************************************************************************/
|
---|
73 | public static double psi(double x)
|
---|
74 | {
|
---|
75 | double result = 0;
|
---|
76 | double p = 0;
|
---|
77 | double q = 0;
|
---|
78 | double nz = 0;
|
---|
79 | double s = 0;
|
---|
80 | double w = 0;
|
---|
81 | double y = 0;
|
---|
82 | double z = 0;
|
---|
83 | double polv = 0;
|
---|
84 | int i = 0;
|
---|
85 | int n = 0;
|
---|
86 | int negative = 0;
|
---|
87 |
|
---|
88 | negative = 0;
|
---|
89 | nz = 0.0;
|
---|
90 | if( (double)(x)<=(double)(0) )
|
---|
91 | {
|
---|
92 | negative = 1;
|
---|
93 | q = x;
|
---|
94 | p = (int)Math.Floor(q);
|
---|
95 | if( (double)(p)==(double)(q) )
|
---|
96 | {
|
---|
97 | System.Diagnostics.Debug.Assert(false, "Singularity in Psi(x)");
|
---|
98 | result = AP.Math.MaxRealNumber;
|
---|
99 | return result;
|
---|
100 | }
|
---|
101 | nz = q-p;
|
---|
102 | if( (double)(nz)!=(double)(0.5) )
|
---|
103 | {
|
---|
104 | if( (double)(nz)>(double)(0.5) )
|
---|
105 | {
|
---|
106 | p = p+1.0;
|
---|
107 | nz = q-p;
|
---|
108 | }
|
---|
109 | nz = Math.PI/Math.Tan(Math.PI*nz);
|
---|
110 | }
|
---|
111 | else
|
---|
112 | {
|
---|
113 | nz = 0.0;
|
---|
114 | }
|
---|
115 | x = 1.0-x;
|
---|
116 | }
|
---|
117 | if( (double)(x)<=(double)(10.0) & (double)(x)==(double)((int)Math.Floor(x)) )
|
---|
118 | {
|
---|
119 | y = 0.0;
|
---|
120 | n = (int)Math.Floor(x);
|
---|
121 | for(i=1; i<=n-1; i++)
|
---|
122 | {
|
---|
123 | w = i;
|
---|
124 | y = y+1.0/w;
|
---|
125 | }
|
---|
126 | y = y-0.57721566490153286061;
|
---|
127 | }
|
---|
128 | else
|
---|
129 | {
|
---|
130 | s = x;
|
---|
131 | w = 0.0;
|
---|
132 | while( (double)(s)<(double)(10.0) )
|
---|
133 | {
|
---|
134 | w = w+1.0/s;
|
---|
135 | s = s+1.0;
|
---|
136 | }
|
---|
137 | if( (double)(s)<(double)(1.0E17) )
|
---|
138 | {
|
---|
139 | z = 1.0/(s*s);
|
---|
140 | polv = 8.33333333333333333333E-2;
|
---|
141 | polv = polv*z-2.10927960927960927961E-2;
|
---|
142 | polv = polv*z+7.57575757575757575758E-3;
|
---|
143 | polv = polv*z-4.16666666666666666667E-3;
|
---|
144 | polv = polv*z+3.96825396825396825397E-3;
|
---|
145 | polv = polv*z-8.33333333333333333333E-3;
|
---|
146 | polv = polv*z+8.33333333333333333333E-2;
|
---|
147 | y = z*polv;
|
---|
148 | }
|
---|
149 | else
|
---|
150 | {
|
---|
151 | y = 0.0;
|
---|
152 | }
|
---|
153 | y = Math.Log(s)-0.5/s-y-w;
|
---|
154 | }
|
---|
155 | if( negative!=0 )
|
---|
156 | {
|
---|
157 | y = y-nz;
|
---|
158 | }
|
---|
159 | result = y;
|
---|
160 | return result;
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|