[2445] | 1 | /*************************************************************************
|
---|
| 2 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 3 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
| 4 |
|
---|
| 5 | Contributors:
|
---|
| 6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
| 7 | pseudocode.
|
---|
| 8 |
|
---|
| 9 | See subroutines comments for additional copyrights.
|
---|
| 10 |
|
---|
| 11 | >>> SOURCE LICENSE >>>
|
---|
| 12 | This program is free software; you can redistribute it and/or modify
|
---|
| 13 | it under the terms of the GNU General Public License as published by
|
---|
| 14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 15 | License, or (at your option) any later version.
|
---|
| 16 |
|
---|
| 17 | This program is distributed in the hope that it will be useful,
|
---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | GNU General Public License for more details.
|
---|
| 21 |
|
---|
| 22 | A copy of the GNU General Public License is available at
|
---|
| 23 | http://www.fsf.org/licensing/licenses
|
---|
| 24 |
|
---|
| 25 | >>> END OF LICENSE >>>
|
---|
| 26 | *************************************************************************/
|
---|
| 27 |
|
---|
| 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace alglib
|
---|
| 31 | {
|
---|
| 32 | public class normaldistr
|
---|
| 33 | {
|
---|
| 34 | /*************************************************************************
|
---|
| 35 | Error function
|
---|
| 36 |
|
---|
| 37 | The integral is
|
---|
| 38 |
|
---|
| 39 | x
|
---|
| 40 | -
|
---|
| 41 | 2 | | 2
|
---|
| 42 | erf(x) = -------- | exp( - t ) dt.
|
---|
| 43 | sqrt(pi) | |
|
---|
| 44 | -
|
---|
| 45 | 0
|
---|
| 46 |
|
---|
| 47 | For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
|
---|
| 48 | erf(x) = 1 - erfc(x).
|
---|
| 49 |
|
---|
| 50 |
|
---|
| 51 | ACCURACY:
|
---|
| 52 |
|
---|
| 53 | Relative error:
|
---|
| 54 | arithmetic domain # trials peak rms
|
---|
| 55 | IEEE 0,1 30000 3.7e-16 1.0e-16
|
---|
| 56 |
|
---|
| 57 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 58 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
| 59 | *************************************************************************/
|
---|
| 60 | public static double erf(double x)
|
---|
| 61 | {
|
---|
| 62 | double result = 0;
|
---|
| 63 | double xsq = 0;
|
---|
| 64 | double s = 0;
|
---|
| 65 | double p = 0;
|
---|
| 66 | double q = 0;
|
---|
| 67 |
|
---|
| 68 | s = Math.Sign(x);
|
---|
| 69 | x = Math.Abs(x);
|
---|
| 70 | if( x<0.5 )
|
---|
| 71 | {
|
---|
| 72 | xsq = x*x;
|
---|
| 73 | p = 0.007547728033418631287834;
|
---|
| 74 | p = 0.288805137207594084924010+xsq*p;
|
---|
| 75 | p = 14.3383842191748205576712+xsq*p;
|
---|
| 76 | p = 38.0140318123903008244444+xsq*p;
|
---|
| 77 | p = 3017.82788536507577809226+xsq*p;
|
---|
| 78 | p = 7404.07142710151470082064+xsq*p;
|
---|
| 79 | p = 80437.3630960840172832162+xsq*p;
|
---|
| 80 | q = 0.0;
|
---|
| 81 | q = 1.00000000000000000000000+xsq*q;
|
---|
| 82 | q = 38.0190713951939403753468+xsq*q;
|
---|
| 83 | q = 658.070155459240506326937+xsq*q;
|
---|
| 84 | q = 6379.60017324428279487120+xsq*q;
|
---|
| 85 | q = 34216.5257924628539769006+xsq*q;
|
---|
| 86 | q = 80437.3630960840172826266+xsq*q;
|
---|
| 87 | result = s*1.1283791670955125738961589031*x*p/q;
|
---|
| 88 | return result;
|
---|
| 89 | }
|
---|
| 90 | if( x>=10 )
|
---|
| 91 | {
|
---|
| 92 | result = s;
|
---|
| 93 | return result;
|
---|
| 94 | }
|
---|
| 95 | result = s*(1-erfc(x));
|
---|
| 96 | return result;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 |
|
---|
| 100 | /*************************************************************************
|
---|
| 101 | Complementary error function
|
---|
| 102 |
|
---|
| 103 | 1 - erf(x) =
|
---|
| 104 |
|
---|
| 105 | inf.
|
---|
| 106 | -
|
---|
| 107 | 2 | | 2
|
---|
| 108 | erfc(x) = -------- | exp( - t ) dt
|
---|
| 109 | sqrt(pi) | |
|
---|
| 110 | -
|
---|
| 111 | x
|
---|
| 112 |
|
---|
| 113 |
|
---|
| 114 | For small x, erfc(x) = 1 - erf(x); otherwise rational
|
---|
| 115 | approximations are computed.
|
---|
| 116 |
|
---|
| 117 |
|
---|
| 118 | ACCURACY:
|
---|
| 119 |
|
---|
| 120 | Relative error:
|
---|
| 121 | arithmetic domain # trials peak rms
|
---|
| 122 | IEEE 0,26.6417 30000 5.7e-14 1.5e-14
|
---|
| 123 |
|
---|
| 124 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 125 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
| 126 | *************************************************************************/
|
---|
| 127 | public static double erfc(double x)
|
---|
| 128 | {
|
---|
| 129 | double result = 0;
|
---|
| 130 | double p = 0;
|
---|
| 131 | double q = 0;
|
---|
| 132 |
|
---|
| 133 | if( x<0 )
|
---|
| 134 | {
|
---|
| 135 | result = 2-erfc(-x);
|
---|
| 136 | return result;
|
---|
| 137 | }
|
---|
| 138 | if( x<0.5 )
|
---|
| 139 | {
|
---|
| 140 | result = 1.0-erf(x);
|
---|
| 141 | return result;
|
---|
| 142 | }
|
---|
| 143 | if( x>=10 )
|
---|
| 144 | {
|
---|
| 145 | result = 0;
|
---|
| 146 | return result;
|
---|
| 147 | }
|
---|
| 148 | p = 0.0;
|
---|
| 149 | p = 0.5641877825507397413087057563+x*p;
|
---|
| 150 | p = 9.675807882987265400604202961+x*p;
|
---|
| 151 | p = 77.08161730368428609781633646+x*p;
|
---|
| 152 | p = 368.5196154710010637133875746+x*p;
|
---|
| 153 | p = 1143.262070703886173606073338+x*p;
|
---|
| 154 | p = 2320.439590251635247384768711+x*p;
|
---|
| 155 | p = 2898.0293292167655611275846+x*p;
|
---|
| 156 | p = 1826.3348842295112592168999+x*p;
|
---|
| 157 | q = 1.0;
|
---|
| 158 | q = 17.14980943627607849376131193+x*q;
|
---|
| 159 | q = 137.1255960500622202878443578+x*q;
|
---|
| 160 | q = 661.7361207107653469211984771+x*q;
|
---|
| 161 | q = 2094.384367789539593790281779+x*q;
|
---|
| 162 | q = 4429.612803883682726711528526+x*q;
|
---|
| 163 | q = 6089.5424232724435504633068+x*q;
|
---|
| 164 | q = 4958.82756472114071495438422+x*q;
|
---|
| 165 | q = 1826.3348842295112595576438+x*q;
|
---|
| 166 | result = Math.Exp(-AP.Math.Sqr(x))*p/q;
|
---|
| 167 | return result;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | /*************************************************************************
|
---|
| 172 | Normal distribution function
|
---|
| 173 |
|
---|
| 174 | Returns the area under the Gaussian probability density
|
---|
| 175 | function, integrated from minus infinity to x:
|
---|
| 176 |
|
---|
| 177 | x
|
---|
| 178 | -
|
---|
| 179 | 1 | | 2
|
---|
| 180 | ndtr(x) = --------- | exp( - t /2 ) dt
|
---|
| 181 | sqrt(2pi) | |
|
---|
| 182 | -
|
---|
| 183 | -inf.
|
---|
| 184 |
|
---|
| 185 | = ( 1 + erf(z) ) / 2
|
---|
| 186 | = erfc(z) / 2
|
---|
| 187 |
|
---|
| 188 | where z = x/sqrt(2). Computation is via the functions
|
---|
| 189 | erf and erfc.
|
---|
| 190 |
|
---|
| 191 |
|
---|
| 192 | ACCURACY:
|
---|
| 193 |
|
---|
| 194 | Relative error:
|
---|
| 195 | arithmetic domain # trials peak rms
|
---|
| 196 | IEEE -13,0 30000 3.4e-14 6.7e-15
|
---|
| 197 |
|
---|
| 198 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 199 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
| 200 | *************************************************************************/
|
---|
| 201 | public static double normaldistribution(double x)
|
---|
| 202 | {
|
---|
| 203 | double result = 0;
|
---|
| 204 |
|
---|
| 205 | result = 0.5*(erf(x/1.41421356237309504880)+1);
|
---|
| 206 | return result;
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 |
|
---|
| 210 | /*************************************************************************
|
---|
| 211 | Inverse of the error function
|
---|
| 212 |
|
---|
| 213 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 214 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
| 215 | *************************************************************************/
|
---|
| 216 | public static double inverf(double e)
|
---|
| 217 | {
|
---|
| 218 | double result = 0;
|
---|
| 219 |
|
---|
| 220 | result = invnormaldistribution(0.5*(e+1))/Math.Sqrt(2);
|
---|
| 221 | return result;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 |
|
---|
| 225 | /*************************************************************************
|
---|
| 226 | Inverse of Normal distribution function
|
---|
| 227 |
|
---|
| 228 | Returns the argument, x, for which the area under the
|
---|
| 229 | Gaussian probability density function (integrated from
|
---|
| 230 | minus infinity to x) is equal to y.
|
---|
| 231 |
|
---|
| 232 |
|
---|
| 233 | For small arguments 0 < y < exp(-2), the program computes
|
---|
| 234 | z = sqrt( -2.0 * log(y) ); then the approximation is
|
---|
| 235 | x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
|
---|
| 236 | There are two rational functions P/Q, one for 0 < y < exp(-32)
|
---|
| 237 | and the other for y up to exp(-2). For larger arguments,
|
---|
| 238 | w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
|
---|
| 239 |
|
---|
| 240 | ACCURACY:
|
---|
| 241 |
|
---|
| 242 | Relative error:
|
---|
| 243 | arithmetic domain # trials peak rms
|
---|
| 244 | IEEE 0.125, 1 20000 7.2e-16 1.3e-16
|
---|
| 245 | IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
|
---|
| 246 |
|
---|
| 247 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 248 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
| 249 | *************************************************************************/
|
---|
| 250 | public static double invnormaldistribution(double y0)
|
---|
| 251 | {
|
---|
| 252 | double result = 0;
|
---|
| 253 | double expm2 = 0;
|
---|
| 254 | double s2pi = 0;
|
---|
| 255 | double x = 0;
|
---|
| 256 | double y = 0;
|
---|
| 257 | double z = 0;
|
---|
| 258 | double y2 = 0;
|
---|
| 259 | double x0 = 0;
|
---|
| 260 | double x1 = 0;
|
---|
| 261 | int code = 0;
|
---|
| 262 | double p0 = 0;
|
---|
| 263 | double q0 = 0;
|
---|
| 264 | double p1 = 0;
|
---|
| 265 | double q1 = 0;
|
---|
| 266 | double p2 = 0;
|
---|
| 267 | double q2 = 0;
|
---|
| 268 |
|
---|
| 269 | expm2 = 0.13533528323661269189;
|
---|
| 270 | s2pi = 2.50662827463100050242;
|
---|
| 271 | if( y0<=0 )
|
---|
| 272 | {
|
---|
| 273 | result = -AP.Math.MaxRealNumber;
|
---|
| 274 | return result;
|
---|
| 275 | }
|
---|
| 276 | if( y0>=1 )
|
---|
| 277 | {
|
---|
| 278 | result = AP.Math.MaxRealNumber;
|
---|
| 279 | return result;
|
---|
| 280 | }
|
---|
| 281 | code = 1;
|
---|
| 282 | y = y0;
|
---|
| 283 | if( y>1.0-expm2 )
|
---|
| 284 | {
|
---|
| 285 | y = 1.0-y;
|
---|
| 286 | code = 0;
|
---|
| 287 | }
|
---|
| 288 | if( y>expm2 )
|
---|
| 289 | {
|
---|
| 290 | y = y-0.5;
|
---|
| 291 | y2 = y*y;
|
---|
| 292 | p0 = -59.9633501014107895267;
|
---|
| 293 | p0 = 98.0010754185999661536+y2*p0;
|
---|
| 294 | p0 = -56.6762857469070293439+y2*p0;
|
---|
| 295 | p0 = 13.9312609387279679503+y2*p0;
|
---|
| 296 | p0 = -1.23916583867381258016+y2*p0;
|
---|
| 297 | q0 = 1;
|
---|
| 298 | q0 = 1.95448858338141759834+y2*q0;
|
---|
| 299 | q0 = 4.67627912898881538453+y2*q0;
|
---|
| 300 | q0 = 86.3602421390890590575+y2*q0;
|
---|
| 301 | q0 = -225.462687854119370527+y2*q0;
|
---|
| 302 | q0 = 200.260212380060660359+y2*q0;
|
---|
| 303 | q0 = -82.0372256168333339912+y2*q0;
|
---|
| 304 | q0 = 15.9056225126211695515+y2*q0;
|
---|
| 305 | q0 = -1.18331621121330003142+y2*q0;
|
---|
| 306 | x = y+y*y2*p0/q0;
|
---|
| 307 | x = x*s2pi;
|
---|
| 308 | result = x;
|
---|
| 309 | return result;
|
---|
| 310 | }
|
---|
| 311 | x = Math.Sqrt(-(2.0*Math.Log(y)));
|
---|
| 312 | x0 = x-Math.Log(x)/x;
|
---|
| 313 | z = 1.0/x;
|
---|
| 314 | if( x<8.0 )
|
---|
| 315 | {
|
---|
| 316 | p1 = 4.05544892305962419923;
|
---|
| 317 | p1 = 31.5251094599893866154+z*p1;
|
---|
| 318 | p1 = 57.1628192246421288162+z*p1;
|
---|
| 319 | p1 = 44.0805073893200834700+z*p1;
|
---|
| 320 | p1 = 14.6849561928858024014+z*p1;
|
---|
| 321 | p1 = 2.18663306850790267539+z*p1;
|
---|
| 322 | p1 = -(1.40256079171354495875*0.1)+z*p1;
|
---|
| 323 | p1 = -(3.50424626827848203418*0.01)+z*p1;
|
---|
| 324 | p1 = -(8.57456785154685413611*0.0001)+z*p1;
|
---|
| 325 | q1 = 1;
|
---|
| 326 | q1 = 15.7799883256466749731+z*q1;
|
---|
| 327 | q1 = 45.3907635128879210584+z*q1;
|
---|
| 328 | q1 = 41.3172038254672030440+z*q1;
|
---|
| 329 | q1 = 15.0425385692907503408+z*q1;
|
---|
| 330 | q1 = 2.50464946208309415979+z*q1;
|
---|
| 331 | q1 = -(1.42182922854787788574*0.1)+z*q1;
|
---|
| 332 | q1 = -(3.80806407691578277194*0.01)+z*q1;
|
---|
| 333 | q1 = -(9.33259480895457427372*0.0001)+z*q1;
|
---|
| 334 | x1 = z*p1/q1;
|
---|
| 335 | }
|
---|
| 336 | else
|
---|
| 337 | {
|
---|
| 338 | p2 = 3.23774891776946035970;
|
---|
| 339 | p2 = 6.91522889068984211695+z*p2;
|
---|
| 340 | p2 = 3.93881025292474443415+z*p2;
|
---|
| 341 | p2 = 1.33303460815807542389+z*p2;
|
---|
| 342 | p2 = 2.01485389549179081538*0.1+z*p2;
|
---|
| 343 | p2 = 1.23716634817820021358*0.01+z*p2;
|
---|
| 344 | p2 = 3.01581553508235416007*0.0001+z*p2;
|
---|
| 345 | p2 = 2.65806974686737550832*0.000001+z*p2;
|
---|
| 346 | p2 = 6.23974539184983293730*0.000000001+z*p2;
|
---|
| 347 | q2 = 1;
|
---|
| 348 | q2 = 6.02427039364742014255+z*q2;
|
---|
| 349 | q2 = 3.67983563856160859403+z*q2;
|
---|
| 350 | q2 = 1.37702099489081330271+z*q2;
|
---|
| 351 | q2 = 2.16236993594496635890*0.1+z*q2;
|
---|
| 352 | q2 = 1.34204006088543189037*0.01+z*q2;
|
---|
| 353 | q2 = 3.28014464682127739104*0.0001+z*q2;
|
---|
| 354 | q2 = 2.89247864745380683936*0.000001+z*q2;
|
---|
| 355 | q2 = 6.79019408009981274425*0.000000001+z*q2;
|
---|
| 356 | x1 = z*p2/q2;
|
---|
| 357 | }
|
---|
| 358 | x = x0-x1;
|
---|
| 359 | if( code!=0 )
|
---|
| 360 | {
|
---|
| 361 | x = -x;
|
---|
| 362 | }
|
---|
| 363 | result = x;
|
---|
| 364 | return result;
|
---|
| 365 | }
|
---|
| 366 | }
|
---|
| 367 | }
|
---|