1 | /*************************************************************************
|
---|
2 | Copyright (c) 2006-2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class polint
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Polynomial fitting report:
|
---|
29 | TaskRCond reciprocal of task's condition number
|
---|
30 | RMSError RMS error
|
---|
31 | AvgError average error
|
---|
32 | AvgRelError average relative error (for non-zero Y[I])
|
---|
33 | MaxError maximum error
|
---|
34 | *************************************************************************/
|
---|
35 | public struct polynomialfitreport
|
---|
36 | {
|
---|
37 | public double taskrcond;
|
---|
38 | public double rmserror;
|
---|
39 | public double avgerror;
|
---|
40 | public double avgrelerror;
|
---|
41 | public double maxerror;
|
---|
42 | };
|
---|
43 |
|
---|
44 |
|
---|
45 |
|
---|
46 |
|
---|
47 | /*************************************************************************
|
---|
48 | Lagrange intepolant: generation of the model on the general grid.
|
---|
49 | This function has O(N^2) complexity.
|
---|
50 |
|
---|
51 | INPUT PARAMETERS:
|
---|
52 | X - abscissas, array[0..N-1]
|
---|
53 | Y - function values, array[0..N-1]
|
---|
54 | N - number of points, N>=1
|
---|
55 |
|
---|
56 | OIYTPUT PARAMETERS
|
---|
57 | P - barycentric model which represents Lagrange interpolant
|
---|
58 | (see ratint unit info and BarycentricCalc() description for
|
---|
59 | more information).
|
---|
60 |
|
---|
61 | -- ALGLIB --
|
---|
62 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
63 | *************************************************************************/
|
---|
64 | public static void polynomialbuild(ref double[] x,
|
---|
65 | ref double[] y,
|
---|
66 | int n,
|
---|
67 | ref ratint.barycentricinterpolant p)
|
---|
68 | {
|
---|
69 | int j = 0;
|
---|
70 | int k = 0;
|
---|
71 | double[] w = new double[0];
|
---|
72 | double b = 0;
|
---|
73 | double a = 0;
|
---|
74 | double v = 0;
|
---|
75 | double mx = 0;
|
---|
76 | int i_ = 0;
|
---|
77 |
|
---|
78 | System.Diagnostics.Debug.Assert(n>0, "PolIntBuild: N<=0!");
|
---|
79 |
|
---|
80 | //
|
---|
81 | // calculate W[j]
|
---|
82 | // multi-pass algorithm is used to avoid overflow
|
---|
83 | //
|
---|
84 | w = new double[n];
|
---|
85 | a = x[0];
|
---|
86 | b = x[0];
|
---|
87 | for(j=0; j<=n-1; j++)
|
---|
88 | {
|
---|
89 | w[j] = 1;
|
---|
90 | a = Math.Min(a, x[j]);
|
---|
91 | b = Math.Max(b, x[j]);
|
---|
92 | }
|
---|
93 | for(k=0; k<=n-1; k++)
|
---|
94 | {
|
---|
95 |
|
---|
96 | //
|
---|
97 | // W[K] is used instead of 0.0 because
|
---|
98 | // cycle on J does not touch K-th element
|
---|
99 | // and we MUST get maximum from ALL elements
|
---|
100 | //
|
---|
101 | mx = Math.Abs(w[k]);
|
---|
102 | for(j=0; j<=n-1; j++)
|
---|
103 | {
|
---|
104 | if( j!=k )
|
---|
105 | {
|
---|
106 | v = (b-a)/(x[j]-x[k]);
|
---|
107 | w[j] = w[j]*v;
|
---|
108 | mx = Math.Max(mx, Math.Abs(w[j]));
|
---|
109 | }
|
---|
110 | }
|
---|
111 | if( k%5==0 )
|
---|
112 | {
|
---|
113 |
|
---|
114 | //
|
---|
115 | // every 5-th run we renormalize W[]
|
---|
116 | //
|
---|
117 | v = 1/mx;
|
---|
118 | for(i_=0; i_<=n-1;i_++)
|
---|
119 | {
|
---|
120 | w[i_] = v*w[i_];
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|
124 | ratint.barycentricbuildxyw(ref x, ref y, ref w, n, ref p);
|
---|
125 | }
|
---|
126 |
|
---|
127 |
|
---|
128 | /*************************************************************************
|
---|
129 | Lagrange intepolant: generation of the model on equidistant grid.
|
---|
130 | This function has O(N) complexity.
|
---|
131 |
|
---|
132 | INPUT PARAMETERS:
|
---|
133 | A - left boundary of [A,B]
|
---|
134 | B - right boundary of [A,B]
|
---|
135 | Y - function values at the nodes, array[0..N-1]
|
---|
136 | N - number of points, N>=1
|
---|
137 | for N=1 a constant model is constructed.
|
---|
138 |
|
---|
139 | OIYTPUT PARAMETERS
|
---|
140 | P - barycentric model which represents Lagrange interpolant
|
---|
141 | (see ratint unit info and BarycentricCalc() description for
|
---|
142 | more information).
|
---|
143 |
|
---|
144 | -- ALGLIB --
|
---|
145 | Copyright 03.12.2009 by Bochkanov Sergey
|
---|
146 | *************************************************************************/
|
---|
147 | public static void polynomialbuildeqdist(double a,
|
---|
148 | double b,
|
---|
149 | ref double[] y,
|
---|
150 | int n,
|
---|
151 | ref ratint.barycentricinterpolant p)
|
---|
152 | {
|
---|
153 | int i = 0;
|
---|
154 | double[] w = new double[0];
|
---|
155 | double[] x = new double[0];
|
---|
156 | double v = 0;
|
---|
157 |
|
---|
158 | System.Diagnostics.Debug.Assert(n>0, "PolIntBuildEqDist: N<=0!");
|
---|
159 |
|
---|
160 | //
|
---|
161 | // Special case: N=1
|
---|
162 | //
|
---|
163 | if( n==1 )
|
---|
164 | {
|
---|
165 | x = new double[1];
|
---|
166 | w = new double[1];
|
---|
167 | x[0] = 0.5*(b+a);
|
---|
168 | w[0] = 1;
|
---|
169 | ratint.barycentricbuildxyw(ref x, ref y, ref w, 1, ref p);
|
---|
170 | return;
|
---|
171 | }
|
---|
172 |
|
---|
173 | //
|
---|
174 | // general case
|
---|
175 | //
|
---|
176 | x = new double[n];
|
---|
177 | w = new double[n];
|
---|
178 | v = 1;
|
---|
179 | for(i=0; i<=n-1; i++)
|
---|
180 | {
|
---|
181 | w[i] = v;
|
---|
182 | x[i] = a+(b-a)*i/(n-1);
|
---|
183 | v = -(v*(n-1-i));
|
---|
184 | v = v/(i+1);
|
---|
185 | }
|
---|
186 | ratint.barycentricbuildxyw(ref x, ref y, ref w, n, ref p);
|
---|
187 | }
|
---|
188 |
|
---|
189 |
|
---|
190 | /*************************************************************************
|
---|
191 | Lagrange intepolant on Chebyshev grid (first kind).
|
---|
192 | This function has O(N) complexity.
|
---|
193 |
|
---|
194 | INPUT PARAMETERS:
|
---|
195 | A - left boundary of [A,B]
|
---|
196 | B - right boundary of [A,B]
|
---|
197 | Y - function values at the nodes, array[0..N-1],
|
---|
198 | Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n)))
|
---|
199 | N - number of points, N>=1
|
---|
200 | for N=1 a constant model is constructed.
|
---|
201 |
|
---|
202 | OIYTPUT PARAMETERS
|
---|
203 | P - barycentric model which represents Lagrange interpolant
|
---|
204 | (see ratint unit info and BarycentricCalc() description for
|
---|
205 | more information).
|
---|
206 |
|
---|
207 | -- ALGLIB --
|
---|
208 | Copyright 03.12.2009 by Bochkanov Sergey
|
---|
209 | *************************************************************************/
|
---|
210 | public static void polynomialbuildcheb1(double a,
|
---|
211 | double b,
|
---|
212 | ref double[] y,
|
---|
213 | int n,
|
---|
214 | ref ratint.barycentricinterpolant p)
|
---|
215 | {
|
---|
216 | int i = 0;
|
---|
217 | double[] w = new double[0];
|
---|
218 | double[] x = new double[0];
|
---|
219 | double v = 0;
|
---|
220 | double t = 0;
|
---|
221 |
|
---|
222 | System.Diagnostics.Debug.Assert(n>0, "PolIntBuildCheb1: N<=0!");
|
---|
223 |
|
---|
224 | //
|
---|
225 | // Special case: N=1
|
---|
226 | //
|
---|
227 | if( n==1 )
|
---|
228 | {
|
---|
229 | x = new double[1];
|
---|
230 | w = new double[1];
|
---|
231 | x[0] = 0.5*(b+a);
|
---|
232 | w[0] = 1;
|
---|
233 | ratint.barycentricbuildxyw(ref x, ref y, ref w, 1, ref p);
|
---|
234 | return;
|
---|
235 | }
|
---|
236 |
|
---|
237 | //
|
---|
238 | // general case
|
---|
239 | //
|
---|
240 | x = new double[n];
|
---|
241 | w = new double[n];
|
---|
242 | v = 1;
|
---|
243 | for(i=0; i<=n-1; i++)
|
---|
244 | {
|
---|
245 | t = Math.Tan(0.5*Math.PI*(2*i+1)/(2*n));
|
---|
246 | w[i] = 2*v*t/(1+AP.Math.Sqr(t));
|
---|
247 | x[i] = 0.5*(b+a)+0.5*(b-a)*(1-AP.Math.Sqr(t))/(1+AP.Math.Sqr(t));
|
---|
248 | v = -v;
|
---|
249 | }
|
---|
250 | ratint.barycentricbuildxyw(ref x, ref y, ref w, n, ref p);
|
---|
251 | }
|
---|
252 |
|
---|
253 |
|
---|
254 | /*************************************************************************
|
---|
255 | Lagrange intepolant on Chebyshev grid (second kind).
|
---|
256 | This function has O(N) complexity.
|
---|
257 |
|
---|
258 | INPUT PARAMETERS:
|
---|
259 | A - left boundary of [A,B]
|
---|
260 | B - right boundary of [A,B]
|
---|
261 | Y - function values at the nodes, array[0..N-1],
|
---|
262 | Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1)))
|
---|
263 | N - number of points, N>=1
|
---|
264 | for N=1 a constant model is constructed.
|
---|
265 |
|
---|
266 | OIYTPUT PARAMETERS
|
---|
267 | P - barycentric model which represents Lagrange interpolant
|
---|
268 | (see ratint unit info and BarycentricCalc() description for
|
---|
269 | more information).
|
---|
270 |
|
---|
271 | -- ALGLIB --
|
---|
272 | Copyright 03.12.2009 by Bochkanov Sergey
|
---|
273 | *************************************************************************/
|
---|
274 | public static void polynomialbuildcheb2(double a,
|
---|
275 | double b,
|
---|
276 | ref double[] y,
|
---|
277 | int n,
|
---|
278 | ref ratint.barycentricinterpolant p)
|
---|
279 | {
|
---|
280 | int i = 0;
|
---|
281 | double[] w = new double[0];
|
---|
282 | double[] x = new double[0];
|
---|
283 | double v = 0;
|
---|
284 | double t = 0;
|
---|
285 |
|
---|
286 | System.Diagnostics.Debug.Assert(n>0, "PolIntBuildCheb2: N<=0!");
|
---|
287 |
|
---|
288 | //
|
---|
289 | // Special case: N=1
|
---|
290 | //
|
---|
291 | if( n==1 )
|
---|
292 | {
|
---|
293 | x = new double[1];
|
---|
294 | w = new double[1];
|
---|
295 | x[0] = 0.5*(b+a);
|
---|
296 | w[0] = 1;
|
---|
297 | ratint.barycentricbuildxyw(ref x, ref y, ref w, 1, ref p);
|
---|
298 | return;
|
---|
299 | }
|
---|
300 |
|
---|
301 | //
|
---|
302 | // general case
|
---|
303 | //
|
---|
304 | x = new double[n];
|
---|
305 | w = new double[n];
|
---|
306 | v = 1;
|
---|
307 | for(i=0; i<=n-1; i++)
|
---|
308 | {
|
---|
309 | if( i==0 | i==n-1 )
|
---|
310 | {
|
---|
311 | w[i] = v*0.5;
|
---|
312 | }
|
---|
313 | else
|
---|
314 | {
|
---|
315 | w[i] = v;
|
---|
316 | }
|
---|
317 | x[i] = 0.5*(b+a)+0.5*(b-a)*Math.Cos(Math.PI*i/(n-1));
|
---|
318 | v = -v;
|
---|
319 | }
|
---|
320 | ratint.barycentricbuildxyw(ref x, ref y, ref w, n, ref p);
|
---|
321 | }
|
---|
322 |
|
---|
323 |
|
---|
324 | /*************************************************************************
|
---|
325 | Fast equidistant polynomial interpolation function with O(N) complexity
|
---|
326 |
|
---|
327 | INPUT PARAMETERS:
|
---|
328 | A - left boundary of [A,B]
|
---|
329 | B - right boundary of [A,B]
|
---|
330 | F - function values, array[0..N-1]
|
---|
331 | N - number of points on equidistant grid, N>=1
|
---|
332 | for N=1 a constant model is constructed.
|
---|
333 | T - position where P(x) is calculated
|
---|
334 |
|
---|
335 | RESULT
|
---|
336 | value of the Lagrange interpolant at T
|
---|
337 |
|
---|
338 | IMPORTANT
|
---|
339 | this function provides fast interface which is not overflow-safe
|
---|
340 | nor it is very precise.
|
---|
341 | the best option is to use PolynomialBuildEqDist()/BarycentricCalc()
|
---|
342 | subroutines unless you are pretty sure that your data will not result
|
---|
343 | in overflow.
|
---|
344 |
|
---|
345 | -- ALGLIB --
|
---|
346 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
347 | *************************************************************************/
|
---|
348 | public static double polynomialcalceqdist(double a,
|
---|
349 | double b,
|
---|
350 | ref double[] f,
|
---|
351 | int n,
|
---|
352 | double t)
|
---|
353 | {
|
---|
354 | double result = 0;
|
---|
355 | double s1 = 0;
|
---|
356 | double s2 = 0;
|
---|
357 | double v = 0;
|
---|
358 | double threshold = 0;
|
---|
359 | double s = 0;
|
---|
360 | double h = 0;
|
---|
361 | int i = 0;
|
---|
362 | int j = 0;
|
---|
363 | double w = 0;
|
---|
364 | double x = 0;
|
---|
365 |
|
---|
366 | System.Diagnostics.Debug.Assert(n>0, "PolIntEqDist: N<=0!");
|
---|
367 | threshold = Math.Sqrt(AP.Math.MinRealNumber);
|
---|
368 |
|
---|
369 | //
|
---|
370 | // Special case: N=1
|
---|
371 | //
|
---|
372 | if( n==1 )
|
---|
373 | {
|
---|
374 | result = f[0];
|
---|
375 | return result;
|
---|
376 | }
|
---|
377 |
|
---|
378 | //
|
---|
379 | // First, decide: should we use "safe" formula (guarded
|
---|
380 | // against overflow) or fast one?
|
---|
381 | //
|
---|
382 | j = 0;
|
---|
383 | s = t-a;
|
---|
384 | for(i=1; i<=n-1; i++)
|
---|
385 | {
|
---|
386 | x = a+(double)(i)/((double)(n-1))*(b-a);
|
---|
387 | if( (double)(Math.Abs(t-x))<(double)(Math.Abs(s)) )
|
---|
388 | {
|
---|
389 | s = t-x;
|
---|
390 | j = i;
|
---|
391 | }
|
---|
392 | }
|
---|
393 | if( (double)(s)==(double)(0) )
|
---|
394 | {
|
---|
395 | result = f[j];
|
---|
396 | return result;
|
---|
397 | }
|
---|
398 | if( (double)(Math.Abs(s))>(double)(threshold) )
|
---|
399 | {
|
---|
400 |
|
---|
401 | //
|
---|
402 | // use fast formula
|
---|
403 | //
|
---|
404 | j = -1;
|
---|
405 | s = 1.0;
|
---|
406 | }
|
---|
407 |
|
---|
408 | //
|
---|
409 | // Calculate using safe or fast barycentric formula
|
---|
410 | //
|
---|
411 | s1 = 0;
|
---|
412 | s2 = 0;
|
---|
413 | w = 1.0;
|
---|
414 | h = (b-a)/(n-1);
|
---|
415 | for(i=0; i<=n-1; i++)
|
---|
416 | {
|
---|
417 | if( i!=j )
|
---|
418 | {
|
---|
419 | v = s*w/(t-(a+i*h));
|
---|
420 | s1 = s1+v*f[i];
|
---|
421 | s2 = s2+v;
|
---|
422 | }
|
---|
423 | else
|
---|
424 | {
|
---|
425 | v = w;
|
---|
426 | s1 = s1+v*f[i];
|
---|
427 | s2 = s2+v;
|
---|
428 | }
|
---|
429 | w = -(w*(n-1-i));
|
---|
430 | w = w/(i+1);
|
---|
431 | }
|
---|
432 | result = s1/s2;
|
---|
433 | return result;
|
---|
434 | }
|
---|
435 |
|
---|
436 |
|
---|
437 | /*************************************************************************
|
---|
438 | Fast polynomial interpolation function on Chebyshev points (first kind)
|
---|
439 | with O(N) complexity.
|
---|
440 |
|
---|
441 | INPUT PARAMETERS:
|
---|
442 | A - left boundary of [A,B]
|
---|
443 | B - right boundary of [A,B]
|
---|
444 | F - function values, array[0..N-1]
|
---|
445 | N - number of points on Chebyshev grid (first kind),
|
---|
446 | X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n))
|
---|
447 | for N=1 a constant model is constructed.
|
---|
448 | T - position where P(x) is calculated
|
---|
449 |
|
---|
450 | RESULT
|
---|
451 | value of the Lagrange interpolant at T
|
---|
452 |
|
---|
453 | IMPORTANT
|
---|
454 | this function provides fast interface which is not overflow-safe
|
---|
455 | nor it is very precise.
|
---|
456 | the best option is to use PolIntBuildCheb1()/BarycentricCalc()
|
---|
457 | subroutines unless you are pretty sure that your data will not result
|
---|
458 | in overflow.
|
---|
459 |
|
---|
460 | -- ALGLIB --
|
---|
461 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
462 | *************************************************************************/
|
---|
463 | public static double polynomialcalccheb1(double a,
|
---|
464 | double b,
|
---|
465 | ref double[] f,
|
---|
466 | int n,
|
---|
467 | double t)
|
---|
468 | {
|
---|
469 | double result = 0;
|
---|
470 | double s1 = 0;
|
---|
471 | double s2 = 0;
|
---|
472 | double v = 0;
|
---|
473 | double threshold = 0;
|
---|
474 | double s = 0;
|
---|
475 | int i = 0;
|
---|
476 | int j = 0;
|
---|
477 | double a0 = 0;
|
---|
478 | double delta = 0;
|
---|
479 | double alpha = 0;
|
---|
480 | double beta = 0;
|
---|
481 | double ca = 0;
|
---|
482 | double sa = 0;
|
---|
483 | double tempc = 0;
|
---|
484 | double temps = 0;
|
---|
485 | double x = 0;
|
---|
486 | double w = 0;
|
---|
487 | double p1 = 0;
|
---|
488 |
|
---|
489 | System.Diagnostics.Debug.Assert(n>0, "PolIntCheb1: N<=0!");
|
---|
490 | threshold = Math.Sqrt(AP.Math.MinRealNumber);
|
---|
491 | t = (t-0.5*(a+b))/(0.5*(b-a));
|
---|
492 |
|
---|
493 | //
|
---|
494 | // Fast exit
|
---|
495 | //
|
---|
496 | if( n==1 )
|
---|
497 | {
|
---|
498 | result = f[0];
|
---|
499 | return result;
|
---|
500 | }
|
---|
501 |
|
---|
502 | //
|
---|
503 | // Prepare information for the recurrence formula
|
---|
504 | // used to calculate sin(pi*(2j+1)/(2n+2)) and
|
---|
505 | // cos(pi*(2j+1)/(2n+2)):
|
---|
506 | //
|
---|
507 | // A0 = pi/(2n+2)
|
---|
508 | // Delta = pi/(n+1)
|
---|
509 | // Alpha = 2 sin^2 (Delta/2)
|
---|
510 | // Beta = sin(Delta)
|
---|
511 | //
|
---|
512 | // so that sin(..) = sin(A0+j*delta) and cos(..) = cos(A0+j*delta).
|
---|
513 | // Then we use
|
---|
514 | //
|
---|
515 | // sin(x+delta) = sin(x) - (alpha*sin(x) - beta*cos(x))
|
---|
516 | // cos(x+delta) = cos(x) - (alpha*cos(x) - beta*sin(x))
|
---|
517 | //
|
---|
518 | // to repeatedly calculate sin(..) and cos(..).
|
---|
519 | //
|
---|
520 | a0 = Math.PI/(2*(n-1)+2);
|
---|
521 | delta = 2*Math.PI/(2*(n-1)+2);
|
---|
522 | alpha = 2*AP.Math.Sqr(Math.Sin(delta/2));
|
---|
523 | beta = Math.Sin(delta);
|
---|
524 |
|
---|
525 | //
|
---|
526 | // First, decide: should we use "safe" formula (guarded
|
---|
527 | // against overflow) or fast one?
|
---|
528 | //
|
---|
529 | ca = Math.Cos(a0);
|
---|
530 | sa = Math.Sin(a0);
|
---|
531 | j = 0;
|
---|
532 | x = ca;
|
---|
533 | s = t-x;
|
---|
534 | for(i=1; i<=n-1; i++)
|
---|
535 | {
|
---|
536 |
|
---|
537 | //
|
---|
538 | // Next X[i]
|
---|
539 | //
|
---|
540 | temps = sa-(alpha*sa-beta*ca);
|
---|
541 | tempc = ca-(alpha*ca+beta*sa);
|
---|
542 | sa = temps;
|
---|
543 | ca = tempc;
|
---|
544 | x = ca;
|
---|
545 |
|
---|
546 | //
|
---|
547 | // Use X[i]
|
---|
548 | //
|
---|
549 | if( (double)(Math.Abs(t-x))<(double)(Math.Abs(s)) )
|
---|
550 | {
|
---|
551 | s = t-x;
|
---|
552 | j = i;
|
---|
553 | }
|
---|
554 | }
|
---|
555 | if( (double)(s)==(double)(0) )
|
---|
556 | {
|
---|
557 | result = f[j];
|
---|
558 | return result;
|
---|
559 | }
|
---|
560 | if( (double)(Math.Abs(s))>(double)(threshold) )
|
---|
561 | {
|
---|
562 |
|
---|
563 | //
|
---|
564 | // use fast formula
|
---|
565 | //
|
---|
566 | j = -1;
|
---|
567 | s = 1.0;
|
---|
568 | }
|
---|
569 |
|
---|
570 | //
|
---|
571 | // Calculate using safe or fast barycentric formula
|
---|
572 | //
|
---|
573 | s1 = 0;
|
---|
574 | s2 = 0;
|
---|
575 | ca = Math.Cos(a0);
|
---|
576 | sa = Math.Sin(a0);
|
---|
577 | p1 = 1.0;
|
---|
578 | for(i=0; i<=n-1; i++)
|
---|
579 | {
|
---|
580 |
|
---|
581 | //
|
---|
582 | // Calculate X[i], W[i]
|
---|
583 | //
|
---|
584 | x = ca;
|
---|
585 | w = p1*sa;
|
---|
586 |
|
---|
587 | //
|
---|
588 | // Proceed
|
---|
589 | //
|
---|
590 | if( i!=j )
|
---|
591 | {
|
---|
592 | v = s*w/(t-x);
|
---|
593 | s1 = s1+v*f[i];
|
---|
594 | s2 = s2+v;
|
---|
595 | }
|
---|
596 | else
|
---|
597 | {
|
---|
598 | v = w;
|
---|
599 | s1 = s1+v*f[i];
|
---|
600 | s2 = s2+v;
|
---|
601 | }
|
---|
602 |
|
---|
603 | //
|
---|
604 | // Next CA, SA, P1
|
---|
605 | //
|
---|
606 | temps = sa-(alpha*sa-beta*ca);
|
---|
607 | tempc = ca-(alpha*ca+beta*sa);
|
---|
608 | sa = temps;
|
---|
609 | ca = tempc;
|
---|
610 | p1 = -p1;
|
---|
611 | }
|
---|
612 | result = s1/s2;
|
---|
613 | return result;
|
---|
614 | }
|
---|
615 |
|
---|
616 |
|
---|
617 | /*************************************************************************
|
---|
618 | Fast polynomial interpolation function on Chebyshev points (second kind)
|
---|
619 | with O(N) complexity.
|
---|
620 |
|
---|
621 | INPUT PARAMETERS:
|
---|
622 | A - left boundary of [A,B]
|
---|
623 | B - right boundary of [A,B]
|
---|
624 | F - function values, array[0..N-1]
|
---|
625 | N - number of points on Chebyshev grid (second kind),
|
---|
626 | X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1))
|
---|
627 | for N=1 a constant model is constructed.
|
---|
628 | T - position where P(x) is calculated
|
---|
629 |
|
---|
630 | RESULT
|
---|
631 | value of the Lagrange interpolant at T
|
---|
632 |
|
---|
633 | IMPORTANT
|
---|
634 | this function provides fast interface which is not overflow-safe
|
---|
635 | nor it is very precise.
|
---|
636 | the best option is to use PolIntBuildCheb2()/BarycentricCalc()
|
---|
637 | subroutines unless you are pretty sure that your data will not result
|
---|
638 | in overflow.
|
---|
639 |
|
---|
640 | -- ALGLIB --
|
---|
641 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
642 | *************************************************************************/
|
---|
643 | public static double polynomialcalccheb2(double a,
|
---|
644 | double b,
|
---|
645 | ref double[] f,
|
---|
646 | int n,
|
---|
647 | double t)
|
---|
648 | {
|
---|
649 | double result = 0;
|
---|
650 | double s1 = 0;
|
---|
651 | double s2 = 0;
|
---|
652 | double v = 0;
|
---|
653 | double threshold = 0;
|
---|
654 | double s = 0;
|
---|
655 | int i = 0;
|
---|
656 | int j = 0;
|
---|
657 | double a0 = 0;
|
---|
658 | double delta = 0;
|
---|
659 | double alpha = 0;
|
---|
660 | double beta = 0;
|
---|
661 | double ca = 0;
|
---|
662 | double sa = 0;
|
---|
663 | double tempc = 0;
|
---|
664 | double temps = 0;
|
---|
665 | double x = 0;
|
---|
666 | double w = 0;
|
---|
667 | double p1 = 0;
|
---|
668 |
|
---|
669 | System.Diagnostics.Debug.Assert(n>0, "PolIntCheb2: N<=0!");
|
---|
670 | threshold = Math.Sqrt(AP.Math.MinRealNumber);
|
---|
671 | t = (t-0.5*(a+b))/(0.5*(b-a));
|
---|
672 |
|
---|
673 | //
|
---|
674 | // Fast exit
|
---|
675 | //
|
---|
676 | if( n==1 )
|
---|
677 | {
|
---|
678 | result = f[0];
|
---|
679 | return result;
|
---|
680 | }
|
---|
681 |
|
---|
682 | //
|
---|
683 | // Prepare information for the recurrence formula
|
---|
684 | // used to calculate sin(pi*i/n) and
|
---|
685 | // cos(pi*i/n):
|
---|
686 | //
|
---|
687 | // A0 = 0
|
---|
688 | // Delta = pi/n
|
---|
689 | // Alpha = 2 sin^2 (Delta/2)
|
---|
690 | // Beta = sin(Delta)
|
---|
691 | //
|
---|
692 | // so that sin(..) = sin(A0+j*delta) and cos(..) = cos(A0+j*delta).
|
---|
693 | // Then we use
|
---|
694 | //
|
---|
695 | // sin(x+delta) = sin(x) - (alpha*sin(x) - beta*cos(x))
|
---|
696 | // cos(x+delta) = cos(x) - (alpha*cos(x) - beta*sin(x))
|
---|
697 | //
|
---|
698 | // to repeatedly calculate sin(..) and cos(..).
|
---|
699 | //
|
---|
700 | a0 = 0.0;
|
---|
701 | delta = Math.PI/(n-1);
|
---|
702 | alpha = 2*AP.Math.Sqr(Math.Sin(delta/2));
|
---|
703 | beta = Math.Sin(delta);
|
---|
704 |
|
---|
705 | //
|
---|
706 | // First, decide: should we use "safe" formula (guarded
|
---|
707 | // against overflow) or fast one?
|
---|
708 | //
|
---|
709 | ca = Math.Cos(a0);
|
---|
710 | sa = Math.Sin(a0);
|
---|
711 | j = 0;
|
---|
712 | x = ca;
|
---|
713 | s = t-x;
|
---|
714 | for(i=1; i<=n-1; i++)
|
---|
715 | {
|
---|
716 |
|
---|
717 | //
|
---|
718 | // Next X[i]
|
---|
719 | //
|
---|
720 | temps = sa-(alpha*sa-beta*ca);
|
---|
721 | tempc = ca-(alpha*ca+beta*sa);
|
---|
722 | sa = temps;
|
---|
723 | ca = tempc;
|
---|
724 | x = ca;
|
---|
725 |
|
---|
726 | //
|
---|
727 | // Use X[i]
|
---|
728 | //
|
---|
729 | if( (double)(Math.Abs(t-x))<(double)(Math.Abs(s)) )
|
---|
730 | {
|
---|
731 | s = t-x;
|
---|
732 | j = i;
|
---|
733 | }
|
---|
734 | }
|
---|
735 | if( (double)(s)==(double)(0) )
|
---|
736 | {
|
---|
737 | result = f[j];
|
---|
738 | return result;
|
---|
739 | }
|
---|
740 | if( (double)(Math.Abs(s))>(double)(threshold) )
|
---|
741 | {
|
---|
742 |
|
---|
743 | //
|
---|
744 | // use fast formula
|
---|
745 | //
|
---|
746 | j = -1;
|
---|
747 | s = 1.0;
|
---|
748 | }
|
---|
749 |
|
---|
750 | //
|
---|
751 | // Calculate using safe or fast barycentric formula
|
---|
752 | //
|
---|
753 | s1 = 0;
|
---|
754 | s2 = 0;
|
---|
755 | ca = Math.Cos(a0);
|
---|
756 | sa = Math.Sin(a0);
|
---|
757 | p1 = 1.0;
|
---|
758 | for(i=0; i<=n-1; i++)
|
---|
759 | {
|
---|
760 |
|
---|
761 | //
|
---|
762 | // Calculate X[i], W[i]
|
---|
763 | //
|
---|
764 | x = ca;
|
---|
765 | if( i==0 | i==n-1 )
|
---|
766 | {
|
---|
767 | w = 0.5*p1;
|
---|
768 | }
|
---|
769 | else
|
---|
770 | {
|
---|
771 | w = 1.0*p1;
|
---|
772 | }
|
---|
773 |
|
---|
774 | //
|
---|
775 | // Proceed
|
---|
776 | //
|
---|
777 | if( i!=j )
|
---|
778 | {
|
---|
779 | v = s*w/(t-x);
|
---|
780 | s1 = s1+v*f[i];
|
---|
781 | s2 = s2+v;
|
---|
782 | }
|
---|
783 | else
|
---|
784 | {
|
---|
785 | v = w;
|
---|
786 | s1 = s1+v*f[i];
|
---|
787 | s2 = s2+v;
|
---|
788 | }
|
---|
789 |
|
---|
790 | //
|
---|
791 | // Next CA, SA, P1
|
---|
792 | //
|
---|
793 | temps = sa-(alpha*sa-beta*ca);
|
---|
794 | tempc = ca-(alpha*ca+beta*sa);
|
---|
795 | sa = temps;
|
---|
796 | ca = tempc;
|
---|
797 | p1 = -p1;
|
---|
798 | }
|
---|
799 | result = s1/s2;
|
---|
800 | return result;
|
---|
801 | }
|
---|
802 |
|
---|
803 |
|
---|
804 | /*************************************************************************
|
---|
805 | Least squares fitting by polynomial.
|
---|
806 |
|
---|
807 | This subroutine is "lightweight" alternative for more complex and feature-
|
---|
808 | rich PolynomialFitWC(). See PolynomialFitWC() for more information about
|
---|
809 | subroutine parameters (we don't duplicate it here because of length)
|
---|
810 |
|
---|
811 | -- ALGLIB PROJECT --
|
---|
812 | Copyright 12.10.2009 by Bochkanov Sergey
|
---|
813 | *************************************************************************/
|
---|
814 | public static void polynomialfit(ref double[] x,
|
---|
815 | ref double[] y,
|
---|
816 | int n,
|
---|
817 | int m,
|
---|
818 | ref int info,
|
---|
819 | ref ratint.barycentricinterpolant p,
|
---|
820 | ref polynomialfitreport rep)
|
---|
821 | {
|
---|
822 | int i = 0;
|
---|
823 | double[] w = new double[0];
|
---|
824 | double[] xc = new double[0];
|
---|
825 | double[] yc = new double[0];
|
---|
826 | int[] dc = new int[0];
|
---|
827 |
|
---|
828 | if( n>0 )
|
---|
829 | {
|
---|
830 | w = new double[n];
|
---|
831 | for(i=0; i<=n-1; i++)
|
---|
832 | {
|
---|
833 | w[i] = 1;
|
---|
834 | }
|
---|
835 | }
|
---|
836 | polynomialfitwc(x, y, ref w, n, xc, yc, ref dc, 0, m, ref info, ref p, ref rep);
|
---|
837 | }
|
---|
838 |
|
---|
839 |
|
---|
840 | /*************************************************************************
|
---|
841 | Weighted fitting by Chebyshev polynomial in barycentric form, with
|
---|
842 | constraints on function values or first derivatives.
|
---|
843 |
|
---|
844 | Small regularizing term is used when solving constrained tasks (to improve
|
---|
845 | stability).
|
---|
846 |
|
---|
847 | Task is linear, so linear least squares solver is used. Complexity of this
|
---|
848 | computational scheme is O(N*M^2), mostly dominated by least squares solver
|
---|
849 |
|
---|
850 | SEE ALSO:
|
---|
851 | PolynomialFit()
|
---|
852 |
|
---|
853 | INPUT PARAMETERS:
|
---|
854 | X - points, array[0..N-1].
|
---|
855 | Y - function values, array[0..N-1].
|
---|
856 | W - weights, array[0..N-1]
|
---|
857 | Each summand in square sum of approximation deviations from
|
---|
858 | given values is multiplied by the square of corresponding
|
---|
859 | weight. Fill it by 1's if you don't want to solve weighted
|
---|
860 | task.
|
---|
861 | N - number of points, N>0.
|
---|
862 | XC - points where polynomial values/derivatives are constrained,
|
---|
863 | array[0..K-1].
|
---|
864 | YC - values of constraints, array[0..K-1]
|
---|
865 | DC - array[0..K-1], types of constraints:
|
---|
866 | * DC[i]=0 means that P(XC[i])=YC[i]
|
---|
867 | * DC[i]=1 means that P'(XC[i])=YC[i]
|
---|
868 | SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
|
---|
869 | K - number of constraints, 0<=K<M.
|
---|
870 | K=0 means no constraints (XC/YC/DC are not used in such cases)
|
---|
871 | M - number of basis functions (= polynomial_degree + 1), M>=1
|
---|
872 |
|
---|
873 | OUTPUT PARAMETERS:
|
---|
874 | Info- same format as in LSFitLinearW() subroutine:
|
---|
875 | * Info>0 task is solved
|
---|
876 | * Info<=0 an error occured:
|
---|
877 | -4 means inconvergence of internal SVD
|
---|
878 | -3 means inconsistent constraints
|
---|
879 | -1 means another errors in parameters passed
|
---|
880 | (N<=0, for example)
|
---|
881 | P - interpolant in barycentric form.
|
---|
882 | Rep - report, same format as in LSFitLinearW() subroutine.
|
---|
883 | Following fields are set:
|
---|
884 | * RMSError rms error on the (X,Y).
|
---|
885 | * AvgError average error on the (X,Y).
|
---|
886 | * AvgRelError average relative error on the non-zero Y
|
---|
887 | * MaxError maximum error
|
---|
888 | NON-WEIGHTED ERRORS ARE CALCULATED
|
---|
889 |
|
---|
890 | IMPORTANT:
|
---|
891 | this subroitine doesn't calculate task's condition number for K<>0.
|
---|
892 |
|
---|
893 | SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:
|
---|
894 |
|
---|
895 | Setting constraints can lead to undesired results, like ill-conditioned
|
---|
896 | behavior, or inconsistency being detected. From the other side, it allows
|
---|
897 | us to improve quality of the fit. Here we summarize our experience with
|
---|
898 | constrained regression splines:
|
---|
899 | * even simple constraints can be inconsistent, see Wikipedia article on
|
---|
900 | this subject: http://en.wikipedia.org/wiki/Birkhoff_interpolation
|
---|
901 | * the greater is M (given fixed constraints), the more chances that
|
---|
902 | constraints will be consistent
|
---|
903 | * in the general case, consistency of constraints is NOT GUARANTEED.
|
---|
904 | * in the one special cases, however, we can guarantee consistency. This
|
---|
905 | case is: M>1 and constraints on the function values (NOT DERIVATIVES)
|
---|
906 |
|
---|
907 | Our final recommendation is to use constraints WHEN AND ONLY when you
|
---|
908 | can't solve your task without them. Anything beyond special cases given
|
---|
909 | above is not guaranteed and may result in inconsistency.
|
---|
910 |
|
---|
911 | -- ALGLIB PROJECT --
|
---|
912 | Copyright 10.12.2009 by Bochkanov Sergey
|
---|
913 | *************************************************************************/
|
---|
914 | public static void polynomialfitwc(double[] x,
|
---|
915 | double[] y,
|
---|
916 | ref double[] w,
|
---|
917 | int n,
|
---|
918 | double[] xc,
|
---|
919 | double[] yc,
|
---|
920 | ref int[] dc,
|
---|
921 | int k,
|
---|
922 | int m,
|
---|
923 | ref int info,
|
---|
924 | ref ratint.barycentricinterpolant p,
|
---|
925 | ref polynomialfitreport rep)
|
---|
926 | {
|
---|
927 | double xa = 0;
|
---|
928 | double xb = 0;
|
---|
929 | double sa = 0;
|
---|
930 | double sb = 0;
|
---|
931 | double[] xoriginal = new double[0];
|
---|
932 | double[] yoriginal = new double[0];
|
---|
933 | double[] y2 = new double[0];
|
---|
934 | double[] w2 = new double[0];
|
---|
935 | double[] tmp = new double[0];
|
---|
936 | double[] tmp2 = new double[0];
|
---|
937 | double[] tmpdiff = new double[0];
|
---|
938 | double[] bx = new double[0];
|
---|
939 | double[] by = new double[0];
|
---|
940 | double[] bw = new double[0];
|
---|
941 | double[,] fmatrix = new double[0,0];
|
---|
942 | double[,] cmatrix = new double[0,0];
|
---|
943 | int i = 0;
|
---|
944 | int j = 0;
|
---|
945 | double mx = 0;
|
---|
946 | double decay = 0;
|
---|
947 | double u = 0;
|
---|
948 | double v = 0;
|
---|
949 | double s = 0;
|
---|
950 | int relcnt = 0;
|
---|
951 | lsfit.lsfitreport lrep = new lsfit.lsfitreport();
|
---|
952 | int i_ = 0;
|
---|
953 |
|
---|
954 | x = (double[])x.Clone();
|
---|
955 | y = (double[])y.Clone();
|
---|
956 | xc = (double[])xc.Clone();
|
---|
957 | yc = (double[])yc.Clone();
|
---|
958 |
|
---|
959 | if( m<1 | n<1 | k<0 | k>=m )
|
---|
960 | {
|
---|
961 | info = -1;
|
---|
962 | return;
|
---|
963 | }
|
---|
964 | for(i=0; i<=k-1; i++)
|
---|
965 | {
|
---|
966 | info = 0;
|
---|
967 | if( dc[i]<0 )
|
---|
968 | {
|
---|
969 | info = -1;
|
---|
970 | }
|
---|
971 | if( dc[i]>1 )
|
---|
972 | {
|
---|
973 | info = -1;
|
---|
974 | }
|
---|
975 | if( info<0 )
|
---|
976 | {
|
---|
977 | return;
|
---|
978 | }
|
---|
979 | }
|
---|
980 |
|
---|
981 | //
|
---|
982 | // weight decay for correct handling of task which becomes
|
---|
983 | // degenerate after constraints are applied
|
---|
984 | //
|
---|
985 | decay = 10000*AP.Math.MachineEpsilon;
|
---|
986 |
|
---|
987 | //
|
---|
988 | // Scale X, Y, XC, YC
|
---|
989 | //
|
---|
990 | lsfit.lsfitscalexy(ref x, ref y, n, ref xc, ref yc, ref dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);
|
---|
991 |
|
---|
992 | //
|
---|
993 | // allocate space, initialize/fill:
|
---|
994 | // * FMatrix- values of basis functions at X[]
|
---|
995 | // * CMatrix- values (derivatives) of basis functions at XC[]
|
---|
996 | // * fill constraints matrix
|
---|
997 | // * fill first N rows of design matrix with values
|
---|
998 | // * fill next M rows of design matrix with regularizing term
|
---|
999 | // * append M zeros to Y
|
---|
1000 | // * append M elements, mean(abs(W)) each, to W
|
---|
1001 | //
|
---|
1002 | y2 = new double[n+m];
|
---|
1003 | w2 = new double[n+m];
|
---|
1004 | tmp = new double[m];
|
---|
1005 | tmpdiff = new double[m];
|
---|
1006 | fmatrix = new double[n+m, m];
|
---|
1007 | if( k>0 )
|
---|
1008 | {
|
---|
1009 | cmatrix = new double[k, m+1];
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | //
|
---|
1013 | // Fill design matrix, Y2, W2:
|
---|
1014 | // * first N rows with basis functions for original points
|
---|
1015 | // * next M rows with decay terms
|
---|
1016 | //
|
---|
1017 | for(i=0; i<=n-1; i++)
|
---|
1018 | {
|
---|
1019 |
|
---|
1020 | //
|
---|
1021 | // prepare Ith row
|
---|
1022 | // use Tmp for calculations to avoid multidimensional arrays overhead
|
---|
1023 | //
|
---|
1024 | for(j=0; j<=m-1; j++)
|
---|
1025 | {
|
---|
1026 | if( j==0 )
|
---|
1027 | {
|
---|
1028 | tmp[j] = 1;
|
---|
1029 | }
|
---|
1030 | else
|
---|
1031 | {
|
---|
1032 | if( j==1 )
|
---|
1033 | {
|
---|
1034 | tmp[j] = x[i];
|
---|
1035 | }
|
---|
1036 | else
|
---|
1037 | {
|
---|
1038 | tmp[j] = 2*x[i]*tmp[j-1]-tmp[j-2];
|
---|
1039 | }
|
---|
1040 | }
|
---|
1041 | }
|
---|
1042 | for(i_=0; i_<=m-1;i_++)
|
---|
1043 | {
|
---|
1044 | fmatrix[i,i_] = tmp[i_];
|
---|
1045 | }
|
---|
1046 | }
|
---|
1047 | for(i=0; i<=m-1; i++)
|
---|
1048 | {
|
---|
1049 | for(j=0; j<=m-1; j++)
|
---|
1050 | {
|
---|
1051 | if( i==j )
|
---|
1052 | {
|
---|
1053 | fmatrix[n+i,j] = decay;
|
---|
1054 | }
|
---|
1055 | else
|
---|
1056 | {
|
---|
1057 | fmatrix[n+i,j] = 0;
|
---|
1058 | }
|
---|
1059 | }
|
---|
1060 | }
|
---|
1061 | for(i_=0; i_<=n-1;i_++)
|
---|
1062 | {
|
---|
1063 | y2[i_] = y[i_];
|
---|
1064 | }
|
---|
1065 | for(i_=0; i_<=n-1;i_++)
|
---|
1066 | {
|
---|
1067 | w2[i_] = w[i_];
|
---|
1068 | }
|
---|
1069 | mx = 0;
|
---|
1070 | for(i=0; i<=n-1; i++)
|
---|
1071 | {
|
---|
1072 | mx = mx+Math.Abs(w[i]);
|
---|
1073 | }
|
---|
1074 | mx = mx/n;
|
---|
1075 | for(i=0; i<=m-1; i++)
|
---|
1076 | {
|
---|
1077 | y2[n+i] = 0;
|
---|
1078 | w2[n+i] = mx;
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | //
|
---|
1082 | // fill constraints matrix
|
---|
1083 | //
|
---|
1084 | for(i=0; i<=k-1; i++)
|
---|
1085 | {
|
---|
1086 |
|
---|
1087 | //
|
---|
1088 | // prepare Ith row
|
---|
1089 | // use Tmp for basis function values,
|
---|
1090 | // TmpDiff for basos function derivatives
|
---|
1091 | //
|
---|
1092 | for(j=0; j<=m-1; j++)
|
---|
1093 | {
|
---|
1094 | if( j==0 )
|
---|
1095 | {
|
---|
1096 | tmp[j] = 1;
|
---|
1097 | tmpdiff[j] = 0;
|
---|
1098 | }
|
---|
1099 | else
|
---|
1100 | {
|
---|
1101 | if( j==1 )
|
---|
1102 | {
|
---|
1103 | tmp[j] = xc[i];
|
---|
1104 | tmpdiff[j] = 1;
|
---|
1105 | }
|
---|
1106 | else
|
---|
1107 | {
|
---|
1108 | tmp[j] = 2*xc[i]*tmp[j-1]-tmp[j-2];
|
---|
1109 | tmpdiff[j] = 2*(tmp[j-1]+xc[i]*tmpdiff[j-1])-tmpdiff[j-2];
|
---|
1110 | }
|
---|
1111 | }
|
---|
1112 | }
|
---|
1113 | if( dc[i]==0 )
|
---|
1114 | {
|
---|
1115 | for(i_=0; i_<=m-1;i_++)
|
---|
1116 | {
|
---|
1117 | cmatrix[i,i_] = tmp[i_];
|
---|
1118 | }
|
---|
1119 | }
|
---|
1120 | if( dc[i]==1 )
|
---|
1121 | {
|
---|
1122 | for(i_=0; i_<=m-1;i_++)
|
---|
1123 | {
|
---|
1124 | cmatrix[i,i_] = tmpdiff[i_];
|
---|
1125 | }
|
---|
1126 | }
|
---|
1127 | cmatrix[i,m] = yc[i];
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 | //
|
---|
1131 | // Solve constrained task
|
---|
1132 | //
|
---|
1133 | if( k>0 )
|
---|
1134 | {
|
---|
1135 |
|
---|
1136 | //
|
---|
1137 | // solve using regularization
|
---|
1138 | //
|
---|
1139 | lsfit.lsfitlinearwc(y2, ref w2, ref fmatrix, cmatrix, n+m, m, k, ref info, ref tmp, ref lrep);
|
---|
1140 | }
|
---|
1141 | else
|
---|
1142 | {
|
---|
1143 |
|
---|
1144 | //
|
---|
1145 | // no constraints, no regularization needed
|
---|
1146 | //
|
---|
1147 | lsfit.lsfitlinearwc(y, ref w, ref fmatrix, cmatrix, n, m, 0, ref info, ref tmp, ref lrep);
|
---|
1148 | }
|
---|
1149 | if( info<0 )
|
---|
1150 | {
|
---|
1151 | return;
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | //
|
---|
1155 | // Generate barycentric model and scale it
|
---|
1156 | // * BX, BY store barycentric model nodes
|
---|
1157 | // * FMatrix is reused (remember - it is at least MxM, what we need)
|
---|
1158 | //
|
---|
1159 | // Model intialization is done in O(M^2). In principle, it can be
|
---|
1160 | // done in O(M*log(M)), but before it we solved task with O(N*M^2)
|
---|
1161 | // complexity, so it is only a small amount of total time spent.
|
---|
1162 | //
|
---|
1163 | bx = new double[m];
|
---|
1164 | by = new double[m];
|
---|
1165 | bw = new double[m];
|
---|
1166 | tmp2 = new double[m];
|
---|
1167 | s = 1;
|
---|
1168 | for(i=0; i<=m-1; i++)
|
---|
1169 | {
|
---|
1170 | if( m!=1 )
|
---|
1171 | {
|
---|
1172 | u = Math.Cos(Math.PI*i/(m-1));
|
---|
1173 | }
|
---|
1174 | else
|
---|
1175 | {
|
---|
1176 | u = 0;
|
---|
1177 | }
|
---|
1178 | v = 0;
|
---|
1179 | for(j=0; j<=m-1; j++)
|
---|
1180 | {
|
---|
1181 | if( j==0 )
|
---|
1182 | {
|
---|
1183 | tmp2[j] = 1;
|
---|
1184 | }
|
---|
1185 | else
|
---|
1186 | {
|
---|
1187 | if( j==1 )
|
---|
1188 | {
|
---|
1189 | tmp2[j] = u;
|
---|
1190 | }
|
---|
1191 | else
|
---|
1192 | {
|
---|
1193 | tmp2[j] = 2*u*tmp2[j-1]-tmp2[j-2];
|
---|
1194 | }
|
---|
1195 | }
|
---|
1196 | v = v+tmp[j]*tmp2[j];
|
---|
1197 | }
|
---|
1198 | bx[i] = u;
|
---|
1199 | by[i] = v;
|
---|
1200 | bw[i] = s;
|
---|
1201 | if( i==0 | i==m-1 )
|
---|
1202 | {
|
---|
1203 | bw[i] = 0.5*bw[i];
|
---|
1204 | }
|
---|
1205 | s = -s;
|
---|
1206 | }
|
---|
1207 | ratint.barycentricbuildxyw(ref bx, ref by, ref bw, m, ref p);
|
---|
1208 | ratint.barycentriclintransx(ref p, 2/(xb-xa), -((xa+xb)/(xb-xa)));
|
---|
1209 | ratint.barycentriclintransy(ref p, sb-sa, sa);
|
---|
1210 |
|
---|
1211 | //
|
---|
1212 | // Scale absolute errors obtained from LSFitLinearW.
|
---|
1213 | // Relative error should be calculated separately
|
---|
1214 | // (because of shifting/scaling of the task)
|
---|
1215 | //
|
---|
1216 | rep.taskrcond = lrep.taskrcond;
|
---|
1217 | rep.rmserror = lrep.rmserror*(sb-sa);
|
---|
1218 | rep.avgerror = lrep.avgerror*(sb-sa);
|
---|
1219 | rep.maxerror = lrep.maxerror*(sb-sa);
|
---|
1220 | rep.avgrelerror = 0;
|
---|
1221 | relcnt = 0;
|
---|
1222 | for(i=0; i<=n-1; i++)
|
---|
1223 | {
|
---|
1224 | if( (double)(yoriginal[i])!=(double)(0) )
|
---|
1225 | {
|
---|
1226 | rep.avgrelerror = rep.avgrelerror+Math.Abs(ratint.barycentriccalc(ref p, xoriginal[i])-yoriginal[i])/Math.Abs(yoriginal[i]);
|
---|
1227 | relcnt = relcnt+1;
|
---|
1228 | }
|
---|
1229 | }
|
---|
1230 | if( relcnt!=0 )
|
---|
1231 | {
|
---|
1232 | rep.avgrelerror = rep.avgrelerror/relcnt;
|
---|
1233 | }
|
---|
1234 | }
|
---|
1235 | }
|
---|
1236 | }
|
---|