Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/ALGLIB/poissondistr.cs @ 2636

Last change on this file since 2636 was 2563, checked in by gkronber, 15 years ago

Updated ALGLIB to latest version. #751 (Plugin for for data-modeling with ANN (integrated into CEDMA))

File size: 4.4 KB
Line 
1/*************************************************************************
2Cephes Math Library Release 2.8:  June, 2000
3Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
4
5Contributors:
6    * Sergey Bochkanov (ALGLIB project). Translation from C to
7      pseudocode.
8
9See subroutines comments for additional copyrights.
10
11>>> SOURCE LICENSE >>>
12This program is free software; you can redistribute it and/or modify
13it under the terms of the GNU General Public License as published by
14the Free Software Foundation (www.fsf.org); either version 2 of the
15License, or (at your option) any later version.
16
17This program is distributed in the hope that it will be useful,
18but WITHOUT ANY WARRANTY; without even the implied warranty of
19MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20GNU General Public License for more details.
21
22A copy of the GNU General Public License is available at
23http://www.fsf.org/licensing/licenses
24
25>>> END OF LICENSE >>>
26*************************************************************************/
27
28using System;
29
30namespace alglib
31{
32    public class poissondistr
33    {
34        /*************************************************************************
35        Poisson distribution
36
37        Returns the sum of the first k+1 terms of the Poisson
38        distribution:
39
40          k         j
41          --   -m  m
42          >   e    --
43          --       j!
44         j=0
45
46        The terms are not summed directly; instead the incomplete
47        gamma integral is employed, according to the relation
48
49        y = pdtr( k, m ) = igamc( k+1, m ).
50
51        The arguments must both be positive.
52        ACCURACY:
53
54        See incomplete gamma function
55
56        Cephes Math Library Release 2.8:  June, 2000
57        Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
58        *************************************************************************/
59        public static double poissondistribution(int k,
60            double m)
61        {
62            double result = 0;
63
64            System.Diagnostics.Debug.Assert(k>=0 & (double)(m)>(double)(0), "Domain error in PoissonDistribution");
65            result = igammaf.incompletegammac(k+1, m);
66            return result;
67        }
68
69
70        /*************************************************************************
71        Complemented Poisson distribution
72
73        Returns the sum of the terms k+1 to infinity of the Poisson
74        distribution:
75
76         inf.       j
77          --   -m  m
78          >   e    --
79          --       j!
80         j=k+1
81
82        The terms are not summed directly; instead the incomplete
83        gamma integral is employed, according to the formula
84
85        y = pdtrc( k, m ) = igam( k+1, m ).
86
87        The arguments must both be positive.
88
89        ACCURACY:
90
91        See incomplete gamma function
92
93        Cephes Math Library Release 2.8:  June, 2000
94        Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
95        *************************************************************************/
96        public static double poissoncdistribution(int k,
97            double m)
98        {
99            double result = 0;
100
101            System.Diagnostics.Debug.Assert(k>=0 & (double)(m)>(double)(0), "Domain error in PoissonDistributionC");
102            result = igammaf.incompletegamma(k+1, m);
103            return result;
104        }
105
106
107        /*************************************************************************
108        Inverse Poisson distribution
109
110        Finds the Poisson variable x such that the integral
111        from 0 to x of the Poisson density is equal to the
112        given probability y.
113
114        This is accomplished using the inverse gamma integral
115        function and the relation
116
117           m = igami( k+1, y ).
118
119        ACCURACY:
120
121        See inverse incomplete gamma function
122
123        Cephes Math Library Release 2.8:  June, 2000
124        Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
125        *************************************************************************/
126        public static double invpoissondistribution(int k,
127            double y)
128        {
129            double result = 0;
130
131            System.Diagnostics.Debug.Assert(k>=0 & (double)(y)>=(double)(0) & (double)(y)<(double)(1), "Domain error in InvPoissonDistribution");
132            result = igammaf.invincompletegammac(k+1, y);
133            return result;
134        }
135    }
136}
Note: See TracBrowser for help on using the repository browser.