[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class nsevd
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | Finding eigenvalues and eigenvectors of a general matrix
|
---|
| 35 |
|
---|
| 36 | The algorithm finds eigenvalues and eigenvectors of a general matrix by
|
---|
| 37 | using the QR algorithm with multiple shifts. The algorithm can find
|
---|
| 38 | eigenvalues and both left and right eigenvectors.
|
---|
| 39 |
|
---|
| 40 | The right eigenvector is a vector x such that A*x = w*x, and the left
|
---|
| 41 | eigenvector is a vector y such that y'*A = w*y' (here y' implies a complex
|
---|
| 42 | conjugate transposition of vector y).
|
---|
| 43 |
|
---|
| 44 | Input parameters:
|
---|
| 45 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 46 | N - size of matrix A.
|
---|
| 47 | VNeeded - flag controlling whether eigenvectors are needed or not.
|
---|
| 48 | If VNeeded is equal to:
|
---|
| 49 | * 0, eigenvectors are not returned;
|
---|
| 50 | * 1, right eigenvectors are returned;
|
---|
| 51 | * 2, left eigenvectors are returned;
|
---|
| 52 | * 3, both left and right eigenvectors are returned.
|
---|
| 53 |
|
---|
| 54 | Output parameters:
|
---|
| 55 | WR - real parts of eigenvalues.
|
---|
| 56 | Array whose index ranges within [0..N-1].
|
---|
| 57 | WR - imaginary parts of eigenvalues.
|
---|
| 58 | Array whose index ranges within [0..N-1].
|
---|
| 59 | VL, VR - arrays of left and right eigenvectors (if they are needed).
|
---|
| 60 | If WI[i]=0, the respective eigenvalue is a real number,
|
---|
| 61 | and it corresponds to the column number I of matrices VL/VR.
|
---|
| 62 | If WI[i]>0, we have a pair of complex conjugate numbers with
|
---|
| 63 | positive and negative imaginary parts:
|
---|
| 64 | the first eigenvalue WR[i] + sqrt(-1)*WI[i];
|
---|
| 65 | the second eigenvalue WR[i+1] + sqrt(-1)*WI[i+1];
|
---|
| 66 | WI[i]>0
|
---|
| 67 | WI[i+1] = -WI[i] < 0
|
---|
| 68 | In that case, the eigenvector corresponding to the first
|
---|
| 69 | eigenvalue is located in i and i+1 columns of matrices
|
---|
| 70 | VL/VR (the column number i contains the real part, and the
|
---|
| 71 | column number i+1 contains the imaginary part), and the vector
|
---|
| 72 | corresponding to the second eigenvalue is a complex conjugate to
|
---|
| 73 | the first vector.
|
---|
| 74 | Arrays whose indexes range within [0..N-1, 0..N-1].
|
---|
| 75 |
|
---|
| 76 | Result:
|
---|
| 77 | True, if the algorithm has converged.
|
---|
| 78 | False, if the algorithm has not converged.
|
---|
| 79 |
|
---|
| 80 | Note 1:
|
---|
| 81 | Some users may ask the following question: what if WI[N-1]>0?
|
---|
| 82 | WI[N] must contain an eigenvalue which is complex conjugate to the
|
---|
| 83 | N-th eigenvalue, but the array has only size N?
|
---|
| 84 | The answer is as follows: such a situation cannot occur because the
|
---|
| 85 | algorithm finds a pairs of eigenvalues, therefore, if WI[i]>0, I is
|
---|
| 86 | strictly less than N-1.
|
---|
| 87 |
|
---|
| 88 | Note 2:
|
---|
| 89 | The algorithm performance depends on the value of the internal parameter
|
---|
| 90 | NS of the InternalSchurDecomposition subroutine which defines the number
|
---|
| 91 | of shifts in the QR algorithm (similarly to the block width in block-matrix
|
---|
| 92 | algorithms of linear algebra). If you require maximum performance
|
---|
| 93 | on your machine, it is recommended to adjust this parameter manually.
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | See also the InternalTREVC subroutine.
|
---|
| 97 |
|
---|
| 98 | The algorithm is based on the LAPACK 3.0 library.
|
---|
| 99 | *************************************************************************/
|
---|
| 100 | public static bool rmatrixevd(double[,] a,
|
---|
| 101 | int n,
|
---|
| 102 | int vneeded,
|
---|
| 103 | ref double[] wr,
|
---|
| 104 | ref double[] wi,
|
---|
| 105 | ref double[,] vl,
|
---|
| 106 | ref double[,] vr)
|
---|
| 107 | {
|
---|
| 108 | bool result = new bool();
|
---|
| 109 | double[,] a1 = new double[0,0];
|
---|
| 110 | double[,] vl1 = new double[0,0];
|
---|
| 111 | double[,] vr1 = new double[0,0];
|
---|
| 112 | double[] wr1 = new double[0];
|
---|
| 113 | double[] wi1 = new double[0];
|
---|
| 114 | int i = 0;
|
---|
| 115 | double mx = 0;
|
---|
| 116 | int i_ = 0;
|
---|
| 117 | int i1_ = 0;
|
---|
| 118 |
|
---|
| 119 | a = (double[,])a.Clone();
|
---|
| 120 |
|
---|
| 121 | System.Diagnostics.Debug.Assert(vneeded>=0 & vneeded<=3, "RMatrixEVD: incorrect VNeeded!");
|
---|
| 122 | a1 = new double[n+1, n+1];
|
---|
| 123 | for(i=1; i<=n; i++)
|
---|
| 124 | {
|
---|
| 125 | i1_ = (0) - (1);
|
---|
| 126 | for(i_=1; i_<=n;i_++)
|
---|
| 127 | {
|
---|
| 128 | a1[i,i_] = a[i-1,i_+i1_];
|
---|
| 129 | }
|
---|
| 130 | }
|
---|
| 131 | result = nonsymmetricevd(a1, n, vneeded, ref wr1, ref wi1, ref vl1, ref vr1);
|
---|
| 132 | if( result )
|
---|
| 133 | {
|
---|
| 134 | wr = new double[n-1+1];
|
---|
| 135 | wi = new double[n-1+1];
|
---|
| 136 | i1_ = (1) - (0);
|
---|
| 137 | for(i_=0; i_<=n-1;i_++)
|
---|
| 138 | {
|
---|
| 139 | wr[i_] = wr1[i_+i1_];
|
---|
| 140 | }
|
---|
| 141 | i1_ = (1) - (0);
|
---|
| 142 | for(i_=0; i_<=n-1;i_++)
|
---|
| 143 | {
|
---|
| 144 | wi[i_] = wi1[i_+i1_];
|
---|
| 145 | }
|
---|
| 146 | if( vneeded==2 | vneeded==3 )
|
---|
| 147 | {
|
---|
| 148 | vl = new double[n-1+1, n-1+1];
|
---|
| 149 | for(i=0; i<=n-1; i++)
|
---|
| 150 | {
|
---|
| 151 | i1_ = (1) - (0);
|
---|
| 152 | for(i_=0; i_<=n-1;i_++)
|
---|
| 153 | {
|
---|
| 154 | vl[i,i_] = vl1[i+1,i_+i1_];
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 | if( vneeded==1 | vneeded==3 )
|
---|
| 159 | {
|
---|
| 160 | vr = new double[n-1+1, n-1+1];
|
---|
| 161 | for(i=0; i<=n-1; i++)
|
---|
| 162 | {
|
---|
| 163 | i1_ = (1) - (0);
|
---|
| 164 | for(i_=0; i_<=n-1;i_++)
|
---|
| 165 | {
|
---|
| 166 | vr[i,i_] = vr1[i+1,i_+i1_];
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | return result;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 |
|
---|
| 175 | public static bool nonsymmetricevd(double[,] a,
|
---|
| 176 | int n,
|
---|
| 177 | int vneeded,
|
---|
| 178 | ref double[] wr,
|
---|
| 179 | ref double[] wi,
|
---|
| 180 | ref double[,] vl,
|
---|
| 181 | ref double[,] vr)
|
---|
| 182 | {
|
---|
| 183 | bool result = new bool();
|
---|
| 184 | double[,] s = new double[0,0];
|
---|
| 185 | double[] tau = new double[0];
|
---|
| 186 | bool[] sel = new bool[0];
|
---|
| 187 | int i = 0;
|
---|
| 188 | int info = 0;
|
---|
| 189 | int m = 0;
|
---|
| 190 | int i_ = 0;
|
---|
| 191 |
|
---|
| 192 | a = (double[,])a.Clone();
|
---|
| 193 |
|
---|
| 194 | System.Diagnostics.Debug.Assert(vneeded>=0 & vneeded<=3, "NonSymmetricEVD: incorrect VNeeded!");
|
---|
| 195 | if( vneeded==0 )
|
---|
| 196 | {
|
---|
| 197 |
|
---|
| 198 | //
|
---|
| 199 | // Eigen values only
|
---|
| 200 | //
|
---|
| 201 | hessenberg.toupperhessenberg(ref a, n, ref tau);
|
---|
| 202 | hsschur.internalschurdecomposition(ref a, n, 0, 0, ref wr, ref wi, ref s, ref info);
|
---|
| 203 | result = info==0;
|
---|
| 204 | return result;
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | //
|
---|
| 208 | // Eigen values and vectors
|
---|
| 209 | //
|
---|
| 210 | hessenberg.toupperhessenberg(ref a, n, ref tau);
|
---|
| 211 | hessenberg.unpackqfromupperhessenberg(ref a, n, ref tau, ref s);
|
---|
| 212 | hsschur.internalschurdecomposition(ref a, n, 1, 1, ref wr, ref wi, ref s, ref info);
|
---|
| 213 | result = info==0;
|
---|
| 214 | if( !result )
|
---|
| 215 | {
|
---|
| 216 | return result;
|
---|
| 217 | }
|
---|
| 218 | if( vneeded==1 | vneeded==3 )
|
---|
| 219 | {
|
---|
| 220 | vr = new double[n+1, n+1];
|
---|
| 221 | for(i=1; i<=n; i++)
|
---|
| 222 | {
|
---|
| 223 | for(i_=1; i_<=n;i_++)
|
---|
| 224 | {
|
---|
| 225 | vr[i,i_] = s[i,i_];
|
---|
| 226 | }
|
---|
| 227 | }
|
---|
| 228 | }
|
---|
| 229 | if( vneeded==2 | vneeded==3 )
|
---|
| 230 | {
|
---|
| 231 | vl = new double[n+1, n+1];
|
---|
| 232 | for(i=1; i<=n; i++)
|
---|
| 233 | {
|
---|
| 234 | for(i_=1; i_<=n;i_++)
|
---|
| 235 | {
|
---|
| 236 | vl[i,i_] = s[i,i_];
|
---|
| 237 | }
|
---|
| 238 | }
|
---|
| 239 | }
|
---|
| 240 | internaltrevc(ref a, n, vneeded, 1, sel, ref vl, ref vr, ref m, ref info);
|
---|
| 241 | result = info==0;
|
---|
| 242 | return result;
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 |
|
---|
| 246 | private static void internaltrevc(ref double[,] t,
|
---|
| 247 | int n,
|
---|
| 248 | int side,
|
---|
| 249 | int howmny,
|
---|
| 250 | bool[] vselect,
|
---|
| 251 | ref double[,] vl,
|
---|
| 252 | ref double[,] vr,
|
---|
| 253 | ref int m,
|
---|
| 254 | ref int info)
|
---|
| 255 | {
|
---|
| 256 | bool allv = new bool();
|
---|
| 257 | bool bothv = new bool();
|
---|
| 258 | bool leftv = new bool();
|
---|
| 259 | bool over = new bool();
|
---|
| 260 | bool pair = new bool();
|
---|
| 261 | bool rightv = new bool();
|
---|
| 262 | bool somev = new bool();
|
---|
| 263 | int i = 0;
|
---|
| 264 | int ierr = 0;
|
---|
| 265 | int ii = 0;
|
---|
| 266 | int ip = 0;
|
---|
| 267 | int iis = 0;
|
---|
| 268 | int j = 0;
|
---|
| 269 | int j1 = 0;
|
---|
| 270 | int j2 = 0;
|
---|
| 271 | int jnxt = 0;
|
---|
| 272 | int k = 0;
|
---|
| 273 | int ki = 0;
|
---|
| 274 | int n2 = 0;
|
---|
| 275 | double beta = 0;
|
---|
| 276 | double bignum = 0;
|
---|
| 277 | double emax = 0;
|
---|
| 278 | double ovfl = 0;
|
---|
| 279 | double rec = 0;
|
---|
| 280 | double remax = 0;
|
---|
| 281 | double scl = 0;
|
---|
| 282 | double smin = 0;
|
---|
| 283 | double smlnum = 0;
|
---|
| 284 | double ulp = 0;
|
---|
| 285 | double unfl = 0;
|
---|
| 286 | double vcrit = 0;
|
---|
| 287 | double vmax = 0;
|
---|
| 288 | double wi = 0;
|
---|
| 289 | double wr = 0;
|
---|
| 290 | double xnorm = 0;
|
---|
| 291 | double[,] x = new double[0,0];
|
---|
| 292 | double[] work = new double[0];
|
---|
| 293 | double[] temp = new double[0];
|
---|
| 294 | double[,] temp11 = new double[0,0];
|
---|
| 295 | double[,] temp22 = new double[0,0];
|
---|
| 296 | double[,] temp11b = new double[0,0];
|
---|
| 297 | double[,] temp21b = new double[0,0];
|
---|
| 298 | double[,] temp12b = new double[0,0];
|
---|
| 299 | double[,] temp22b = new double[0,0];
|
---|
| 300 | bool skipflag = new bool();
|
---|
| 301 | int k1 = 0;
|
---|
| 302 | int k2 = 0;
|
---|
| 303 | int k3 = 0;
|
---|
| 304 | int k4 = 0;
|
---|
| 305 | double vt = 0;
|
---|
| 306 | bool[] rswap4 = new bool[0];
|
---|
| 307 | bool[] zswap4 = new bool[0];
|
---|
| 308 | int[,] ipivot44 = new int[0,0];
|
---|
| 309 | double[] civ4 = new double[0];
|
---|
| 310 | double[] crv4 = new double[0];
|
---|
| 311 | int i_ = 0;
|
---|
| 312 | int i1_ = 0;
|
---|
| 313 |
|
---|
| 314 | vselect = (bool[])vselect.Clone();
|
---|
| 315 |
|
---|
| 316 | x = new double[2+1, 2+1];
|
---|
| 317 | temp11 = new double[1+1, 1+1];
|
---|
| 318 | temp11b = new double[1+1, 1+1];
|
---|
| 319 | temp21b = new double[2+1, 1+1];
|
---|
| 320 | temp12b = new double[1+1, 2+1];
|
---|
| 321 | temp22b = new double[2+1, 2+1];
|
---|
| 322 | temp22 = new double[2+1, 2+1];
|
---|
| 323 | work = new double[3*n+1];
|
---|
| 324 | temp = new double[n+1];
|
---|
| 325 | rswap4 = new bool[4+1];
|
---|
| 326 | zswap4 = new bool[4+1];
|
---|
| 327 | ipivot44 = new int[4+1, 4+1];
|
---|
| 328 | civ4 = new double[4+1];
|
---|
| 329 | crv4 = new double[4+1];
|
---|
| 330 | if( howmny!=1 )
|
---|
| 331 | {
|
---|
| 332 | if( side==1 | side==3 )
|
---|
| 333 | {
|
---|
| 334 | vr = new double[n+1, n+1];
|
---|
| 335 | }
|
---|
| 336 | if( side==2 | side==3 )
|
---|
| 337 | {
|
---|
| 338 | vl = new double[n+1, n+1];
|
---|
| 339 | }
|
---|
| 340 | }
|
---|
| 341 |
|
---|
| 342 | //
|
---|
| 343 | // Decode and test the input parameters
|
---|
| 344 | //
|
---|
| 345 | bothv = side==3;
|
---|
| 346 | rightv = side==1 | bothv;
|
---|
| 347 | leftv = side==2 | bothv;
|
---|
| 348 | allv = howmny==2;
|
---|
| 349 | over = howmny==1;
|
---|
| 350 | somev = howmny==3;
|
---|
| 351 | info = 0;
|
---|
| 352 | if( n<0 )
|
---|
| 353 | {
|
---|
| 354 | info = -2;
|
---|
| 355 | return;
|
---|
| 356 | }
|
---|
| 357 | if( !rightv & !leftv )
|
---|
| 358 | {
|
---|
| 359 | info = -3;
|
---|
| 360 | return;
|
---|
| 361 | }
|
---|
| 362 | if( !allv & !over & !somev )
|
---|
| 363 | {
|
---|
| 364 | info = -4;
|
---|
| 365 | return;
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | //
|
---|
| 369 | // Set M to the number of columns required to store the selected
|
---|
| 370 | // eigenvectors, standardize the array SELECT if necessary, and
|
---|
| 371 | // test MM.
|
---|
| 372 | //
|
---|
| 373 | if( somev )
|
---|
| 374 | {
|
---|
| 375 | m = 0;
|
---|
| 376 | pair = false;
|
---|
| 377 | for(j=1; j<=n; j++)
|
---|
| 378 | {
|
---|
| 379 | if( pair )
|
---|
| 380 | {
|
---|
| 381 | pair = false;
|
---|
| 382 | vselect[j] = false;
|
---|
| 383 | }
|
---|
| 384 | else
|
---|
| 385 | {
|
---|
| 386 | if( j<n )
|
---|
| 387 | {
|
---|
| 388 | if( (double)(t[j+1,j])==(double)(0) )
|
---|
| 389 | {
|
---|
| 390 | if( vselect[j] )
|
---|
| 391 | {
|
---|
| 392 | m = m+1;
|
---|
| 393 | }
|
---|
| 394 | }
|
---|
| 395 | else
|
---|
| 396 | {
|
---|
| 397 | pair = true;
|
---|
| 398 | if( vselect[j] | vselect[j+1] )
|
---|
| 399 | {
|
---|
| 400 | vselect[j] = true;
|
---|
| 401 | m = m+2;
|
---|
| 402 | }
|
---|
| 403 | }
|
---|
| 404 | }
|
---|
| 405 | else
|
---|
| 406 | {
|
---|
| 407 | if( vselect[n] )
|
---|
| 408 | {
|
---|
| 409 | m = m+1;
|
---|
| 410 | }
|
---|
| 411 | }
|
---|
| 412 | }
|
---|
| 413 | }
|
---|
| 414 | }
|
---|
| 415 | else
|
---|
| 416 | {
|
---|
| 417 | m = n;
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | //
|
---|
| 421 | // Quick return if possible.
|
---|
| 422 | //
|
---|
| 423 | if( n==0 )
|
---|
| 424 | {
|
---|
| 425 | return;
|
---|
| 426 | }
|
---|
| 427 |
|
---|
| 428 | //
|
---|
| 429 | // Set the constants to control overflow.
|
---|
| 430 | //
|
---|
| 431 | unfl = AP.Math.MinRealNumber;
|
---|
| 432 | ovfl = 1/unfl;
|
---|
| 433 | ulp = AP.Math.MachineEpsilon;
|
---|
| 434 | smlnum = unfl*(n/ulp);
|
---|
| 435 | bignum = (1-ulp)/smlnum;
|
---|
| 436 |
|
---|
| 437 | //
|
---|
| 438 | // Compute 1-norm of each column of strictly upper triangular
|
---|
| 439 | // part of T to control overflow in triangular solver.
|
---|
| 440 | //
|
---|
| 441 | work[1] = 0;
|
---|
| 442 | for(j=2; j<=n; j++)
|
---|
| 443 | {
|
---|
| 444 | work[j] = 0;
|
---|
| 445 | for(i=1; i<=j-1; i++)
|
---|
| 446 | {
|
---|
| 447 | work[j] = work[j]+Math.Abs(t[i,j]);
|
---|
| 448 | }
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | //
|
---|
| 452 | // Index IP is used to specify the real or complex eigenvalue:
|
---|
| 453 | // IP = 0, real eigenvalue,
|
---|
| 454 | // 1, first of conjugate complex pair: (wr,wi)
|
---|
| 455 | // -1, second of conjugate complex pair: (wr,wi)
|
---|
| 456 | //
|
---|
| 457 | n2 = 2*n;
|
---|
| 458 | if( rightv )
|
---|
| 459 | {
|
---|
| 460 |
|
---|
| 461 | //
|
---|
| 462 | // Compute right eigenvectors.
|
---|
| 463 | //
|
---|
| 464 | ip = 0;
|
---|
| 465 | iis = m;
|
---|
| 466 | for(ki=n; ki>=1; ki--)
|
---|
| 467 | {
|
---|
| 468 | skipflag = false;
|
---|
| 469 | if( ip==1 )
|
---|
| 470 | {
|
---|
| 471 | skipflag = true;
|
---|
| 472 | }
|
---|
| 473 | else
|
---|
| 474 | {
|
---|
| 475 | if( ki!=1 )
|
---|
| 476 | {
|
---|
| 477 | if( (double)(t[ki,ki-1])!=(double)(0) )
|
---|
| 478 | {
|
---|
| 479 | ip = -1;
|
---|
| 480 | }
|
---|
| 481 | }
|
---|
| 482 | if( somev )
|
---|
| 483 | {
|
---|
| 484 | if( ip==0 )
|
---|
| 485 | {
|
---|
| 486 | if( !vselect[ki] )
|
---|
| 487 | {
|
---|
| 488 | skipflag = true;
|
---|
| 489 | }
|
---|
| 490 | }
|
---|
| 491 | else
|
---|
| 492 | {
|
---|
| 493 | if( !vselect[ki-1] )
|
---|
| 494 | {
|
---|
| 495 | skipflag = true;
|
---|
| 496 | }
|
---|
| 497 | }
|
---|
| 498 | }
|
---|
| 499 | }
|
---|
| 500 | if( !skipflag )
|
---|
| 501 | {
|
---|
| 502 |
|
---|
| 503 | //
|
---|
| 504 | // Compute the KI-th eigenvalue (WR,WI).
|
---|
| 505 | //
|
---|
| 506 | wr = t[ki,ki];
|
---|
| 507 | wi = 0;
|
---|
| 508 | if( ip!=0 )
|
---|
| 509 | {
|
---|
| 510 | wi = Math.Sqrt(Math.Abs(t[ki,ki-1]))*Math.Sqrt(Math.Abs(t[ki-1,ki]));
|
---|
| 511 | }
|
---|
| 512 | smin = Math.Max(ulp*(Math.Abs(wr)+Math.Abs(wi)), smlnum);
|
---|
| 513 | if( ip==0 )
|
---|
| 514 | {
|
---|
| 515 |
|
---|
| 516 | //
|
---|
| 517 | // Real right eigenvector
|
---|
| 518 | //
|
---|
| 519 | work[ki+n] = 1;
|
---|
| 520 |
|
---|
| 521 | //
|
---|
| 522 | // Form right-hand side
|
---|
| 523 | //
|
---|
| 524 | for(k=1; k<=ki-1; k++)
|
---|
| 525 | {
|
---|
| 526 | work[k+n] = -t[k,ki];
|
---|
| 527 | }
|
---|
| 528 |
|
---|
| 529 | //
|
---|
| 530 | // Solve the upper quasi-triangular system:
|
---|
| 531 | // (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.
|
---|
| 532 | //
|
---|
| 533 | jnxt = ki-1;
|
---|
| 534 | for(j=ki-1; j>=1; j--)
|
---|
| 535 | {
|
---|
| 536 | if( j>jnxt )
|
---|
| 537 | {
|
---|
| 538 | continue;
|
---|
| 539 | }
|
---|
| 540 | j1 = j;
|
---|
| 541 | j2 = j;
|
---|
| 542 | jnxt = j-1;
|
---|
| 543 | if( j>1 )
|
---|
| 544 | {
|
---|
| 545 | if( (double)(t[j,j-1])!=(double)(0) )
|
---|
| 546 | {
|
---|
| 547 | j1 = j-1;
|
---|
| 548 | jnxt = j-2;
|
---|
| 549 | }
|
---|
| 550 | }
|
---|
| 551 | if( j1==j2 )
|
---|
| 552 | {
|
---|
| 553 |
|
---|
| 554 | //
|
---|
| 555 | // 1-by-1 diagonal block
|
---|
| 556 | //
|
---|
| 557 | temp11[1,1] = t[j,j];
|
---|
| 558 | temp11b[1,1] = work[j+n];
|
---|
| 559 | internalhsevdlaln2(false, 1, 1, smin, 1, ref temp11, 1.0, 1.0, ref temp11b, wr, 0.0, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 560 |
|
---|
| 561 | //
|
---|
| 562 | // Scale X(1,1) to avoid overflow when updating
|
---|
| 563 | // the right-hand side.
|
---|
| 564 | //
|
---|
| 565 | if( (double)(xnorm)>(double)(1) )
|
---|
| 566 | {
|
---|
| 567 | if( (double)(work[j])>(double)(bignum/xnorm) )
|
---|
| 568 | {
|
---|
| 569 | x[1,1] = x[1,1]/xnorm;
|
---|
| 570 | scl = scl/xnorm;
|
---|
| 571 | }
|
---|
| 572 | }
|
---|
| 573 |
|
---|
| 574 | //
|
---|
| 575 | // Scale if necessary
|
---|
| 576 | //
|
---|
| 577 | if( (double)(scl)!=(double)(1) )
|
---|
| 578 | {
|
---|
| 579 | k1 = n+1;
|
---|
| 580 | k2 = n+ki;
|
---|
| 581 | for(i_=k1; i_<=k2;i_++)
|
---|
| 582 | {
|
---|
| 583 | work[i_] = scl*work[i_];
|
---|
| 584 | }
|
---|
| 585 | }
|
---|
| 586 | work[j+n] = x[1,1];
|
---|
| 587 |
|
---|
| 588 | //
|
---|
| 589 | // Update right-hand side
|
---|
| 590 | //
|
---|
| 591 | k1 = 1+n;
|
---|
| 592 | k2 = j-1+n;
|
---|
| 593 | k3 = j-1;
|
---|
| 594 | vt = -x[1,1];
|
---|
| 595 | i1_ = (1) - (k1);
|
---|
| 596 | for(i_=k1; i_<=k2;i_++)
|
---|
| 597 | {
|
---|
| 598 | work[i_] = work[i_] + vt*t[i_+i1_,j];
|
---|
| 599 | }
|
---|
| 600 | }
|
---|
| 601 | else
|
---|
| 602 | {
|
---|
| 603 |
|
---|
| 604 | //
|
---|
| 605 | // 2-by-2 diagonal block
|
---|
| 606 | //
|
---|
| 607 | temp22[1,1] = t[j-1,j-1];
|
---|
| 608 | temp22[1,2] = t[j-1,j];
|
---|
| 609 | temp22[2,1] = t[j,j-1];
|
---|
| 610 | temp22[2,2] = t[j,j];
|
---|
| 611 | temp21b[1,1] = work[j-1+n];
|
---|
| 612 | temp21b[2,1] = work[j+n];
|
---|
| 613 | internalhsevdlaln2(false, 2, 1, smin, 1.0, ref temp22, 1.0, 1.0, ref temp21b, wr, 0, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 614 |
|
---|
| 615 | //
|
---|
| 616 | // Scale X(1,1) and X(2,1) to avoid overflow when
|
---|
| 617 | // updating the right-hand side.
|
---|
| 618 | //
|
---|
| 619 | if( (double)(xnorm)>(double)(1) )
|
---|
| 620 | {
|
---|
| 621 | beta = Math.Max(work[j-1], work[j]);
|
---|
| 622 | if( (double)(beta)>(double)(bignum/xnorm) )
|
---|
| 623 | {
|
---|
| 624 | x[1,1] = x[1,1]/xnorm;
|
---|
| 625 | x[2,1] = x[2,1]/xnorm;
|
---|
| 626 | scl = scl/xnorm;
|
---|
| 627 | }
|
---|
| 628 | }
|
---|
| 629 |
|
---|
| 630 | //
|
---|
| 631 | // Scale if necessary
|
---|
| 632 | //
|
---|
| 633 | if( (double)(scl)!=(double)(1) )
|
---|
| 634 | {
|
---|
| 635 | k1 = 1+n;
|
---|
| 636 | k2 = ki+n;
|
---|
| 637 | for(i_=k1; i_<=k2;i_++)
|
---|
| 638 | {
|
---|
| 639 | work[i_] = scl*work[i_];
|
---|
| 640 | }
|
---|
| 641 | }
|
---|
| 642 | work[j-1+n] = x[1,1];
|
---|
| 643 | work[j+n] = x[2,1];
|
---|
| 644 |
|
---|
| 645 | //
|
---|
| 646 | // Update right-hand side
|
---|
| 647 | //
|
---|
| 648 | k1 = 1+n;
|
---|
| 649 | k2 = j-2+n;
|
---|
| 650 | k3 = j-2;
|
---|
| 651 | k4 = j-1;
|
---|
| 652 | vt = -x[1,1];
|
---|
| 653 | i1_ = (1) - (k1);
|
---|
| 654 | for(i_=k1; i_<=k2;i_++)
|
---|
| 655 | {
|
---|
| 656 | work[i_] = work[i_] + vt*t[i_+i1_,k4];
|
---|
| 657 | }
|
---|
| 658 | vt = -x[2,1];
|
---|
| 659 | i1_ = (1) - (k1);
|
---|
| 660 | for(i_=k1; i_<=k2;i_++)
|
---|
| 661 | {
|
---|
| 662 | work[i_] = work[i_] + vt*t[i_+i1_,j];
|
---|
| 663 | }
|
---|
| 664 | }
|
---|
| 665 | }
|
---|
| 666 |
|
---|
| 667 | //
|
---|
| 668 | // Copy the vector x or Q*x to VR and normalize.
|
---|
| 669 | //
|
---|
| 670 | if( !over )
|
---|
| 671 | {
|
---|
| 672 | k1 = 1+n;
|
---|
| 673 | k2 = ki+n;
|
---|
| 674 | i1_ = (k1) - (1);
|
---|
| 675 | for(i_=1; i_<=ki;i_++)
|
---|
| 676 | {
|
---|
| 677 | vr[i_,iis] = work[i_+i1_];
|
---|
| 678 | }
|
---|
| 679 | ii = blas.columnidxabsmax(ref vr, 1, ki, iis);
|
---|
| 680 | remax = 1/Math.Abs(vr[ii,iis]);
|
---|
| 681 | for(i_=1; i_<=ki;i_++)
|
---|
| 682 | {
|
---|
| 683 | vr[i_,iis] = remax*vr[i_,iis];
|
---|
| 684 | }
|
---|
| 685 | for(k=ki+1; k<=n; k++)
|
---|
| 686 | {
|
---|
| 687 | vr[k,iis] = 0;
|
---|
| 688 | }
|
---|
| 689 | }
|
---|
| 690 | else
|
---|
| 691 | {
|
---|
| 692 | if( ki>1 )
|
---|
| 693 | {
|
---|
| 694 | for(i_=1; i_<=n;i_++)
|
---|
| 695 | {
|
---|
| 696 | temp[i_] = vr[i_,ki];
|
---|
| 697 | }
|
---|
| 698 | blas.matrixvectormultiply(ref vr, 1, n, 1, ki-1, false, ref work, 1+n, ki-1+n, 1.0, ref temp, 1, n, work[ki+n]);
|
---|
| 699 | for(i_=1; i_<=n;i_++)
|
---|
| 700 | {
|
---|
| 701 | vr[i_,ki] = temp[i_];
|
---|
| 702 | }
|
---|
| 703 | }
|
---|
| 704 | ii = blas.columnidxabsmax(ref vr, 1, n, ki);
|
---|
| 705 | remax = 1/Math.Abs(vr[ii,ki]);
|
---|
| 706 | for(i_=1; i_<=n;i_++)
|
---|
| 707 | {
|
---|
| 708 | vr[i_,ki] = remax*vr[i_,ki];
|
---|
| 709 | }
|
---|
| 710 | }
|
---|
| 711 | }
|
---|
| 712 | else
|
---|
| 713 | {
|
---|
| 714 |
|
---|
| 715 | //
|
---|
| 716 | // Complex right eigenvector.
|
---|
| 717 | //
|
---|
| 718 | // Initial solve
|
---|
| 719 | // [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0.
|
---|
| 720 | // [ (T(KI,KI-1) T(KI,KI) ) ]
|
---|
| 721 | //
|
---|
| 722 | if( (double)(Math.Abs(t[ki-1,ki]))>=(double)(Math.Abs(t[ki,ki-1])) )
|
---|
| 723 | {
|
---|
| 724 | work[ki-1+n] = 1;
|
---|
| 725 | work[ki+n2] = wi/t[ki-1,ki];
|
---|
| 726 | }
|
---|
| 727 | else
|
---|
| 728 | {
|
---|
| 729 | work[ki-1+n] = -(wi/t[ki,ki-1]);
|
---|
| 730 | work[ki+n2] = 1;
|
---|
| 731 | }
|
---|
| 732 | work[ki+n] = 0;
|
---|
| 733 | work[ki-1+n2] = 0;
|
---|
| 734 |
|
---|
| 735 | //
|
---|
| 736 | // Form right-hand side
|
---|
| 737 | //
|
---|
| 738 | for(k=1; k<=ki-2; k++)
|
---|
| 739 | {
|
---|
| 740 | work[k+n] = -(work[ki-1+n]*t[k,ki-1]);
|
---|
| 741 | work[k+n2] = -(work[ki+n2]*t[k,ki]);
|
---|
| 742 | }
|
---|
| 743 |
|
---|
| 744 | //
|
---|
| 745 | // Solve upper quasi-triangular system:
|
---|
| 746 | // (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2)
|
---|
| 747 | //
|
---|
| 748 | jnxt = ki-2;
|
---|
| 749 | for(j=ki-2; j>=1; j--)
|
---|
| 750 | {
|
---|
| 751 | if( j>jnxt )
|
---|
| 752 | {
|
---|
| 753 | continue;
|
---|
| 754 | }
|
---|
| 755 | j1 = j;
|
---|
| 756 | j2 = j;
|
---|
| 757 | jnxt = j-1;
|
---|
| 758 | if( j>1 )
|
---|
| 759 | {
|
---|
| 760 | if( (double)(t[j,j-1])!=(double)(0) )
|
---|
| 761 | {
|
---|
| 762 | j1 = j-1;
|
---|
| 763 | jnxt = j-2;
|
---|
| 764 | }
|
---|
| 765 | }
|
---|
| 766 | if( j1==j2 )
|
---|
| 767 | {
|
---|
| 768 |
|
---|
| 769 | //
|
---|
| 770 | // 1-by-1 diagonal block
|
---|
| 771 | //
|
---|
| 772 | temp11[1,1] = t[j,j];
|
---|
| 773 | temp12b[1,1] = work[j+n];
|
---|
| 774 | temp12b[1,2] = work[j+n+n];
|
---|
| 775 | internalhsevdlaln2(false, 1, 2, smin, 1.0, ref temp11, 1.0, 1.0, ref temp12b, wr, wi, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 776 |
|
---|
| 777 | //
|
---|
| 778 | // Scale X(1,1) and X(1,2) to avoid overflow when
|
---|
| 779 | // updating the right-hand side.
|
---|
| 780 | //
|
---|
| 781 | if( (double)(xnorm)>(double)(1) )
|
---|
| 782 | {
|
---|
| 783 | if( (double)(work[j])>(double)(bignum/xnorm) )
|
---|
| 784 | {
|
---|
| 785 | x[1,1] = x[1,1]/xnorm;
|
---|
| 786 | x[1,2] = x[1,2]/xnorm;
|
---|
| 787 | scl = scl/xnorm;
|
---|
| 788 | }
|
---|
| 789 | }
|
---|
| 790 |
|
---|
| 791 | //
|
---|
| 792 | // Scale if necessary
|
---|
| 793 | //
|
---|
| 794 | if( (double)(scl)!=(double)(1) )
|
---|
| 795 | {
|
---|
| 796 | k1 = 1+n;
|
---|
| 797 | k2 = ki+n;
|
---|
| 798 | for(i_=k1; i_<=k2;i_++)
|
---|
| 799 | {
|
---|
| 800 | work[i_] = scl*work[i_];
|
---|
| 801 | }
|
---|
| 802 | k1 = 1+n2;
|
---|
| 803 | k2 = ki+n2;
|
---|
| 804 | for(i_=k1; i_<=k2;i_++)
|
---|
| 805 | {
|
---|
| 806 | work[i_] = scl*work[i_];
|
---|
| 807 | }
|
---|
| 808 | }
|
---|
| 809 | work[j+n] = x[1,1];
|
---|
| 810 | work[j+n2] = x[1,2];
|
---|
| 811 |
|
---|
| 812 | //
|
---|
| 813 | // Update the right-hand side
|
---|
| 814 | //
|
---|
| 815 | k1 = 1+n;
|
---|
| 816 | k2 = j-1+n;
|
---|
| 817 | k3 = 1;
|
---|
| 818 | k4 = j-1;
|
---|
| 819 | vt = -x[1,1];
|
---|
| 820 | i1_ = (k3) - (k1);
|
---|
| 821 | for(i_=k1; i_<=k2;i_++)
|
---|
| 822 | {
|
---|
| 823 | work[i_] = work[i_] + vt*t[i_+i1_,j];
|
---|
| 824 | }
|
---|
| 825 | k1 = 1+n2;
|
---|
| 826 | k2 = j-1+n2;
|
---|
| 827 | k3 = 1;
|
---|
| 828 | k4 = j-1;
|
---|
| 829 | vt = -x[1,2];
|
---|
| 830 | i1_ = (k3) - (k1);
|
---|
| 831 | for(i_=k1; i_<=k2;i_++)
|
---|
| 832 | {
|
---|
| 833 | work[i_] = work[i_] + vt*t[i_+i1_,j];
|
---|
| 834 | }
|
---|
| 835 | }
|
---|
| 836 | else
|
---|
| 837 | {
|
---|
| 838 |
|
---|
| 839 | //
|
---|
| 840 | // 2-by-2 diagonal block
|
---|
| 841 | //
|
---|
| 842 | temp22[1,1] = t[j-1,j-1];
|
---|
| 843 | temp22[1,2] = t[j-1,j];
|
---|
| 844 | temp22[2,1] = t[j,j-1];
|
---|
| 845 | temp22[2,2] = t[j,j];
|
---|
| 846 | temp22b[1,1] = work[j-1+n];
|
---|
| 847 | temp22b[1,2] = work[j-1+n+n];
|
---|
| 848 | temp22b[2,1] = work[j+n];
|
---|
| 849 | temp22b[2,2] = work[j+n+n];
|
---|
| 850 | internalhsevdlaln2(false, 2, 2, smin, 1.0, ref temp22, 1.0, 1.0, ref temp22b, wr, wi, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 851 |
|
---|
| 852 | //
|
---|
| 853 | // Scale X to avoid overflow when updating
|
---|
| 854 | // the right-hand side.
|
---|
| 855 | //
|
---|
| 856 | if( (double)(xnorm)>(double)(1) )
|
---|
| 857 | {
|
---|
| 858 | beta = Math.Max(work[j-1], work[j]);
|
---|
| 859 | if( (double)(beta)>(double)(bignum/xnorm) )
|
---|
| 860 | {
|
---|
| 861 | rec = 1/xnorm;
|
---|
| 862 | x[1,1] = x[1,1]*rec;
|
---|
| 863 | x[1,2] = x[1,2]*rec;
|
---|
| 864 | x[2,1] = x[2,1]*rec;
|
---|
| 865 | x[2,2] = x[2,2]*rec;
|
---|
| 866 | scl = scl*rec;
|
---|
| 867 | }
|
---|
| 868 | }
|
---|
| 869 |
|
---|
| 870 | //
|
---|
| 871 | // Scale if necessary
|
---|
| 872 | //
|
---|
| 873 | if( (double)(scl)!=(double)(1) )
|
---|
| 874 | {
|
---|
| 875 | for(i_=1+n; i_<=ki+n;i_++)
|
---|
| 876 | {
|
---|
| 877 | work[i_] = scl*work[i_];
|
---|
| 878 | }
|
---|
| 879 | for(i_=1+n2; i_<=ki+n2;i_++)
|
---|
| 880 | {
|
---|
| 881 | work[i_] = scl*work[i_];
|
---|
| 882 | }
|
---|
| 883 | }
|
---|
| 884 | work[j-1+n] = x[1,1];
|
---|
| 885 | work[j+n] = x[2,1];
|
---|
| 886 | work[j-1+n2] = x[1,2];
|
---|
| 887 | work[j+n2] = x[2,2];
|
---|
| 888 |
|
---|
| 889 | //
|
---|
| 890 | // Update the right-hand side
|
---|
| 891 | //
|
---|
| 892 | vt = -x[1,1];
|
---|
| 893 | i1_ = (1) - (n+1);
|
---|
| 894 | for(i_=n+1; i_<=n+j-2;i_++)
|
---|
| 895 | {
|
---|
| 896 | work[i_] = work[i_] + vt*t[i_+i1_,j-1];
|
---|
| 897 | }
|
---|
| 898 | vt = -x[2,1];
|
---|
| 899 | i1_ = (1) - (n+1);
|
---|
| 900 | for(i_=n+1; i_<=n+j-2;i_++)
|
---|
| 901 | {
|
---|
| 902 | work[i_] = work[i_] + vt*t[i_+i1_,j];
|
---|
| 903 | }
|
---|
| 904 | vt = -x[1,2];
|
---|
| 905 | i1_ = (1) - (n2+1);
|
---|
| 906 | for(i_=n2+1; i_<=n2+j-2;i_++)
|
---|
| 907 | {
|
---|
| 908 | work[i_] = work[i_] + vt*t[i_+i1_,j-1];
|
---|
| 909 | }
|
---|
| 910 | vt = -x[2,2];
|
---|
| 911 | i1_ = (1) - (n2+1);
|
---|
| 912 | for(i_=n2+1; i_<=n2+j-2;i_++)
|
---|
| 913 | {
|
---|
| 914 | work[i_] = work[i_] + vt*t[i_+i1_,j];
|
---|
| 915 | }
|
---|
| 916 | }
|
---|
| 917 | }
|
---|
| 918 |
|
---|
| 919 | //
|
---|
| 920 | // Copy the vector x or Q*x to VR and normalize.
|
---|
| 921 | //
|
---|
| 922 | if( !over )
|
---|
| 923 | {
|
---|
| 924 | i1_ = (n+1) - (1);
|
---|
| 925 | for(i_=1; i_<=ki;i_++)
|
---|
| 926 | {
|
---|
| 927 | vr[i_,iis-1] = work[i_+i1_];
|
---|
| 928 | }
|
---|
| 929 | i1_ = (n2+1) - (1);
|
---|
| 930 | for(i_=1; i_<=ki;i_++)
|
---|
| 931 | {
|
---|
| 932 | vr[i_,iis] = work[i_+i1_];
|
---|
| 933 | }
|
---|
| 934 | emax = 0;
|
---|
| 935 | for(k=1; k<=ki; k++)
|
---|
| 936 | {
|
---|
| 937 | emax = Math.Max(emax, Math.Abs(vr[k,iis-1])+Math.Abs(vr[k,iis]));
|
---|
| 938 | }
|
---|
| 939 | remax = 1/emax;
|
---|
| 940 | for(i_=1; i_<=ki;i_++)
|
---|
| 941 | {
|
---|
| 942 | vr[i_,iis-1] = remax*vr[i_,iis-1];
|
---|
| 943 | }
|
---|
| 944 | for(i_=1; i_<=ki;i_++)
|
---|
| 945 | {
|
---|
| 946 | vr[i_,iis] = remax*vr[i_,iis];
|
---|
| 947 | }
|
---|
| 948 | for(k=ki+1; k<=n; k++)
|
---|
| 949 | {
|
---|
| 950 | vr[k,iis-1] = 0;
|
---|
| 951 | vr[k,iis] = 0;
|
---|
| 952 | }
|
---|
| 953 | }
|
---|
| 954 | else
|
---|
| 955 | {
|
---|
| 956 | if( ki>2 )
|
---|
| 957 | {
|
---|
| 958 | for(i_=1; i_<=n;i_++)
|
---|
| 959 | {
|
---|
| 960 | temp[i_] = vr[i_,ki-1];
|
---|
| 961 | }
|
---|
| 962 | blas.matrixvectormultiply(ref vr, 1, n, 1, ki-2, false, ref work, 1+n, ki-2+n, 1.0, ref temp, 1, n, work[ki-1+n]);
|
---|
| 963 | for(i_=1; i_<=n;i_++)
|
---|
| 964 | {
|
---|
| 965 | vr[i_,ki-1] = temp[i_];
|
---|
| 966 | }
|
---|
| 967 | for(i_=1; i_<=n;i_++)
|
---|
| 968 | {
|
---|
| 969 | temp[i_] = vr[i_,ki];
|
---|
| 970 | }
|
---|
| 971 | blas.matrixvectormultiply(ref vr, 1, n, 1, ki-2, false, ref work, 1+n2, ki-2+n2, 1.0, ref temp, 1, n, work[ki+n2]);
|
---|
| 972 | for(i_=1; i_<=n;i_++)
|
---|
| 973 | {
|
---|
| 974 | vr[i_,ki] = temp[i_];
|
---|
| 975 | }
|
---|
| 976 | }
|
---|
| 977 | else
|
---|
| 978 | {
|
---|
| 979 | vt = work[ki-1+n];
|
---|
| 980 | for(i_=1; i_<=n;i_++)
|
---|
| 981 | {
|
---|
| 982 | vr[i_,ki-1] = vt*vr[i_,ki-1];
|
---|
| 983 | }
|
---|
| 984 | vt = work[ki+n2];
|
---|
| 985 | for(i_=1; i_<=n;i_++)
|
---|
| 986 | {
|
---|
| 987 | vr[i_,ki] = vt*vr[i_,ki];
|
---|
| 988 | }
|
---|
| 989 | }
|
---|
| 990 | emax = 0;
|
---|
| 991 | for(k=1; k<=n; k++)
|
---|
| 992 | {
|
---|
| 993 | emax = Math.Max(emax, Math.Abs(vr[k,ki-1])+Math.Abs(vr[k,ki]));
|
---|
| 994 | }
|
---|
| 995 | remax = 1/emax;
|
---|
| 996 | for(i_=1; i_<=n;i_++)
|
---|
| 997 | {
|
---|
| 998 | vr[i_,ki-1] = remax*vr[i_,ki-1];
|
---|
| 999 | }
|
---|
| 1000 | for(i_=1; i_<=n;i_++)
|
---|
| 1001 | {
|
---|
| 1002 | vr[i_,ki] = remax*vr[i_,ki];
|
---|
| 1003 | }
|
---|
| 1004 | }
|
---|
| 1005 | }
|
---|
| 1006 | iis = iis-1;
|
---|
| 1007 | if( ip!=0 )
|
---|
| 1008 | {
|
---|
| 1009 | iis = iis-1;
|
---|
| 1010 | }
|
---|
| 1011 | }
|
---|
| 1012 | if( ip==1 )
|
---|
| 1013 | {
|
---|
| 1014 | ip = 0;
|
---|
| 1015 | }
|
---|
| 1016 | if( ip==-1 )
|
---|
| 1017 | {
|
---|
| 1018 | ip = 1;
|
---|
| 1019 | }
|
---|
| 1020 | }
|
---|
| 1021 | }
|
---|
| 1022 | if( leftv )
|
---|
| 1023 | {
|
---|
| 1024 |
|
---|
| 1025 | //
|
---|
| 1026 | // Compute left eigenvectors.
|
---|
| 1027 | //
|
---|
| 1028 | ip = 0;
|
---|
| 1029 | iis = 1;
|
---|
| 1030 | for(ki=1; ki<=n; ki++)
|
---|
| 1031 | {
|
---|
| 1032 | skipflag = false;
|
---|
| 1033 | if( ip==-1 )
|
---|
| 1034 | {
|
---|
| 1035 | skipflag = true;
|
---|
| 1036 | }
|
---|
| 1037 | else
|
---|
| 1038 | {
|
---|
| 1039 | if( ki!=n )
|
---|
| 1040 | {
|
---|
| 1041 | if( (double)(t[ki+1,ki])!=(double)(0) )
|
---|
| 1042 | {
|
---|
| 1043 | ip = 1;
|
---|
| 1044 | }
|
---|
| 1045 | }
|
---|
| 1046 | if( somev )
|
---|
| 1047 | {
|
---|
| 1048 | if( !vselect[ki] )
|
---|
| 1049 | {
|
---|
| 1050 | skipflag = true;
|
---|
| 1051 | }
|
---|
| 1052 | }
|
---|
| 1053 | }
|
---|
| 1054 | if( !skipflag )
|
---|
| 1055 | {
|
---|
| 1056 |
|
---|
| 1057 | //
|
---|
| 1058 | // Compute the KI-th eigenvalue (WR,WI).
|
---|
| 1059 | //
|
---|
| 1060 | wr = t[ki,ki];
|
---|
| 1061 | wi = 0;
|
---|
| 1062 | if( ip!=0 )
|
---|
| 1063 | {
|
---|
| 1064 | wi = Math.Sqrt(Math.Abs(t[ki,ki+1]))*Math.Sqrt(Math.Abs(t[ki+1,ki]));
|
---|
| 1065 | }
|
---|
| 1066 | smin = Math.Max(ulp*(Math.Abs(wr)+Math.Abs(wi)), smlnum);
|
---|
| 1067 | if( ip==0 )
|
---|
| 1068 | {
|
---|
| 1069 |
|
---|
| 1070 | //
|
---|
| 1071 | // Real left eigenvector.
|
---|
| 1072 | //
|
---|
| 1073 | work[ki+n] = 1;
|
---|
| 1074 |
|
---|
| 1075 | //
|
---|
| 1076 | // Form right-hand side
|
---|
| 1077 | //
|
---|
| 1078 | for(k=ki+1; k<=n; k++)
|
---|
| 1079 | {
|
---|
| 1080 | work[k+n] = -t[ki,k];
|
---|
| 1081 | }
|
---|
| 1082 |
|
---|
| 1083 | //
|
---|
| 1084 | // Solve the quasi-triangular system:
|
---|
| 1085 | // (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK
|
---|
| 1086 | //
|
---|
| 1087 | vmax = 1;
|
---|
| 1088 | vcrit = bignum;
|
---|
| 1089 | jnxt = ki+1;
|
---|
| 1090 | for(j=ki+1; j<=n; j++)
|
---|
| 1091 | {
|
---|
| 1092 | if( j<jnxt )
|
---|
| 1093 | {
|
---|
| 1094 | continue;
|
---|
| 1095 | }
|
---|
| 1096 | j1 = j;
|
---|
| 1097 | j2 = j;
|
---|
| 1098 | jnxt = j+1;
|
---|
| 1099 | if( j<n )
|
---|
| 1100 | {
|
---|
| 1101 | if( (double)(t[j+1,j])!=(double)(0) )
|
---|
| 1102 | {
|
---|
| 1103 | j2 = j+1;
|
---|
| 1104 | jnxt = j+2;
|
---|
| 1105 | }
|
---|
| 1106 | }
|
---|
| 1107 | if( j1==j2 )
|
---|
| 1108 | {
|
---|
| 1109 |
|
---|
| 1110 | //
|
---|
| 1111 | // 1-by-1 diagonal block
|
---|
| 1112 | //
|
---|
| 1113 | // Scale if necessary to avoid overflow when forming
|
---|
| 1114 | // the right-hand side.
|
---|
| 1115 | //
|
---|
| 1116 | if( (double)(work[j])>(double)(vcrit) )
|
---|
| 1117 | {
|
---|
| 1118 | rec = 1/vmax;
|
---|
| 1119 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1120 | {
|
---|
| 1121 | work[i_] = rec*work[i_];
|
---|
| 1122 | }
|
---|
| 1123 | vmax = 1;
|
---|
| 1124 | vcrit = bignum;
|
---|
| 1125 | }
|
---|
| 1126 | i1_ = (ki+1+n)-(ki+1);
|
---|
| 1127 | vt = 0.0;
|
---|
| 1128 | for(i_=ki+1; i_<=j-1;i_++)
|
---|
| 1129 | {
|
---|
| 1130 | vt += t[i_,j]*work[i_+i1_];
|
---|
| 1131 | }
|
---|
| 1132 | work[j+n] = work[j+n]-vt;
|
---|
| 1133 |
|
---|
| 1134 | //
|
---|
| 1135 | // Solve (T(J,J)-WR)'*X = WORK
|
---|
| 1136 | //
|
---|
| 1137 | temp11[1,1] = t[j,j];
|
---|
| 1138 | temp11b[1,1] = work[j+n];
|
---|
| 1139 | internalhsevdlaln2(false, 1, 1, smin, 1.0, ref temp11, 1.0, 1.0, ref temp11b, wr, 0, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 1140 |
|
---|
| 1141 | //
|
---|
| 1142 | // Scale if necessary
|
---|
| 1143 | //
|
---|
| 1144 | if( (double)(scl)!=(double)(1) )
|
---|
| 1145 | {
|
---|
| 1146 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1147 | {
|
---|
| 1148 | work[i_] = scl*work[i_];
|
---|
| 1149 | }
|
---|
| 1150 | }
|
---|
| 1151 | work[j+n] = x[1,1];
|
---|
| 1152 | vmax = Math.Max(Math.Abs(work[j+n]), vmax);
|
---|
| 1153 | vcrit = bignum/vmax;
|
---|
| 1154 | }
|
---|
| 1155 | else
|
---|
| 1156 | {
|
---|
| 1157 |
|
---|
| 1158 | //
|
---|
| 1159 | // 2-by-2 diagonal block
|
---|
| 1160 | //
|
---|
| 1161 | // Scale if necessary to avoid overflow when forming
|
---|
| 1162 | // the right-hand side.
|
---|
| 1163 | //
|
---|
| 1164 | beta = Math.Max(work[j], work[j+1]);
|
---|
| 1165 | if( (double)(beta)>(double)(vcrit) )
|
---|
| 1166 | {
|
---|
| 1167 | rec = 1/vmax;
|
---|
| 1168 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1169 | {
|
---|
| 1170 | work[i_] = rec*work[i_];
|
---|
| 1171 | }
|
---|
| 1172 | vmax = 1;
|
---|
| 1173 | vcrit = bignum;
|
---|
| 1174 | }
|
---|
| 1175 | i1_ = (ki+1+n)-(ki+1);
|
---|
| 1176 | vt = 0.0;
|
---|
| 1177 | for(i_=ki+1; i_<=j-1;i_++)
|
---|
| 1178 | {
|
---|
| 1179 | vt += t[i_,j]*work[i_+i1_];
|
---|
| 1180 | }
|
---|
| 1181 | work[j+n] = work[j+n]-vt;
|
---|
| 1182 | i1_ = (ki+1+n)-(ki+1);
|
---|
| 1183 | vt = 0.0;
|
---|
| 1184 | for(i_=ki+1; i_<=j-1;i_++)
|
---|
| 1185 | {
|
---|
| 1186 | vt += t[i_,j+1]*work[i_+i1_];
|
---|
| 1187 | }
|
---|
| 1188 | work[j+1+n] = work[j+1+n]-vt;
|
---|
| 1189 |
|
---|
| 1190 | //
|
---|
| 1191 | // Solve
|
---|
| 1192 | // [T(J,J)-WR T(J,J+1) ]'* X = SCALE*( WORK1 )
|
---|
| 1193 | // [T(J+1,J) T(J+1,J+1)-WR] ( WORK2 )
|
---|
| 1194 | //
|
---|
| 1195 | temp22[1,1] = t[j,j];
|
---|
| 1196 | temp22[1,2] = t[j,j+1];
|
---|
| 1197 | temp22[2,1] = t[j+1,j];
|
---|
| 1198 | temp22[2,2] = t[j+1,j+1];
|
---|
| 1199 | temp21b[1,1] = work[j+n];
|
---|
| 1200 | temp21b[2,1] = work[j+1+n];
|
---|
| 1201 | internalhsevdlaln2(true, 2, 1, smin, 1.0, ref temp22, 1.0, 1.0, ref temp21b, wr, 0, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 1202 |
|
---|
| 1203 | //
|
---|
| 1204 | // Scale if necessary
|
---|
| 1205 | //
|
---|
| 1206 | if( (double)(scl)!=(double)(1) )
|
---|
| 1207 | {
|
---|
| 1208 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1209 | {
|
---|
| 1210 | work[i_] = scl*work[i_];
|
---|
| 1211 | }
|
---|
| 1212 | }
|
---|
| 1213 | work[j+n] = x[1,1];
|
---|
| 1214 | work[j+1+n] = x[2,1];
|
---|
| 1215 | vmax = Math.Max(Math.Abs(work[j+n]), Math.Max(Math.Abs(work[j+1+n]), vmax));
|
---|
| 1216 | vcrit = bignum/vmax;
|
---|
| 1217 | }
|
---|
| 1218 | }
|
---|
| 1219 |
|
---|
| 1220 | //
|
---|
| 1221 | // Copy the vector x or Q*x to VL and normalize.
|
---|
| 1222 | //
|
---|
| 1223 | if( !over )
|
---|
| 1224 | {
|
---|
| 1225 | i1_ = (ki+n) - (ki);
|
---|
| 1226 | for(i_=ki; i_<=n;i_++)
|
---|
| 1227 | {
|
---|
| 1228 | vl[i_,iis] = work[i_+i1_];
|
---|
| 1229 | }
|
---|
| 1230 | ii = blas.columnidxabsmax(ref vl, ki, n, iis);
|
---|
| 1231 | remax = 1/Math.Abs(vl[ii,iis]);
|
---|
| 1232 | for(i_=ki; i_<=n;i_++)
|
---|
| 1233 | {
|
---|
| 1234 | vl[i_,iis] = remax*vl[i_,iis];
|
---|
| 1235 | }
|
---|
| 1236 | for(k=1; k<=ki-1; k++)
|
---|
| 1237 | {
|
---|
| 1238 | vl[k,iis] = 0;
|
---|
| 1239 | }
|
---|
| 1240 | }
|
---|
| 1241 | else
|
---|
| 1242 | {
|
---|
| 1243 | if( ki<n )
|
---|
| 1244 | {
|
---|
| 1245 | for(i_=1; i_<=n;i_++)
|
---|
| 1246 | {
|
---|
| 1247 | temp[i_] = vl[i_,ki];
|
---|
| 1248 | }
|
---|
| 1249 | blas.matrixvectormultiply(ref vl, 1, n, ki+1, n, false, ref work, ki+1+n, n+n, 1.0, ref temp, 1, n, work[ki+n]);
|
---|
| 1250 | for(i_=1; i_<=n;i_++)
|
---|
| 1251 | {
|
---|
| 1252 | vl[i_,ki] = temp[i_];
|
---|
| 1253 | }
|
---|
| 1254 | }
|
---|
| 1255 | ii = blas.columnidxabsmax(ref vl, 1, n, ki);
|
---|
| 1256 | remax = 1/Math.Abs(vl[ii,ki]);
|
---|
| 1257 | for(i_=1; i_<=n;i_++)
|
---|
| 1258 | {
|
---|
| 1259 | vl[i_,ki] = remax*vl[i_,ki];
|
---|
| 1260 | }
|
---|
| 1261 | }
|
---|
| 1262 | }
|
---|
| 1263 | else
|
---|
| 1264 | {
|
---|
| 1265 |
|
---|
| 1266 | //
|
---|
| 1267 | // Complex left eigenvector.
|
---|
| 1268 | //
|
---|
| 1269 | // Initial solve:
|
---|
| 1270 | // ((T(KI,KI) T(KI,KI+1) )' - (WR - I* WI))*X = 0.
|
---|
| 1271 | // ((T(KI+1,KI) T(KI+1,KI+1)) )
|
---|
| 1272 | //
|
---|
| 1273 | if( (double)(Math.Abs(t[ki,ki+1]))>=(double)(Math.Abs(t[ki+1,ki])) )
|
---|
| 1274 | {
|
---|
| 1275 | work[ki+n] = wi/t[ki,ki+1];
|
---|
| 1276 | work[ki+1+n2] = 1;
|
---|
| 1277 | }
|
---|
| 1278 | else
|
---|
| 1279 | {
|
---|
| 1280 | work[ki+n] = 1;
|
---|
| 1281 | work[ki+1+n2] = -(wi/t[ki+1,ki]);
|
---|
| 1282 | }
|
---|
| 1283 | work[ki+1+n] = 0;
|
---|
| 1284 | work[ki+n2] = 0;
|
---|
| 1285 |
|
---|
| 1286 | //
|
---|
| 1287 | // Form right-hand side
|
---|
| 1288 | //
|
---|
| 1289 | for(k=ki+2; k<=n; k++)
|
---|
| 1290 | {
|
---|
| 1291 | work[k+n] = -(work[ki+n]*t[ki,k]);
|
---|
| 1292 | work[k+n2] = -(work[ki+1+n2]*t[ki+1,k]);
|
---|
| 1293 | }
|
---|
| 1294 |
|
---|
| 1295 | //
|
---|
| 1296 | // Solve complex quasi-triangular system:
|
---|
| 1297 | // ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2
|
---|
| 1298 | //
|
---|
| 1299 | vmax = 1;
|
---|
| 1300 | vcrit = bignum;
|
---|
| 1301 | jnxt = ki+2;
|
---|
| 1302 | for(j=ki+2; j<=n; j++)
|
---|
| 1303 | {
|
---|
| 1304 | if( j<jnxt )
|
---|
| 1305 | {
|
---|
| 1306 | continue;
|
---|
| 1307 | }
|
---|
| 1308 | j1 = j;
|
---|
| 1309 | j2 = j;
|
---|
| 1310 | jnxt = j+1;
|
---|
| 1311 | if( j<n )
|
---|
| 1312 | {
|
---|
| 1313 | if( (double)(t[j+1,j])!=(double)(0) )
|
---|
| 1314 | {
|
---|
| 1315 | j2 = j+1;
|
---|
| 1316 | jnxt = j+2;
|
---|
| 1317 | }
|
---|
| 1318 | }
|
---|
| 1319 | if( j1==j2 )
|
---|
| 1320 | {
|
---|
| 1321 |
|
---|
| 1322 | //
|
---|
| 1323 | // 1-by-1 diagonal block
|
---|
| 1324 | //
|
---|
| 1325 | // Scale if necessary to avoid overflow when
|
---|
| 1326 | // forming the right-hand side elements.
|
---|
| 1327 | //
|
---|
| 1328 | if( (double)(work[j])>(double)(vcrit) )
|
---|
| 1329 | {
|
---|
| 1330 | rec = 1/vmax;
|
---|
| 1331 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1332 | {
|
---|
| 1333 | work[i_] = rec*work[i_];
|
---|
| 1334 | }
|
---|
| 1335 | for(i_=ki+n2; i_<=n+n2;i_++)
|
---|
| 1336 | {
|
---|
| 1337 | work[i_] = rec*work[i_];
|
---|
| 1338 | }
|
---|
| 1339 | vmax = 1;
|
---|
| 1340 | vcrit = bignum;
|
---|
| 1341 | }
|
---|
| 1342 | i1_ = (ki+2+n)-(ki+2);
|
---|
| 1343 | vt = 0.0;
|
---|
| 1344 | for(i_=ki+2; i_<=j-1;i_++)
|
---|
| 1345 | {
|
---|
| 1346 | vt += t[i_,j]*work[i_+i1_];
|
---|
| 1347 | }
|
---|
| 1348 | work[j+n] = work[j+n]-vt;
|
---|
| 1349 | i1_ = (ki+2+n2)-(ki+2);
|
---|
| 1350 | vt = 0.0;
|
---|
| 1351 | for(i_=ki+2; i_<=j-1;i_++)
|
---|
| 1352 | {
|
---|
| 1353 | vt += t[i_,j]*work[i_+i1_];
|
---|
| 1354 | }
|
---|
| 1355 | work[j+n2] = work[j+n2]-vt;
|
---|
| 1356 |
|
---|
| 1357 | //
|
---|
| 1358 | // Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2
|
---|
| 1359 | //
|
---|
| 1360 | temp11[1,1] = t[j,j];
|
---|
| 1361 | temp12b[1,1] = work[j+n];
|
---|
| 1362 | temp12b[1,2] = work[j+n+n];
|
---|
| 1363 | internalhsevdlaln2(false, 1, 2, smin, 1.0, ref temp11, 1.0, 1.0, ref temp12b, wr, -wi, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 1364 |
|
---|
| 1365 | //
|
---|
| 1366 | // Scale if necessary
|
---|
| 1367 | //
|
---|
| 1368 | if( (double)(scl)!=(double)(1) )
|
---|
| 1369 | {
|
---|
| 1370 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1371 | {
|
---|
| 1372 | work[i_] = scl*work[i_];
|
---|
| 1373 | }
|
---|
| 1374 | for(i_=ki+n2; i_<=n+n2;i_++)
|
---|
| 1375 | {
|
---|
| 1376 | work[i_] = scl*work[i_];
|
---|
| 1377 | }
|
---|
| 1378 | }
|
---|
| 1379 | work[j+n] = x[1,1];
|
---|
| 1380 | work[j+n2] = x[1,2];
|
---|
| 1381 | vmax = Math.Max(Math.Abs(work[j+n]), Math.Max(Math.Abs(work[j+n2]), vmax));
|
---|
| 1382 | vcrit = bignum/vmax;
|
---|
| 1383 | }
|
---|
| 1384 | else
|
---|
| 1385 | {
|
---|
| 1386 |
|
---|
| 1387 | //
|
---|
| 1388 | // 2-by-2 diagonal block
|
---|
| 1389 | //
|
---|
| 1390 | // Scale if necessary to avoid overflow when forming
|
---|
| 1391 | // the right-hand side elements.
|
---|
| 1392 | //
|
---|
| 1393 | beta = Math.Max(work[j], work[j+1]);
|
---|
| 1394 | if( (double)(beta)>(double)(vcrit) )
|
---|
| 1395 | {
|
---|
| 1396 | rec = 1/vmax;
|
---|
| 1397 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1398 | {
|
---|
| 1399 | work[i_] = rec*work[i_];
|
---|
| 1400 | }
|
---|
| 1401 | for(i_=ki+n2; i_<=n+n2;i_++)
|
---|
| 1402 | {
|
---|
| 1403 | work[i_] = rec*work[i_];
|
---|
| 1404 | }
|
---|
| 1405 | vmax = 1;
|
---|
| 1406 | vcrit = bignum;
|
---|
| 1407 | }
|
---|
| 1408 | i1_ = (ki+2+n)-(ki+2);
|
---|
| 1409 | vt = 0.0;
|
---|
| 1410 | for(i_=ki+2; i_<=j-1;i_++)
|
---|
| 1411 | {
|
---|
| 1412 | vt += t[i_,j]*work[i_+i1_];
|
---|
| 1413 | }
|
---|
| 1414 | work[j+n] = work[j+n]-vt;
|
---|
| 1415 | i1_ = (ki+2+n2)-(ki+2);
|
---|
| 1416 | vt = 0.0;
|
---|
| 1417 | for(i_=ki+2; i_<=j-1;i_++)
|
---|
| 1418 | {
|
---|
| 1419 | vt += t[i_,j]*work[i_+i1_];
|
---|
| 1420 | }
|
---|
| 1421 | work[j+n2] = work[j+n2]-vt;
|
---|
| 1422 | i1_ = (ki+2+n)-(ki+2);
|
---|
| 1423 | vt = 0.0;
|
---|
| 1424 | for(i_=ki+2; i_<=j-1;i_++)
|
---|
| 1425 | {
|
---|
| 1426 | vt += t[i_,j+1]*work[i_+i1_];
|
---|
| 1427 | }
|
---|
| 1428 | work[j+1+n] = work[j+1+n]-vt;
|
---|
| 1429 | i1_ = (ki+2+n2)-(ki+2);
|
---|
| 1430 | vt = 0.0;
|
---|
| 1431 | for(i_=ki+2; i_<=j-1;i_++)
|
---|
| 1432 | {
|
---|
| 1433 | vt += t[i_,j+1]*work[i_+i1_];
|
---|
| 1434 | }
|
---|
| 1435 | work[j+1+n2] = work[j+1+n2]-vt;
|
---|
| 1436 |
|
---|
| 1437 | //
|
---|
| 1438 | // Solve 2-by-2 complex linear equation
|
---|
| 1439 | // ([T(j,j) T(j,j+1) ]'-(wr-i*wi)*I)*X = SCALE*B
|
---|
| 1440 | // ([T(j+1,j) T(j+1,j+1)] )
|
---|
| 1441 | //
|
---|
| 1442 | temp22[1,1] = t[j,j];
|
---|
| 1443 | temp22[1,2] = t[j,j+1];
|
---|
| 1444 | temp22[2,1] = t[j+1,j];
|
---|
| 1445 | temp22[2,2] = t[j+1,j+1];
|
---|
| 1446 | temp22b[1,1] = work[j+n];
|
---|
| 1447 | temp22b[1,2] = work[j+n+n];
|
---|
| 1448 | temp22b[2,1] = work[j+1+n];
|
---|
| 1449 | temp22b[2,2] = work[j+1+n+n];
|
---|
| 1450 | internalhsevdlaln2(true, 2, 2, smin, 1.0, ref temp22, 1.0, 1.0, ref temp22b, wr, -wi, ref rswap4, ref zswap4, ref ipivot44, ref civ4, ref crv4, ref x, ref scl, ref xnorm, ref ierr);
|
---|
| 1451 |
|
---|
| 1452 | //
|
---|
| 1453 | // Scale if necessary
|
---|
| 1454 | //
|
---|
| 1455 | if( (double)(scl)!=(double)(1) )
|
---|
| 1456 | {
|
---|
| 1457 | for(i_=ki+n; i_<=n+n;i_++)
|
---|
| 1458 | {
|
---|
| 1459 | work[i_] = scl*work[i_];
|
---|
| 1460 | }
|
---|
| 1461 | for(i_=ki+n2; i_<=n+n2;i_++)
|
---|
| 1462 | {
|
---|
| 1463 | work[i_] = scl*work[i_];
|
---|
| 1464 | }
|
---|
| 1465 | }
|
---|
| 1466 | work[j+n] = x[1,1];
|
---|
| 1467 | work[j+n2] = x[1,2];
|
---|
| 1468 | work[j+1+n] = x[2,1];
|
---|
| 1469 | work[j+1+n2] = x[2,2];
|
---|
| 1470 | vmax = Math.Max(Math.Abs(x[1,1]), vmax);
|
---|
| 1471 | vmax = Math.Max(Math.Abs(x[1,2]), vmax);
|
---|
| 1472 | vmax = Math.Max(Math.Abs(x[2,1]), vmax);
|
---|
| 1473 | vmax = Math.Max(Math.Abs(x[2,2]), vmax);
|
---|
| 1474 | vcrit = bignum/vmax;
|
---|
| 1475 | }
|
---|
| 1476 | }
|
---|
| 1477 |
|
---|
| 1478 | //
|
---|
| 1479 | // Copy the vector x or Q*x to VL and normalize.
|
---|
| 1480 | //
|
---|
| 1481 | if( !over )
|
---|
| 1482 | {
|
---|
| 1483 | i1_ = (ki+n) - (ki);
|
---|
| 1484 | for(i_=ki; i_<=n;i_++)
|
---|
| 1485 | {
|
---|
| 1486 | vl[i_,iis] = work[i_+i1_];
|
---|
| 1487 | }
|
---|
| 1488 | i1_ = (ki+n2) - (ki);
|
---|
| 1489 | for(i_=ki; i_<=n;i_++)
|
---|
| 1490 | {
|
---|
| 1491 | vl[i_,iis+1] = work[i_+i1_];
|
---|
| 1492 | }
|
---|
| 1493 | emax = 0;
|
---|
| 1494 | for(k=ki; k<=n; k++)
|
---|
| 1495 | {
|
---|
| 1496 | emax = Math.Max(emax, Math.Abs(vl[k,iis])+Math.Abs(vl[k,iis+1]));
|
---|
| 1497 | }
|
---|
| 1498 | remax = 1/emax;
|
---|
| 1499 | for(i_=ki; i_<=n;i_++)
|
---|
| 1500 | {
|
---|
| 1501 | vl[i_,iis] = remax*vl[i_,iis];
|
---|
| 1502 | }
|
---|
| 1503 | for(i_=ki; i_<=n;i_++)
|
---|
| 1504 | {
|
---|
| 1505 | vl[i_,iis+1] = remax*vl[i_,iis+1];
|
---|
| 1506 | }
|
---|
| 1507 | for(k=1; k<=ki-1; k++)
|
---|
| 1508 | {
|
---|
| 1509 | vl[k,iis] = 0;
|
---|
| 1510 | vl[k,iis+1] = 0;
|
---|
| 1511 | }
|
---|
| 1512 | }
|
---|
| 1513 | else
|
---|
| 1514 | {
|
---|
| 1515 | if( ki<n-1 )
|
---|
| 1516 | {
|
---|
| 1517 | for(i_=1; i_<=n;i_++)
|
---|
| 1518 | {
|
---|
| 1519 | temp[i_] = vl[i_,ki];
|
---|
| 1520 | }
|
---|
| 1521 | blas.matrixvectormultiply(ref vl, 1, n, ki+2, n, false, ref work, ki+2+n, n+n, 1.0, ref temp, 1, n, work[ki+n]);
|
---|
| 1522 | for(i_=1; i_<=n;i_++)
|
---|
| 1523 | {
|
---|
| 1524 | vl[i_,ki] = temp[i_];
|
---|
| 1525 | }
|
---|
| 1526 | for(i_=1; i_<=n;i_++)
|
---|
| 1527 | {
|
---|
| 1528 | temp[i_] = vl[i_,ki+1];
|
---|
| 1529 | }
|
---|
| 1530 | blas.matrixvectormultiply(ref vl, 1, n, ki+2, n, false, ref work, ki+2+n2, n+n2, 1.0, ref temp, 1, n, work[ki+1+n2]);
|
---|
| 1531 | for(i_=1; i_<=n;i_++)
|
---|
| 1532 | {
|
---|
| 1533 | vl[i_,ki+1] = temp[i_];
|
---|
| 1534 | }
|
---|
| 1535 | }
|
---|
| 1536 | else
|
---|
| 1537 | {
|
---|
| 1538 | vt = work[ki+n];
|
---|
| 1539 | for(i_=1; i_<=n;i_++)
|
---|
| 1540 | {
|
---|
| 1541 | vl[i_,ki] = vt*vl[i_,ki];
|
---|
| 1542 | }
|
---|
| 1543 | vt = work[ki+1+n2];
|
---|
| 1544 | for(i_=1; i_<=n;i_++)
|
---|
| 1545 | {
|
---|
| 1546 | vl[i_,ki+1] = vt*vl[i_,ki+1];
|
---|
| 1547 | }
|
---|
| 1548 | }
|
---|
| 1549 | emax = 0;
|
---|
| 1550 | for(k=1; k<=n; k++)
|
---|
| 1551 | {
|
---|
| 1552 | emax = Math.Max(emax, Math.Abs(vl[k,ki])+Math.Abs(vl[k,ki+1]));
|
---|
| 1553 | }
|
---|
| 1554 | remax = 1/emax;
|
---|
| 1555 | for(i_=1; i_<=n;i_++)
|
---|
| 1556 | {
|
---|
| 1557 | vl[i_,ki] = remax*vl[i_,ki];
|
---|
| 1558 | }
|
---|
| 1559 | for(i_=1; i_<=n;i_++)
|
---|
| 1560 | {
|
---|
| 1561 | vl[i_,ki+1] = remax*vl[i_,ki+1];
|
---|
| 1562 | }
|
---|
| 1563 | }
|
---|
| 1564 | }
|
---|
| 1565 | iis = iis+1;
|
---|
| 1566 | if( ip!=0 )
|
---|
| 1567 | {
|
---|
| 1568 | iis = iis+1;
|
---|
| 1569 | }
|
---|
| 1570 | }
|
---|
| 1571 | if( ip==-1 )
|
---|
| 1572 | {
|
---|
| 1573 | ip = 0;
|
---|
| 1574 | }
|
---|
| 1575 | if( ip==1 )
|
---|
| 1576 | {
|
---|
| 1577 | ip = -1;
|
---|
| 1578 | }
|
---|
| 1579 | }
|
---|
| 1580 | }
|
---|
| 1581 | }
|
---|
| 1582 |
|
---|
| 1583 |
|
---|
| 1584 | private static void internalhsevdlaln2(bool ltrans,
|
---|
| 1585 | int na,
|
---|
| 1586 | int nw,
|
---|
| 1587 | double smin,
|
---|
| 1588 | double ca,
|
---|
| 1589 | ref double[,] a,
|
---|
| 1590 | double d1,
|
---|
| 1591 | double d2,
|
---|
| 1592 | ref double[,] b,
|
---|
| 1593 | double wr,
|
---|
| 1594 | double wi,
|
---|
| 1595 | ref bool[] rswap4,
|
---|
| 1596 | ref bool[] zswap4,
|
---|
| 1597 | ref int[,] ipivot44,
|
---|
| 1598 | ref double[] civ4,
|
---|
| 1599 | ref double[] crv4,
|
---|
| 1600 | ref double[,] x,
|
---|
| 1601 | ref double scl,
|
---|
| 1602 | ref double xnorm,
|
---|
| 1603 | ref int info)
|
---|
| 1604 | {
|
---|
| 1605 | int icmax = 0;
|
---|
| 1606 | int j = 0;
|
---|
| 1607 | double bbnd = 0;
|
---|
| 1608 | double bi1 = 0;
|
---|
| 1609 | double bi2 = 0;
|
---|
| 1610 | double bignum = 0;
|
---|
| 1611 | double bnorm = 0;
|
---|
| 1612 | double br1 = 0;
|
---|
| 1613 | double br2 = 0;
|
---|
| 1614 | double ci21 = 0;
|
---|
| 1615 | double ci22 = 0;
|
---|
| 1616 | double cmax = 0;
|
---|
| 1617 | double cnorm = 0;
|
---|
| 1618 | double cr21 = 0;
|
---|
| 1619 | double cr22 = 0;
|
---|
| 1620 | double csi = 0;
|
---|
| 1621 | double csr = 0;
|
---|
| 1622 | double li21 = 0;
|
---|
| 1623 | double lr21 = 0;
|
---|
| 1624 | double smini = 0;
|
---|
| 1625 | double smlnum = 0;
|
---|
| 1626 | double temp = 0;
|
---|
| 1627 | double u22abs = 0;
|
---|
| 1628 | double ui11 = 0;
|
---|
| 1629 | double ui11r = 0;
|
---|
| 1630 | double ui12 = 0;
|
---|
| 1631 | double ui12s = 0;
|
---|
| 1632 | double ui22 = 0;
|
---|
| 1633 | double ur11 = 0;
|
---|
| 1634 | double ur11r = 0;
|
---|
| 1635 | double ur12 = 0;
|
---|
| 1636 | double ur12s = 0;
|
---|
| 1637 | double ur22 = 0;
|
---|
| 1638 | double xi1 = 0;
|
---|
| 1639 | double xi2 = 0;
|
---|
| 1640 | double xr1 = 0;
|
---|
| 1641 | double xr2 = 0;
|
---|
| 1642 | double tmp1 = 0;
|
---|
| 1643 | double tmp2 = 0;
|
---|
| 1644 |
|
---|
| 1645 | zswap4[1] = false;
|
---|
| 1646 | zswap4[2] = false;
|
---|
| 1647 | zswap4[3] = true;
|
---|
| 1648 | zswap4[4] = true;
|
---|
| 1649 | rswap4[1] = false;
|
---|
| 1650 | rswap4[2] = true;
|
---|
| 1651 | rswap4[3] = false;
|
---|
| 1652 | rswap4[4] = true;
|
---|
| 1653 | ipivot44[1,1] = 1;
|
---|
| 1654 | ipivot44[2,1] = 2;
|
---|
| 1655 | ipivot44[3,1] = 3;
|
---|
| 1656 | ipivot44[4,1] = 4;
|
---|
| 1657 | ipivot44[1,2] = 2;
|
---|
| 1658 | ipivot44[2,2] = 1;
|
---|
| 1659 | ipivot44[3,2] = 4;
|
---|
| 1660 | ipivot44[4,2] = 3;
|
---|
| 1661 | ipivot44[1,3] = 3;
|
---|
| 1662 | ipivot44[2,3] = 4;
|
---|
| 1663 | ipivot44[3,3] = 1;
|
---|
| 1664 | ipivot44[4,3] = 2;
|
---|
| 1665 | ipivot44[1,4] = 4;
|
---|
| 1666 | ipivot44[2,4] = 3;
|
---|
| 1667 | ipivot44[3,4] = 2;
|
---|
| 1668 | ipivot44[4,4] = 1;
|
---|
| 1669 | smlnum = 2*AP.Math.MinRealNumber;
|
---|
| 1670 | bignum = 1/smlnum;
|
---|
| 1671 | smini = Math.Max(smin, smlnum);
|
---|
| 1672 |
|
---|
| 1673 | //
|
---|
| 1674 | // Don't check for input errors
|
---|
| 1675 | //
|
---|
| 1676 | info = 0;
|
---|
| 1677 |
|
---|
| 1678 | //
|
---|
| 1679 | // Standard Initializations
|
---|
| 1680 | //
|
---|
| 1681 | scl = 1;
|
---|
| 1682 | if( na==1 )
|
---|
| 1683 | {
|
---|
| 1684 |
|
---|
| 1685 | //
|
---|
| 1686 | // 1 x 1 (i.e., scalar) system C X = B
|
---|
| 1687 | //
|
---|
| 1688 | if( nw==1 )
|
---|
| 1689 | {
|
---|
| 1690 |
|
---|
| 1691 | //
|
---|
| 1692 | // Real 1x1 system.
|
---|
| 1693 | //
|
---|
| 1694 | // C = ca A - w D
|
---|
| 1695 | //
|
---|
| 1696 | csr = ca*a[1,1]-wr*d1;
|
---|
| 1697 | cnorm = Math.Abs(csr);
|
---|
| 1698 |
|
---|
| 1699 | //
|
---|
| 1700 | // If | C | < SMINI, use C = SMINI
|
---|
| 1701 | //
|
---|
| 1702 | if( (double)(cnorm)<(double)(smini) )
|
---|
| 1703 | {
|
---|
| 1704 | csr = smini;
|
---|
| 1705 | cnorm = smini;
|
---|
| 1706 | info = 1;
|
---|
| 1707 | }
|
---|
| 1708 |
|
---|
| 1709 | //
|
---|
| 1710 | // Check scaling for X = B / C
|
---|
| 1711 | //
|
---|
| 1712 | bnorm = Math.Abs(b[1,1]);
|
---|
| 1713 | if( (double)(cnorm)<(double)(1) & (double)(bnorm)>(double)(1) )
|
---|
| 1714 | {
|
---|
| 1715 | if( (double)(bnorm)>(double)(bignum*cnorm) )
|
---|
| 1716 | {
|
---|
| 1717 | scl = 1/bnorm;
|
---|
| 1718 | }
|
---|
| 1719 | }
|
---|
| 1720 |
|
---|
| 1721 | //
|
---|
| 1722 | // Compute X
|
---|
| 1723 | //
|
---|
| 1724 | x[1,1] = b[1,1]*scl/csr;
|
---|
| 1725 | xnorm = Math.Abs(x[1,1]);
|
---|
| 1726 | }
|
---|
| 1727 | else
|
---|
| 1728 | {
|
---|
| 1729 |
|
---|
| 1730 | //
|
---|
| 1731 | // Complex 1x1 system (w is complex)
|
---|
| 1732 | //
|
---|
| 1733 | // C = ca A - w D
|
---|
| 1734 | //
|
---|
| 1735 | csr = ca*a[1,1]-wr*d1;
|
---|
| 1736 | csi = -(wi*d1);
|
---|
| 1737 | cnorm = Math.Abs(csr)+Math.Abs(csi);
|
---|
| 1738 |
|
---|
| 1739 | //
|
---|
| 1740 | // If | C | < SMINI, use C = SMINI
|
---|
| 1741 | //
|
---|
| 1742 | if( (double)(cnorm)<(double)(smini) )
|
---|
| 1743 | {
|
---|
| 1744 | csr = smini;
|
---|
| 1745 | csi = 0;
|
---|
| 1746 | cnorm = smini;
|
---|
| 1747 | info = 1;
|
---|
| 1748 | }
|
---|
| 1749 |
|
---|
| 1750 | //
|
---|
| 1751 | // Check scaling for X = B / C
|
---|
| 1752 | //
|
---|
| 1753 | bnorm = Math.Abs(b[1,1])+Math.Abs(b[1,2]);
|
---|
| 1754 | if( (double)(cnorm)<(double)(1) & (double)(bnorm)>(double)(1) )
|
---|
| 1755 | {
|
---|
| 1756 | if( (double)(bnorm)>(double)(bignum*cnorm) )
|
---|
| 1757 | {
|
---|
| 1758 | scl = 1/bnorm;
|
---|
| 1759 | }
|
---|
| 1760 | }
|
---|
| 1761 |
|
---|
| 1762 | //
|
---|
| 1763 | // Compute X
|
---|
| 1764 | //
|
---|
| 1765 | internalhsevdladiv(scl*b[1,1], scl*b[1,2], csr, csi, ref tmp1, ref tmp2);
|
---|
| 1766 | x[1,1] = tmp1;
|
---|
| 1767 | x[1,2] = tmp2;
|
---|
| 1768 | xnorm = Math.Abs(x[1,1])+Math.Abs(x[1,2]);
|
---|
| 1769 | }
|
---|
| 1770 | }
|
---|
| 1771 | else
|
---|
| 1772 | {
|
---|
| 1773 |
|
---|
| 1774 | //
|
---|
| 1775 | // 2x2 System
|
---|
| 1776 | //
|
---|
| 1777 | // Compute the real part of C = ca A - w D (or ca A' - w D )
|
---|
| 1778 | //
|
---|
| 1779 | crv4[1+0] = ca*a[1,1]-wr*d1;
|
---|
| 1780 | crv4[2+2] = ca*a[2,2]-wr*d2;
|
---|
| 1781 | if( ltrans )
|
---|
| 1782 | {
|
---|
| 1783 | crv4[1+2] = ca*a[2,1];
|
---|
| 1784 | crv4[2+0] = ca*a[1,2];
|
---|
| 1785 | }
|
---|
| 1786 | else
|
---|
| 1787 | {
|
---|
| 1788 | crv4[2+0] = ca*a[2,1];
|
---|
| 1789 | crv4[1+2] = ca*a[1,2];
|
---|
| 1790 | }
|
---|
| 1791 | if( nw==1 )
|
---|
| 1792 | {
|
---|
| 1793 |
|
---|
| 1794 | //
|
---|
| 1795 | // Real 2x2 system (w is real)
|
---|
| 1796 | //
|
---|
| 1797 | // Find the largest element in C
|
---|
| 1798 | //
|
---|
| 1799 | cmax = 0;
|
---|
| 1800 | icmax = 0;
|
---|
| 1801 | for(j=1; j<=4; j++)
|
---|
| 1802 | {
|
---|
| 1803 | if( (double)(Math.Abs(crv4[j]))>(double)(cmax) )
|
---|
| 1804 | {
|
---|
| 1805 | cmax = Math.Abs(crv4[j]);
|
---|
| 1806 | icmax = j;
|
---|
| 1807 | }
|
---|
| 1808 | }
|
---|
| 1809 |
|
---|
| 1810 | //
|
---|
| 1811 | // If norm(C) < SMINI, use SMINI*identity.
|
---|
| 1812 | //
|
---|
| 1813 | if( (double)(cmax)<(double)(smini) )
|
---|
| 1814 | {
|
---|
| 1815 | bnorm = Math.Max(Math.Abs(b[1,1]), Math.Abs(b[2,1]));
|
---|
| 1816 | if( (double)(smini)<(double)(1) & (double)(bnorm)>(double)(1) )
|
---|
| 1817 | {
|
---|
| 1818 | if( (double)(bnorm)>(double)(bignum*smini) )
|
---|
| 1819 | {
|
---|
| 1820 | scl = 1/bnorm;
|
---|
| 1821 | }
|
---|
| 1822 | }
|
---|
| 1823 | temp = scl/smini;
|
---|
| 1824 | x[1,1] = temp*b[1,1];
|
---|
| 1825 | x[2,1] = temp*b[2,1];
|
---|
| 1826 | xnorm = temp*bnorm;
|
---|
| 1827 | info = 1;
|
---|
| 1828 | return;
|
---|
| 1829 | }
|
---|
| 1830 |
|
---|
| 1831 | //
|
---|
| 1832 | // Gaussian elimination with complete pivoting.
|
---|
| 1833 | //
|
---|
| 1834 | ur11 = crv4[icmax];
|
---|
| 1835 | cr21 = crv4[ipivot44[2,icmax]];
|
---|
| 1836 | ur12 = crv4[ipivot44[3,icmax]];
|
---|
| 1837 | cr22 = crv4[ipivot44[4,icmax]];
|
---|
| 1838 | ur11r = 1/ur11;
|
---|
| 1839 | lr21 = ur11r*cr21;
|
---|
| 1840 | ur22 = cr22-ur12*lr21;
|
---|
| 1841 |
|
---|
| 1842 | //
|
---|
| 1843 | // If smaller pivot < SMINI, use SMINI
|
---|
| 1844 | //
|
---|
| 1845 | if( (double)(Math.Abs(ur22))<(double)(smini) )
|
---|
| 1846 | {
|
---|
| 1847 | ur22 = smini;
|
---|
| 1848 | info = 1;
|
---|
| 1849 | }
|
---|
| 1850 | if( rswap4[icmax] )
|
---|
| 1851 | {
|
---|
| 1852 | br1 = b[2,1];
|
---|
| 1853 | br2 = b[1,1];
|
---|
| 1854 | }
|
---|
| 1855 | else
|
---|
| 1856 | {
|
---|
| 1857 | br1 = b[1,1];
|
---|
| 1858 | br2 = b[2,1];
|
---|
| 1859 | }
|
---|
| 1860 | br2 = br2-lr21*br1;
|
---|
| 1861 | bbnd = Math.Max(Math.Abs(br1*(ur22*ur11r)), Math.Abs(br2));
|
---|
| 1862 | if( (double)(bbnd)>(double)(1) & (double)(Math.Abs(ur22))<(double)(1) )
|
---|
| 1863 | {
|
---|
| 1864 | if( (double)(bbnd)>=(double)(bignum*Math.Abs(ur22)) )
|
---|
| 1865 | {
|
---|
| 1866 | scl = 1/bbnd;
|
---|
| 1867 | }
|
---|
| 1868 | }
|
---|
| 1869 | xr2 = br2*scl/ur22;
|
---|
| 1870 | xr1 = scl*br1*ur11r-xr2*(ur11r*ur12);
|
---|
| 1871 | if( zswap4[icmax] )
|
---|
| 1872 | {
|
---|
| 1873 | x[1,1] = xr2;
|
---|
| 1874 | x[2,1] = xr1;
|
---|
| 1875 | }
|
---|
| 1876 | else
|
---|
| 1877 | {
|
---|
| 1878 | x[1,1] = xr1;
|
---|
| 1879 | x[2,1] = xr2;
|
---|
| 1880 | }
|
---|
| 1881 | xnorm = Math.Max(Math.Abs(xr1), Math.Abs(xr2));
|
---|
| 1882 |
|
---|
| 1883 | //
|
---|
| 1884 | // Further scaling if norm(A) norm(X) > overflow
|
---|
| 1885 | //
|
---|
| 1886 | if( (double)(xnorm)>(double)(1) & (double)(cmax)>(double)(1) )
|
---|
| 1887 | {
|
---|
| 1888 | if( (double)(xnorm)>(double)(bignum/cmax) )
|
---|
| 1889 | {
|
---|
| 1890 | temp = cmax/bignum;
|
---|
| 1891 | x[1,1] = temp*x[1,1];
|
---|
| 1892 | x[2,1] = temp*x[2,1];
|
---|
| 1893 | xnorm = temp*xnorm;
|
---|
| 1894 | scl = temp*scl;
|
---|
| 1895 | }
|
---|
| 1896 | }
|
---|
| 1897 | }
|
---|
| 1898 | else
|
---|
| 1899 | {
|
---|
| 1900 |
|
---|
| 1901 | //
|
---|
| 1902 | // Complex 2x2 system (w is complex)
|
---|
| 1903 | //
|
---|
| 1904 | // Find the largest element in C
|
---|
| 1905 | //
|
---|
| 1906 | civ4[1+0] = -(wi*d1);
|
---|
| 1907 | civ4[2+0] = 0;
|
---|
| 1908 | civ4[1+2] = 0;
|
---|
| 1909 | civ4[2+2] = -(wi*d2);
|
---|
| 1910 | cmax = 0;
|
---|
| 1911 | icmax = 0;
|
---|
| 1912 | for(j=1; j<=4; j++)
|
---|
| 1913 | {
|
---|
| 1914 | if( (double)(Math.Abs(crv4[j])+Math.Abs(civ4[j]))>(double)(cmax) )
|
---|
| 1915 | {
|
---|
| 1916 | cmax = Math.Abs(crv4[j])+Math.Abs(civ4[j]);
|
---|
| 1917 | icmax = j;
|
---|
| 1918 | }
|
---|
| 1919 | }
|
---|
| 1920 |
|
---|
| 1921 | //
|
---|
| 1922 | // If norm(C) < SMINI, use SMINI*identity.
|
---|
| 1923 | //
|
---|
| 1924 | if( (double)(cmax)<(double)(smini) )
|
---|
| 1925 | {
|
---|
| 1926 | bnorm = Math.Max(Math.Abs(b[1,1])+Math.Abs(b[1,2]), Math.Abs(b[2,1])+Math.Abs(b[2,2]));
|
---|
| 1927 | if( (double)(smini)<(double)(1) & (double)(bnorm)>(double)(1) )
|
---|
| 1928 | {
|
---|
| 1929 | if( (double)(bnorm)>(double)(bignum*smini) )
|
---|
| 1930 | {
|
---|
| 1931 | scl = 1/bnorm;
|
---|
| 1932 | }
|
---|
| 1933 | }
|
---|
| 1934 | temp = scl/smini;
|
---|
| 1935 | x[1,1] = temp*b[1,1];
|
---|
| 1936 | x[2,1] = temp*b[2,1];
|
---|
| 1937 | x[1,2] = temp*b[1,2];
|
---|
| 1938 | x[2,2] = temp*b[2,2];
|
---|
| 1939 | xnorm = temp*bnorm;
|
---|
| 1940 | info = 1;
|
---|
| 1941 | return;
|
---|
| 1942 | }
|
---|
| 1943 |
|
---|
| 1944 | //
|
---|
| 1945 | // Gaussian elimination with complete pivoting.
|
---|
| 1946 | //
|
---|
| 1947 | ur11 = crv4[icmax];
|
---|
| 1948 | ui11 = civ4[icmax];
|
---|
| 1949 | cr21 = crv4[ipivot44[2,icmax]];
|
---|
| 1950 | ci21 = civ4[ipivot44[2,icmax]];
|
---|
| 1951 | ur12 = crv4[ipivot44[3,icmax]];
|
---|
| 1952 | ui12 = civ4[ipivot44[3,icmax]];
|
---|
| 1953 | cr22 = crv4[ipivot44[4,icmax]];
|
---|
| 1954 | ci22 = civ4[ipivot44[4,icmax]];
|
---|
| 1955 | if( icmax==1 | icmax==4 )
|
---|
| 1956 | {
|
---|
| 1957 |
|
---|
| 1958 | //
|
---|
| 1959 | // Code when off-diagonals of pivoted C are real
|
---|
| 1960 | //
|
---|
| 1961 | if( (double)(Math.Abs(ur11))>(double)(Math.Abs(ui11)) )
|
---|
| 1962 | {
|
---|
| 1963 | temp = ui11/ur11;
|
---|
| 1964 | ur11r = 1/(ur11*(1+AP.Math.Sqr(temp)));
|
---|
| 1965 | ui11r = -(temp*ur11r);
|
---|
| 1966 | }
|
---|
| 1967 | else
|
---|
| 1968 | {
|
---|
| 1969 | temp = ur11/ui11;
|
---|
| 1970 | ui11r = -(1/(ui11*(1+AP.Math.Sqr(temp))));
|
---|
| 1971 | ur11r = -(temp*ui11r);
|
---|
| 1972 | }
|
---|
| 1973 | lr21 = cr21*ur11r;
|
---|
| 1974 | li21 = cr21*ui11r;
|
---|
| 1975 | ur12s = ur12*ur11r;
|
---|
| 1976 | ui12s = ur12*ui11r;
|
---|
| 1977 | ur22 = cr22-ur12*lr21;
|
---|
| 1978 | ui22 = ci22-ur12*li21;
|
---|
| 1979 | }
|
---|
| 1980 | else
|
---|
| 1981 | {
|
---|
| 1982 |
|
---|
| 1983 | //
|
---|
| 1984 | // Code when diagonals of pivoted C are real
|
---|
| 1985 | //
|
---|
| 1986 | ur11r = 1/ur11;
|
---|
| 1987 | ui11r = 0;
|
---|
| 1988 | lr21 = cr21*ur11r;
|
---|
| 1989 | li21 = ci21*ur11r;
|
---|
| 1990 | ur12s = ur12*ur11r;
|
---|
| 1991 | ui12s = ui12*ur11r;
|
---|
| 1992 | ur22 = cr22-ur12*lr21+ui12*li21;
|
---|
| 1993 | ui22 = -(ur12*li21)-ui12*lr21;
|
---|
| 1994 | }
|
---|
| 1995 | u22abs = Math.Abs(ur22)+Math.Abs(ui22);
|
---|
| 1996 |
|
---|
| 1997 | //
|
---|
| 1998 | // If smaller pivot < SMINI, use SMINI
|
---|
| 1999 | //
|
---|
| 2000 | if( (double)(u22abs)<(double)(smini) )
|
---|
| 2001 | {
|
---|
| 2002 | ur22 = smini;
|
---|
| 2003 | ui22 = 0;
|
---|
| 2004 | info = 1;
|
---|
| 2005 | }
|
---|
| 2006 | if( rswap4[icmax] )
|
---|
| 2007 | {
|
---|
| 2008 | br2 = b[1,1];
|
---|
| 2009 | br1 = b[2,1];
|
---|
| 2010 | bi2 = b[1,2];
|
---|
| 2011 | bi1 = b[2,2];
|
---|
| 2012 | }
|
---|
| 2013 | else
|
---|
| 2014 | {
|
---|
| 2015 | br1 = b[1,1];
|
---|
| 2016 | br2 = b[2,1];
|
---|
| 2017 | bi1 = b[1,2];
|
---|
| 2018 | bi2 = b[2,2];
|
---|
| 2019 | }
|
---|
| 2020 | br2 = br2-lr21*br1+li21*bi1;
|
---|
| 2021 | bi2 = bi2-li21*br1-lr21*bi1;
|
---|
| 2022 | bbnd = Math.Max((Math.Abs(br1)+Math.Abs(bi1))*(u22abs*(Math.Abs(ur11r)+Math.Abs(ui11r))), Math.Abs(br2)+Math.Abs(bi2));
|
---|
| 2023 | if( (double)(bbnd)>(double)(1) & (double)(u22abs)<(double)(1) )
|
---|
| 2024 | {
|
---|
| 2025 | if( (double)(bbnd)>=(double)(bignum*u22abs) )
|
---|
| 2026 | {
|
---|
| 2027 | scl = 1/bbnd;
|
---|
| 2028 | br1 = scl*br1;
|
---|
| 2029 | bi1 = scl*bi1;
|
---|
| 2030 | br2 = scl*br2;
|
---|
| 2031 | bi2 = scl*bi2;
|
---|
| 2032 | }
|
---|
| 2033 | }
|
---|
| 2034 | internalhsevdladiv(br2, bi2, ur22, ui22, ref xr2, ref xi2);
|
---|
| 2035 | xr1 = ur11r*br1-ui11r*bi1-ur12s*xr2+ui12s*xi2;
|
---|
| 2036 | xi1 = ui11r*br1+ur11r*bi1-ui12s*xr2-ur12s*xi2;
|
---|
| 2037 | if( zswap4[icmax] )
|
---|
| 2038 | {
|
---|
| 2039 | x[1,1] = xr2;
|
---|
| 2040 | x[2,1] = xr1;
|
---|
| 2041 | x[1,2] = xi2;
|
---|
| 2042 | x[2,2] = xi1;
|
---|
| 2043 | }
|
---|
| 2044 | else
|
---|
| 2045 | {
|
---|
| 2046 | x[1,1] = xr1;
|
---|
| 2047 | x[2,1] = xr2;
|
---|
| 2048 | x[1,2] = xi1;
|
---|
| 2049 | x[2,2] = xi2;
|
---|
| 2050 | }
|
---|
| 2051 | xnorm = Math.Max(Math.Abs(xr1)+Math.Abs(xi1), Math.Abs(xr2)+Math.Abs(xi2));
|
---|
| 2052 |
|
---|
| 2053 | //
|
---|
| 2054 | // Further scaling if norm(A) norm(X) > overflow
|
---|
| 2055 | //
|
---|
| 2056 | if( (double)(xnorm)>(double)(1) & (double)(cmax)>(double)(1) )
|
---|
| 2057 | {
|
---|
| 2058 | if( (double)(xnorm)>(double)(bignum/cmax) )
|
---|
| 2059 | {
|
---|
| 2060 | temp = cmax/bignum;
|
---|
| 2061 | x[1,1] = temp*x[1,1];
|
---|
| 2062 | x[2,1] = temp*x[2,1];
|
---|
| 2063 | x[1,2] = temp*x[1,2];
|
---|
| 2064 | x[2,2] = temp*x[2,2];
|
---|
| 2065 | xnorm = temp*xnorm;
|
---|
| 2066 | scl = temp*scl;
|
---|
| 2067 | }
|
---|
| 2068 | }
|
---|
| 2069 | }
|
---|
| 2070 | }
|
---|
| 2071 | }
|
---|
| 2072 |
|
---|
| 2073 |
|
---|
| 2074 | private static void internalhsevdladiv(double a,
|
---|
| 2075 | double b,
|
---|
| 2076 | double c,
|
---|
| 2077 | double d,
|
---|
| 2078 | ref double p,
|
---|
| 2079 | ref double q)
|
---|
| 2080 | {
|
---|
| 2081 | double e = 0;
|
---|
| 2082 | double f = 0;
|
---|
| 2083 |
|
---|
| 2084 | if( (double)(Math.Abs(d))<(double)(Math.Abs(c)) )
|
---|
| 2085 | {
|
---|
| 2086 | e = d/c;
|
---|
| 2087 | f = c+d*e;
|
---|
| 2088 | p = (a+b*e)/f;
|
---|
| 2089 | q = (b-a*e)/f;
|
---|
| 2090 | }
|
---|
| 2091 | else
|
---|
| 2092 | {
|
---|
| 2093 | e = c/d;
|
---|
| 2094 | f = d+c*e;
|
---|
| 2095 | p = (b+a*e)/f;
|
---|
| 2096 | q = (-a+b*e)/f;
|
---|
| 2097 | }
|
---|
| 2098 | }
|
---|
| 2099 | }
|
---|
| 2100 | }
|
---|