1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class mlptrain
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Training report:
|
---|
29 | * NGrad - number of gradient calculations
|
---|
30 | * NHess - number of Hessian calculations
|
---|
31 | * NCholesky - number of Cholesky decompositions
|
---|
32 | *************************************************************************/
|
---|
33 | public struct mlpreport
|
---|
34 | {
|
---|
35 | public int ngrad;
|
---|
36 | public int nhess;
|
---|
37 | public int ncholesky;
|
---|
38 | };
|
---|
39 |
|
---|
40 |
|
---|
41 | /*************************************************************************
|
---|
42 | Cross-validation estimates of generalization error
|
---|
43 | *************************************************************************/
|
---|
44 | public struct mlpcvreport
|
---|
45 | {
|
---|
46 | public double relclserror;
|
---|
47 | public double avgce;
|
---|
48 | public double rmserror;
|
---|
49 | public double avgerror;
|
---|
50 | public double avgrelerror;
|
---|
51 | };
|
---|
52 |
|
---|
53 |
|
---|
54 |
|
---|
55 |
|
---|
56 | public const double mindecay = 0.001;
|
---|
57 |
|
---|
58 |
|
---|
59 | /*************************************************************************
|
---|
60 | Neural network training using modified Levenberg-Marquardt with exact
|
---|
61 | Hessian calculation and regularization. Subroutine trains neural network
|
---|
62 | with restarts from random positions. Algorithm is well suited for small
|
---|
63 | and medium scale problems (hundreds of weights).
|
---|
64 |
|
---|
65 | INPUT PARAMETERS:
|
---|
66 | Network - neural network with initialized geometry
|
---|
67 | XY - training set
|
---|
68 | NPoints - training set size
|
---|
69 | Decay - weight decay constant, >=0.001
|
---|
70 | Decay term 'Decay*||Weights||^2' is added to error
|
---|
71 | function.
|
---|
72 | If you don't know what Decay to choose, use 0.001.
|
---|
73 | Restarts - number of restarts from random position, >0.
|
---|
74 | If you don't know what Restarts to choose, use 2.
|
---|
75 |
|
---|
76 | OUTPUT PARAMETERS:
|
---|
77 | Network - trained neural network.
|
---|
78 | Info - return code:
|
---|
79 | * -9, if internal matrix inverse subroutine failed
|
---|
80 | * -2, if there is a point with class number
|
---|
81 | outside of [0..NOut-1].
|
---|
82 | * -1, if wrong parameters specified
|
---|
83 | (NPoints<0, Restarts<1).
|
---|
84 | * 2, if task has been solved.
|
---|
85 | Rep - training report
|
---|
86 |
|
---|
87 | -- ALGLIB --
|
---|
88 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
89 | *************************************************************************/
|
---|
90 | public static void mlptrainlm(ref mlpbase.multilayerperceptron network,
|
---|
91 | ref double[,] xy,
|
---|
92 | int npoints,
|
---|
93 | double decay,
|
---|
94 | int restarts,
|
---|
95 | ref int info,
|
---|
96 | ref mlpreport rep)
|
---|
97 | {
|
---|
98 | int nin = 0;
|
---|
99 | int nout = 0;
|
---|
100 | int wcount = 0;
|
---|
101 | double lmftol = 0;
|
---|
102 | double lmsteptol = 0;
|
---|
103 | int i = 0;
|
---|
104 | int j = 0;
|
---|
105 | int k = 0;
|
---|
106 | int mx = 0;
|
---|
107 | double v = 0;
|
---|
108 | double e = 0;
|
---|
109 | double enew = 0;
|
---|
110 | double xnorm2 = 0;
|
---|
111 | double stepnorm = 0;
|
---|
112 | double[] g = new double[0];
|
---|
113 | double[] d = new double[0];
|
---|
114 | double[,] h = new double[0,0];
|
---|
115 | double[,] hmod = new double[0,0];
|
---|
116 | double[,] z = new double[0,0];
|
---|
117 | bool spd = new bool();
|
---|
118 | double nu = 0;
|
---|
119 | double lambda = 0;
|
---|
120 | double lambdaup = 0;
|
---|
121 | double lambdadown = 0;
|
---|
122 | int cvcnt = 0;
|
---|
123 | double cvrelcnt = 0;
|
---|
124 | lbfgs.lbfgsreport internalrep = new lbfgs.lbfgsreport();
|
---|
125 | lbfgs.lbfgsstate state = new lbfgs.lbfgsstate();
|
---|
126 | double[] x = new double[0];
|
---|
127 | double[] y = new double[0];
|
---|
128 | double[] wbase = new double[0];
|
---|
129 | double wstep = 0;
|
---|
130 | double[] wdir = new double[0];
|
---|
131 | double[] wt = new double[0];
|
---|
132 | double[] wx = new double[0];
|
---|
133 | int pass = 0;
|
---|
134 | double[] wbest = new double[0];
|
---|
135 | double ebest = 0;
|
---|
136 | int i_ = 0;
|
---|
137 |
|
---|
138 | mlpbase.mlpproperties(ref network, ref nin, ref nout, ref wcount);
|
---|
139 | lambdaup = 10;
|
---|
140 | lambdadown = 0.3;
|
---|
141 | lmftol = 0.001;
|
---|
142 | lmsteptol = 0.001;
|
---|
143 |
|
---|
144 | //
|
---|
145 | // Test for inputs
|
---|
146 | //
|
---|
147 | if( npoints<=0 | restarts<1 )
|
---|
148 | {
|
---|
149 | info = -1;
|
---|
150 | return;
|
---|
151 | }
|
---|
152 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
153 | {
|
---|
154 | for(i=0; i<=npoints-1; i++)
|
---|
155 | {
|
---|
156 | if( (int)Math.Round(xy[i,nin])<0 | (int)Math.Round(xy[i,nin])>=nout )
|
---|
157 | {
|
---|
158 | info = -2;
|
---|
159 | return;
|
---|
160 | }
|
---|
161 | }
|
---|
162 | }
|
---|
163 | decay = Math.Max(decay, mindecay);
|
---|
164 | info = 2;
|
---|
165 |
|
---|
166 | //
|
---|
167 | // Initialize data
|
---|
168 | //
|
---|
169 | rep.ngrad = 0;
|
---|
170 | rep.nhess = 0;
|
---|
171 | rep.ncholesky = 0;
|
---|
172 |
|
---|
173 | //
|
---|
174 | // General case.
|
---|
175 | // Prepare task and network. Allocate space.
|
---|
176 | //
|
---|
177 | mlpbase.mlpinitpreprocessor(ref network, ref xy, npoints);
|
---|
178 | g = new double[wcount-1+1];
|
---|
179 | h = new double[wcount-1+1, wcount-1+1];
|
---|
180 | hmod = new double[wcount-1+1, wcount-1+1];
|
---|
181 | wbase = new double[wcount-1+1];
|
---|
182 | wdir = new double[wcount-1+1];
|
---|
183 | wbest = new double[wcount-1+1];
|
---|
184 | wt = new double[wcount-1+1];
|
---|
185 | wx = new double[wcount-1+1];
|
---|
186 | ebest = AP.Math.MaxRealNumber;
|
---|
187 |
|
---|
188 | //
|
---|
189 | // Multiple passes
|
---|
190 | //
|
---|
191 | for(pass=1; pass<=restarts; pass++)
|
---|
192 | {
|
---|
193 |
|
---|
194 | //
|
---|
195 | // Initialize weights
|
---|
196 | //
|
---|
197 | mlpbase.mlprandomize(ref network);
|
---|
198 |
|
---|
199 | //
|
---|
200 | // First stage of the hybrid algorithm: LBFGS
|
---|
201 | //
|
---|
202 | for(i_=0; i_<=wcount-1;i_++)
|
---|
203 | {
|
---|
204 | wbase[i_] = network.weights[i_];
|
---|
205 | }
|
---|
206 | lbfgs.minlbfgs(wcount, Math.Min(wcount, 5), ref wbase, 0.0, 0.0, 0.0, Math.Max(25, wcount), 0, ref state);
|
---|
207 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
208 | {
|
---|
209 |
|
---|
210 | //
|
---|
211 | // gradient
|
---|
212 | //
|
---|
213 | for(i_=0; i_<=wcount-1;i_++)
|
---|
214 | {
|
---|
215 | network.weights[i_] = state.x[i_];
|
---|
216 | }
|
---|
217 | mlpbase.mlpgradbatch(ref network, ref xy, npoints, ref state.f, ref state.g);
|
---|
218 |
|
---|
219 | //
|
---|
220 | // weight decay
|
---|
221 | //
|
---|
222 | v = 0.0;
|
---|
223 | for(i_=0; i_<=wcount-1;i_++)
|
---|
224 | {
|
---|
225 | v += network.weights[i_]*network.weights[i_];
|
---|
226 | }
|
---|
227 | state.f = state.f+0.5*decay*v;
|
---|
228 | for(i_=0; i_<=wcount-1;i_++)
|
---|
229 | {
|
---|
230 | state.g[i_] = state.g[i_] + decay*network.weights[i_];
|
---|
231 | }
|
---|
232 |
|
---|
233 | //
|
---|
234 | // next iteration
|
---|
235 | //
|
---|
236 | rep.ngrad = rep.ngrad+1;
|
---|
237 | }
|
---|
238 | lbfgs.minlbfgsresults(ref state, ref wbase, ref internalrep);
|
---|
239 | for(i_=0; i_<=wcount-1;i_++)
|
---|
240 | {
|
---|
241 | network.weights[i_] = wbase[i_];
|
---|
242 | }
|
---|
243 |
|
---|
244 | //
|
---|
245 | // Second stage of the hybrid algorithm: LM
|
---|
246 | //
|
---|
247 | // Initialize H with identity matrix,
|
---|
248 | // G with gradient,
|
---|
249 | // E with regularized error.
|
---|
250 | //
|
---|
251 | mlpbase.mlphessianbatch(ref network, ref xy, npoints, ref e, ref g, ref h);
|
---|
252 | v = 0.0;
|
---|
253 | for(i_=0; i_<=wcount-1;i_++)
|
---|
254 | {
|
---|
255 | v += network.weights[i_]*network.weights[i_];
|
---|
256 | }
|
---|
257 | e = e+0.5*decay*v;
|
---|
258 | for(i_=0; i_<=wcount-1;i_++)
|
---|
259 | {
|
---|
260 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
261 | }
|
---|
262 | for(k=0; k<=wcount-1; k++)
|
---|
263 | {
|
---|
264 | h[k,k] = h[k,k]+decay;
|
---|
265 | }
|
---|
266 | rep.nhess = rep.nhess+1;
|
---|
267 | lambda = 0.001;
|
---|
268 | nu = 2;
|
---|
269 | while( true )
|
---|
270 | {
|
---|
271 |
|
---|
272 | //
|
---|
273 | // 1. HMod = H+lambda*I
|
---|
274 | // 2. Try to solve (H+Lambda*I)*dx = -g.
|
---|
275 | // Increase lambda if left part is not positive definite.
|
---|
276 | //
|
---|
277 | for(i=0; i<=wcount-1; i++)
|
---|
278 | {
|
---|
279 | for(i_=0; i_<=wcount-1;i_++)
|
---|
280 | {
|
---|
281 | hmod[i,i_] = h[i,i_];
|
---|
282 | }
|
---|
283 | hmod[i,i] = hmod[i,i]+lambda;
|
---|
284 | }
|
---|
285 | spd = cholesky.spdmatrixcholesky(ref hmod, wcount, true);
|
---|
286 | rep.ncholesky = rep.ncholesky+1;
|
---|
287 | if( !spd )
|
---|
288 | {
|
---|
289 | lambda = lambda*lambdaup*nu;
|
---|
290 | nu = nu*2;
|
---|
291 | continue;
|
---|
292 | }
|
---|
293 | if( !spdsolve.spdmatrixcholeskysolve(ref hmod, g, wcount, true, ref wdir) )
|
---|
294 | {
|
---|
295 | lambda = lambda*lambdaup*nu;
|
---|
296 | nu = nu*2;
|
---|
297 | continue;
|
---|
298 | }
|
---|
299 | for(i_=0; i_<=wcount-1;i_++)
|
---|
300 | {
|
---|
301 | wdir[i_] = -1*wdir[i_];
|
---|
302 | }
|
---|
303 |
|
---|
304 | //
|
---|
305 | // Lambda found.
|
---|
306 | // 1. Save old w in WBase
|
---|
307 | // 1. Test some stopping criterions
|
---|
308 | // 2. If error(w+wdir)>error(w), increase lambda
|
---|
309 | //
|
---|
310 | for(i_=0; i_<=wcount-1;i_++)
|
---|
311 | {
|
---|
312 | network.weights[i_] = network.weights[i_] + wdir[i_];
|
---|
313 | }
|
---|
314 | xnorm2 = 0.0;
|
---|
315 | for(i_=0; i_<=wcount-1;i_++)
|
---|
316 | {
|
---|
317 | xnorm2 += network.weights[i_]*network.weights[i_];
|
---|
318 | }
|
---|
319 | stepnorm = 0.0;
|
---|
320 | for(i_=0; i_<=wcount-1;i_++)
|
---|
321 | {
|
---|
322 | stepnorm += wdir[i_]*wdir[i_];
|
---|
323 | }
|
---|
324 | stepnorm = Math.Sqrt(stepnorm);
|
---|
325 | enew = mlpbase.mlperror(ref network, ref xy, npoints)+0.5*decay*xnorm2;
|
---|
326 | if( (double)(stepnorm)<(double)(lmsteptol*(1+Math.Sqrt(xnorm2))) )
|
---|
327 | {
|
---|
328 | break;
|
---|
329 | }
|
---|
330 | if( (double)(enew)>(double)(e) )
|
---|
331 | {
|
---|
332 | lambda = lambda*lambdaup*nu;
|
---|
333 | nu = nu*2;
|
---|
334 | continue;
|
---|
335 | }
|
---|
336 |
|
---|
337 | //
|
---|
338 | // Optimize using inv(cholesky(H)) as preconditioner
|
---|
339 | //
|
---|
340 | if( !trinverse.rmatrixtrinverse(ref hmod, wcount, true, false) )
|
---|
341 | {
|
---|
342 |
|
---|
343 | //
|
---|
344 | // if matrix can't be inverted then exit with errors
|
---|
345 | // TODO: make WCount steps in direction suggested by HMod
|
---|
346 | //
|
---|
347 | info = -9;
|
---|
348 | return;
|
---|
349 | }
|
---|
350 | for(i_=0; i_<=wcount-1;i_++)
|
---|
351 | {
|
---|
352 | wbase[i_] = network.weights[i_];
|
---|
353 | }
|
---|
354 | for(i=0; i<=wcount-1; i++)
|
---|
355 | {
|
---|
356 | wt[i] = 0;
|
---|
357 | }
|
---|
358 | lbfgs.minlbfgs(wcount, wcount, ref wt, 0.0, 0.0, 0.0, 5, 0, ref state);
|
---|
359 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
360 | {
|
---|
361 |
|
---|
362 | //
|
---|
363 | // gradient
|
---|
364 | //
|
---|
365 | for(i=0; i<=wcount-1; i++)
|
---|
366 | {
|
---|
367 | v = 0.0;
|
---|
368 | for(i_=i; i_<=wcount-1;i_++)
|
---|
369 | {
|
---|
370 | v += state.x[i_]*hmod[i,i_];
|
---|
371 | }
|
---|
372 | network.weights[i] = wbase[i]+v;
|
---|
373 | }
|
---|
374 | mlpbase.mlpgradbatch(ref network, ref xy, npoints, ref state.f, ref g);
|
---|
375 | for(i=0; i<=wcount-1; i++)
|
---|
376 | {
|
---|
377 | state.g[i] = 0;
|
---|
378 | }
|
---|
379 | for(i=0; i<=wcount-1; i++)
|
---|
380 | {
|
---|
381 | v = g[i];
|
---|
382 | for(i_=i; i_<=wcount-1;i_++)
|
---|
383 | {
|
---|
384 | state.g[i_] = state.g[i_] + v*hmod[i,i_];
|
---|
385 | }
|
---|
386 | }
|
---|
387 |
|
---|
388 | //
|
---|
389 | // weight decay
|
---|
390 | // grad(x'*x) = A'*(x0+A*t)
|
---|
391 | //
|
---|
392 | v = 0.0;
|
---|
393 | for(i_=0; i_<=wcount-1;i_++)
|
---|
394 | {
|
---|
395 | v += network.weights[i_]*network.weights[i_];
|
---|
396 | }
|
---|
397 | state.f = state.f+0.5*decay*v;
|
---|
398 | for(i=0; i<=wcount-1; i++)
|
---|
399 | {
|
---|
400 | v = decay*network.weights[i];
|
---|
401 | for(i_=i; i_<=wcount-1;i_++)
|
---|
402 | {
|
---|
403 | state.g[i_] = state.g[i_] + v*hmod[i,i_];
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 | //
|
---|
408 | // next iteration
|
---|
409 | //
|
---|
410 | rep.ngrad = rep.ngrad+1;
|
---|
411 | }
|
---|
412 | lbfgs.minlbfgsresults(ref state, ref wt, ref internalrep);
|
---|
413 |
|
---|
414 | //
|
---|
415 | // Accept new position.
|
---|
416 | // Calculate Hessian
|
---|
417 | //
|
---|
418 | for(i=0; i<=wcount-1; i++)
|
---|
419 | {
|
---|
420 | v = 0.0;
|
---|
421 | for(i_=i; i_<=wcount-1;i_++)
|
---|
422 | {
|
---|
423 | v += wt[i_]*hmod[i,i_];
|
---|
424 | }
|
---|
425 | network.weights[i] = wbase[i]+v;
|
---|
426 | }
|
---|
427 | mlpbase.mlphessianbatch(ref network, ref xy, npoints, ref e, ref g, ref h);
|
---|
428 | v = 0.0;
|
---|
429 | for(i_=0; i_<=wcount-1;i_++)
|
---|
430 | {
|
---|
431 | v += network.weights[i_]*network.weights[i_];
|
---|
432 | }
|
---|
433 | e = e+0.5*decay*v;
|
---|
434 | for(i_=0; i_<=wcount-1;i_++)
|
---|
435 | {
|
---|
436 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
437 | }
|
---|
438 | for(k=0; k<=wcount-1; k++)
|
---|
439 | {
|
---|
440 | h[k,k] = h[k,k]+decay;
|
---|
441 | }
|
---|
442 | rep.nhess = rep.nhess+1;
|
---|
443 |
|
---|
444 | //
|
---|
445 | // Update lambda
|
---|
446 | //
|
---|
447 | lambda = lambda*lambdadown;
|
---|
448 | nu = 2;
|
---|
449 | }
|
---|
450 |
|
---|
451 | //
|
---|
452 | // update WBest
|
---|
453 | //
|
---|
454 | v = 0.0;
|
---|
455 | for(i_=0; i_<=wcount-1;i_++)
|
---|
456 | {
|
---|
457 | v += network.weights[i_]*network.weights[i_];
|
---|
458 | }
|
---|
459 | e = 0.5*decay*v+mlpbase.mlperror(ref network, ref xy, npoints);
|
---|
460 | if( (double)(e)<(double)(ebest) )
|
---|
461 | {
|
---|
462 | ebest = e;
|
---|
463 | for(i_=0; i_<=wcount-1;i_++)
|
---|
464 | {
|
---|
465 | wbest[i_] = network.weights[i_];
|
---|
466 | }
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 | //
|
---|
471 | // copy WBest to output
|
---|
472 | //
|
---|
473 | for(i_=0; i_<=wcount-1;i_++)
|
---|
474 | {
|
---|
475 | network.weights[i_] = wbest[i_];
|
---|
476 | }
|
---|
477 | }
|
---|
478 |
|
---|
479 |
|
---|
480 | /*************************************************************************
|
---|
481 | Neural network training using L-BFGS algorithm with regularization.
|
---|
482 | Subroutine trains neural network with restarts from random positions.
|
---|
483 | Algorithm is well suited for problems of any dimensionality (memory
|
---|
484 | requirements and step complexity are linear by weights number).
|
---|
485 |
|
---|
486 | INPUT PARAMETERS:
|
---|
487 | Network - neural network with initialized geometry
|
---|
488 | XY - training set
|
---|
489 | NPoints - training set size
|
---|
490 | Decay - weight decay constant, >=0.001
|
---|
491 | Decay term 'Decay*||Weights||^2' is added to error
|
---|
492 | function.
|
---|
493 | If you don't know what Decay to choose, use 0.001.
|
---|
494 | Restarts - number of restarts from random position, >0.
|
---|
495 | If you don't know what Restarts to choose, use 2.
|
---|
496 | WStep - stopping criterion. Algorithm stops if step size is
|
---|
497 | less than WStep. Recommended value - 0.01. Zero step
|
---|
498 | size means stopping after MaxIts iterations.
|
---|
499 | MaxIts - stopping criterion. Algorithm stops after MaxIts
|
---|
500 | iterations (NOT gradient calculations). Zero MaxIts
|
---|
501 | means stopping when step is sufficiently small.
|
---|
502 |
|
---|
503 | OUTPUT PARAMETERS:
|
---|
504 | Network - trained neural network.
|
---|
505 | Info - return code:
|
---|
506 | * -8, if both WStep=0 and MaxIts=0
|
---|
507 | * -2, if there is a point with class number
|
---|
508 | outside of [0..NOut-1].
|
---|
509 | * -1, if wrong parameters specified
|
---|
510 | (NPoints<0, Restarts<1).
|
---|
511 | * 2, if task has been solved.
|
---|
512 | Rep - training report
|
---|
513 |
|
---|
514 | -- ALGLIB --
|
---|
515 | Copyright 09.12.2007 by Bochkanov Sergey
|
---|
516 | *************************************************************************/
|
---|
517 | public static void mlptrainlbfgs(ref mlpbase.multilayerperceptron network,
|
---|
518 | ref double[,] xy,
|
---|
519 | int npoints,
|
---|
520 | double decay,
|
---|
521 | int restarts,
|
---|
522 | double wstep,
|
---|
523 | int maxits,
|
---|
524 | ref int info,
|
---|
525 | ref mlpreport rep)
|
---|
526 | {
|
---|
527 | int i = 0;
|
---|
528 | int j = 0;
|
---|
529 | int pass = 0;
|
---|
530 | int nin = 0;
|
---|
531 | int nout = 0;
|
---|
532 | int wcount = 0;
|
---|
533 | double[] w = new double[0];
|
---|
534 | double[] wbest = new double[0];
|
---|
535 | double e = 0;
|
---|
536 | double v = 0;
|
---|
537 | double ebest = 0;
|
---|
538 | lbfgs.lbfgsreport internalrep = new lbfgs.lbfgsreport();
|
---|
539 | lbfgs.lbfgsstate state = new lbfgs.lbfgsstate();
|
---|
540 | int i_ = 0;
|
---|
541 |
|
---|
542 |
|
---|
543 | //
|
---|
544 | // Test inputs, parse flags, read network geometry
|
---|
545 | //
|
---|
546 | if( (double)(wstep)==(double)(0) & maxits==0 )
|
---|
547 | {
|
---|
548 | info = -8;
|
---|
549 | return;
|
---|
550 | }
|
---|
551 | if( npoints<=0 | restarts<1 | (double)(wstep)<(double)(0) | maxits<0 )
|
---|
552 | {
|
---|
553 | info = -1;
|
---|
554 | return;
|
---|
555 | }
|
---|
556 | mlpbase.mlpproperties(ref network, ref nin, ref nout, ref wcount);
|
---|
557 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
558 | {
|
---|
559 | for(i=0; i<=npoints-1; i++)
|
---|
560 | {
|
---|
561 | if( (int)Math.Round(xy[i,nin])<0 | (int)Math.Round(xy[i,nin])>=nout )
|
---|
562 | {
|
---|
563 | info = -2;
|
---|
564 | return;
|
---|
565 | }
|
---|
566 | }
|
---|
567 | }
|
---|
568 | decay = Math.Max(decay, mindecay);
|
---|
569 | info = 2;
|
---|
570 |
|
---|
571 | //
|
---|
572 | // Prepare
|
---|
573 | //
|
---|
574 | mlpbase.mlpinitpreprocessor(ref network, ref xy, npoints);
|
---|
575 | w = new double[wcount-1+1];
|
---|
576 | wbest = new double[wcount-1+1];
|
---|
577 | ebest = AP.Math.MaxRealNumber;
|
---|
578 |
|
---|
579 | //
|
---|
580 | // Multiple starts
|
---|
581 | //
|
---|
582 | rep.ncholesky = 0;
|
---|
583 | rep.nhess = 0;
|
---|
584 | rep.ngrad = 0;
|
---|
585 | for(pass=1; pass<=restarts; pass++)
|
---|
586 | {
|
---|
587 |
|
---|
588 | //
|
---|
589 | // Process
|
---|
590 | //
|
---|
591 | mlpbase.mlprandomize(ref network);
|
---|
592 | for(i_=0; i_<=wcount-1;i_++)
|
---|
593 | {
|
---|
594 | w[i_] = network.weights[i_];
|
---|
595 | }
|
---|
596 | lbfgs.minlbfgs(wcount, Math.Min(wcount, 50), ref w, 0.0, 0.0, wstep, maxits, 0, ref state);
|
---|
597 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
598 | {
|
---|
599 | for(i_=0; i_<=wcount-1;i_++)
|
---|
600 | {
|
---|
601 | network.weights[i_] = state.x[i_];
|
---|
602 | }
|
---|
603 | mlpbase.mlpgradnbatch(ref network, ref xy, npoints, ref state.f, ref state.g);
|
---|
604 | v = 0.0;
|
---|
605 | for(i_=0; i_<=wcount-1;i_++)
|
---|
606 | {
|
---|
607 | v += network.weights[i_]*network.weights[i_];
|
---|
608 | }
|
---|
609 | state.f = state.f+0.5*decay*v;
|
---|
610 | for(i_=0; i_<=wcount-1;i_++)
|
---|
611 | {
|
---|
612 | state.g[i_] = state.g[i_] + decay*network.weights[i_];
|
---|
613 | }
|
---|
614 | rep.ngrad = rep.ngrad+1;
|
---|
615 | }
|
---|
616 | lbfgs.minlbfgsresults(ref state, ref w, ref internalrep);
|
---|
617 | for(i_=0; i_<=wcount-1;i_++)
|
---|
618 | {
|
---|
619 | network.weights[i_] = w[i_];
|
---|
620 | }
|
---|
621 |
|
---|
622 | //
|
---|
623 | // Compare with best
|
---|
624 | //
|
---|
625 | v = 0.0;
|
---|
626 | for(i_=0; i_<=wcount-1;i_++)
|
---|
627 | {
|
---|
628 | v += network.weights[i_]*network.weights[i_];
|
---|
629 | }
|
---|
630 | e = mlpbase.mlperrorn(ref network, ref xy, npoints)+0.5*decay*v;
|
---|
631 | if( (double)(e)<(double)(ebest) )
|
---|
632 | {
|
---|
633 | for(i_=0; i_<=wcount-1;i_++)
|
---|
634 | {
|
---|
635 | wbest[i_] = network.weights[i_];
|
---|
636 | }
|
---|
637 | ebest = e;
|
---|
638 | }
|
---|
639 | }
|
---|
640 |
|
---|
641 | //
|
---|
642 | // The best network
|
---|
643 | //
|
---|
644 | for(i_=0; i_<=wcount-1;i_++)
|
---|
645 | {
|
---|
646 | network.weights[i_] = wbest[i_];
|
---|
647 | }
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | /*************************************************************************
|
---|
652 | Neural network training using early stopping (base algorithm - L-BFGS with
|
---|
653 | regularization).
|
---|
654 |
|
---|
655 | INPUT PARAMETERS:
|
---|
656 | Network - neural network with initialized geometry
|
---|
657 | TrnXY - training set
|
---|
658 | TrnSize - training set size
|
---|
659 | ValXY - validation set
|
---|
660 | ValSize - validation set size
|
---|
661 | Decay - weight decay constant, >=0.001
|
---|
662 | Decay term 'Decay*||Weights||^2' is added to error
|
---|
663 | function.
|
---|
664 | If you don't know what Decay to choose, use 0.001.
|
---|
665 | Restarts - number of restarts from random position, >0.
|
---|
666 | If you don't know what Restarts to choose, use 2.
|
---|
667 |
|
---|
668 | OUTPUT PARAMETERS:
|
---|
669 | Network - trained neural network.
|
---|
670 | Info - return code:
|
---|
671 | * -2, if there is a point with class number
|
---|
672 | outside of [0..NOut-1].
|
---|
673 | * -1, if wrong parameters specified
|
---|
674 | (NPoints<0, Restarts<1, ...).
|
---|
675 | * 2, task has been solved, stopping criterion met -
|
---|
676 | sufficiently small step size. Not expected (we
|
---|
677 | use EARLY stopping) but possible and not an
|
---|
678 | error.
|
---|
679 | * 6, task has been solved, stopping criterion met -
|
---|
680 | increasing of validation set error.
|
---|
681 | Rep - training report
|
---|
682 |
|
---|
683 | NOTE:
|
---|
684 |
|
---|
685 | Algorithm stops if validation set error increases for a long enough or
|
---|
686 | step size is small enought (there are task where validation set may
|
---|
687 | decrease for eternity). In any case solution returned corresponds to the
|
---|
688 | minimum of validation set error.
|
---|
689 |
|
---|
690 | -- ALGLIB --
|
---|
691 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
692 | *************************************************************************/
|
---|
693 | public static void mlptraines(ref mlpbase.multilayerperceptron network,
|
---|
694 | ref double[,] trnxy,
|
---|
695 | int trnsize,
|
---|
696 | ref double[,] valxy,
|
---|
697 | int valsize,
|
---|
698 | double decay,
|
---|
699 | int restarts,
|
---|
700 | ref int info,
|
---|
701 | ref mlpreport rep)
|
---|
702 | {
|
---|
703 | int i = 0;
|
---|
704 | int j = 0;
|
---|
705 | int pass = 0;
|
---|
706 | int nin = 0;
|
---|
707 | int nout = 0;
|
---|
708 | int wcount = 0;
|
---|
709 | double[] w = new double[0];
|
---|
710 | double[] wbest = new double[0];
|
---|
711 | double e = 0;
|
---|
712 | double v = 0;
|
---|
713 | double ebest = 0;
|
---|
714 | double[] wfinal = new double[0];
|
---|
715 | double efinal = 0;
|
---|
716 | int itbest = 0;
|
---|
717 | lbfgs.lbfgsreport internalrep = new lbfgs.lbfgsreport();
|
---|
718 | lbfgs.lbfgsstate state = new lbfgs.lbfgsstate();
|
---|
719 | double wstep = 0;
|
---|
720 | int i_ = 0;
|
---|
721 |
|
---|
722 | wstep = 0.001;
|
---|
723 |
|
---|
724 | //
|
---|
725 | // Test inputs, parse flags, read network geometry
|
---|
726 | //
|
---|
727 | if( trnsize<=0 | valsize<=0 | restarts<1 | (double)(decay)<(double)(0) )
|
---|
728 | {
|
---|
729 | info = -1;
|
---|
730 | return;
|
---|
731 | }
|
---|
732 | mlpbase.mlpproperties(ref network, ref nin, ref nout, ref wcount);
|
---|
733 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
734 | {
|
---|
735 | for(i=0; i<=trnsize-1; i++)
|
---|
736 | {
|
---|
737 | if( (int)Math.Round(trnxy[i,nin])<0 | (int)Math.Round(trnxy[i,nin])>=nout )
|
---|
738 | {
|
---|
739 | info = -2;
|
---|
740 | return;
|
---|
741 | }
|
---|
742 | }
|
---|
743 | for(i=0; i<=valsize-1; i++)
|
---|
744 | {
|
---|
745 | if( (int)Math.Round(valxy[i,nin])<0 | (int)Math.Round(valxy[i,nin])>=nout )
|
---|
746 | {
|
---|
747 | info = -2;
|
---|
748 | return;
|
---|
749 | }
|
---|
750 | }
|
---|
751 | }
|
---|
752 | info = 2;
|
---|
753 |
|
---|
754 | //
|
---|
755 | // Prepare
|
---|
756 | //
|
---|
757 | mlpbase.mlpinitpreprocessor(ref network, ref trnxy, trnsize);
|
---|
758 | w = new double[wcount-1+1];
|
---|
759 | wbest = new double[wcount-1+1];
|
---|
760 | wfinal = new double[wcount-1+1];
|
---|
761 | efinal = AP.Math.MaxRealNumber;
|
---|
762 | for(i=0; i<=wcount-1; i++)
|
---|
763 | {
|
---|
764 | wfinal[i] = 0;
|
---|
765 | }
|
---|
766 |
|
---|
767 | //
|
---|
768 | // Multiple starts
|
---|
769 | //
|
---|
770 | rep.ncholesky = 0;
|
---|
771 | rep.nhess = 0;
|
---|
772 | rep.ngrad = 0;
|
---|
773 | for(pass=1; pass<=restarts; pass++)
|
---|
774 | {
|
---|
775 |
|
---|
776 | //
|
---|
777 | // Process
|
---|
778 | //
|
---|
779 | mlpbase.mlprandomize(ref network);
|
---|
780 | ebest = mlpbase.mlperror(ref network, ref valxy, valsize);
|
---|
781 | for(i_=0; i_<=wcount-1;i_++)
|
---|
782 | {
|
---|
783 | wbest[i_] = network.weights[i_];
|
---|
784 | }
|
---|
785 | itbest = 0;
|
---|
786 | for(i_=0; i_<=wcount-1;i_++)
|
---|
787 | {
|
---|
788 | w[i_] = network.weights[i_];
|
---|
789 | }
|
---|
790 | lbfgs.minlbfgs(wcount, Math.Min(wcount, 50), ref w, 0.0, 0.0, wstep, 0, 0, ref state);
|
---|
791 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
792 | {
|
---|
793 |
|
---|
794 | //
|
---|
795 | // Calculate gradient
|
---|
796 | //
|
---|
797 | for(i_=0; i_<=wcount-1;i_++)
|
---|
798 | {
|
---|
799 | network.weights[i_] = state.x[i_];
|
---|
800 | }
|
---|
801 | mlpbase.mlpgradnbatch(ref network, ref trnxy, trnsize, ref state.f, ref state.g);
|
---|
802 | v = 0.0;
|
---|
803 | for(i_=0; i_<=wcount-1;i_++)
|
---|
804 | {
|
---|
805 | v += network.weights[i_]*network.weights[i_];
|
---|
806 | }
|
---|
807 | state.f = state.f+0.5*decay*v;
|
---|
808 | for(i_=0; i_<=wcount-1;i_++)
|
---|
809 | {
|
---|
810 | state.g[i_] = state.g[i_] + decay*network.weights[i_];
|
---|
811 | }
|
---|
812 | rep.ngrad = rep.ngrad+1;
|
---|
813 |
|
---|
814 | //
|
---|
815 | // Validation set
|
---|
816 | //
|
---|
817 | if( state.xupdated )
|
---|
818 | {
|
---|
819 | for(i_=0; i_<=wcount-1;i_++)
|
---|
820 | {
|
---|
821 | network.weights[i_] = w[i_];
|
---|
822 | }
|
---|
823 | e = mlpbase.mlperror(ref network, ref valxy, valsize);
|
---|
824 | if( (double)(e)<(double)(ebest) )
|
---|
825 | {
|
---|
826 | ebest = e;
|
---|
827 | for(i_=0; i_<=wcount-1;i_++)
|
---|
828 | {
|
---|
829 | wbest[i_] = network.weights[i_];
|
---|
830 | }
|
---|
831 | itbest = internalrep.iterationscount;
|
---|
832 | }
|
---|
833 | if( internalrep.iterationscount>30 & (double)(internalrep.iterationscount)>(double)(1.5*itbest) )
|
---|
834 | {
|
---|
835 | info = 6;
|
---|
836 | break;
|
---|
837 | }
|
---|
838 | }
|
---|
839 | }
|
---|
840 | lbfgs.minlbfgsresults(ref state, ref w, ref internalrep);
|
---|
841 |
|
---|
842 | //
|
---|
843 | // Compare with final answer
|
---|
844 | //
|
---|
845 | if( (double)(ebest)<(double)(efinal) )
|
---|
846 | {
|
---|
847 | for(i_=0; i_<=wcount-1;i_++)
|
---|
848 | {
|
---|
849 | wfinal[i_] = wbest[i_];
|
---|
850 | }
|
---|
851 | efinal = ebest;
|
---|
852 | }
|
---|
853 | }
|
---|
854 |
|
---|
855 | //
|
---|
856 | // The best network
|
---|
857 | //
|
---|
858 | for(i_=0; i_<=wcount-1;i_++)
|
---|
859 | {
|
---|
860 | network.weights[i_] = wfinal[i_];
|
---|
861 | }
|
---|
862 | }
|
---|
863 |
|
---|
864 |
|
---|
865 | /*************************************************************************
|
---|
866 | Cross-validation estimate of generalization error.
|
---|
867 |
|
---|
868 | Base algorithm - L-BFGS.
|
---|
869 |
|
---|
870 | INPUT PARAMETERS:
|
---|
871 | Network - neural network with initialized geometry. Network is
|
---|
872 | not changed during cross-validation - it is used only
|
---|
873 | as a representative of its architecture.
|
---|
874 | XY - training set.
|
---|
875 | SSize - training set size
|
---|
876 | Decay - weight decay, same as in MLPTrainLBFGS
|
---|
877 | Restarts - number of restarts, >0.
|
---|
878 | restarts are counted for each partition separately, so
|
---|
879 | total number of restarts will be Restarts*FoldsCount.
|
---|
880 | WStep - stopping criterion, same as in MLPTrainLBFGS
|
---|
881 | MaxIts - stopping criterion, same as in MLPTrainLBFGS
|
---|
882 | FoldsCount - number of folds in k-fold cross-validation,
|
---|
883 | 2<=FoldsCount<=SSize.
|
---|
884 | recommended value: 10.
|
---|
885 |
|
---|
886 | OUTPUT PARAMETERS:
|
---|
887 | Info - return code, same as in MLPTrainLBFGS
|
---|
888 | Rep - report, same as in MLPTrainLM/MLPTrainLBFGS
|
---|
889 | CVRep - generalization error estimates
|
---|
890 |
|
---|
891 | -- ALGLIB --
|
---|
892 | Copyright 09.12.2007 by Bochkanov Sergey
|
---|
893 | *************************************************************************/
|
---|
894 | public static void mlpkfoldcvlbfgs(ref mlpbase.multilayerperceptron network,
|
---|
895 | ref double[,] xy,
|
---|
896 | int npoints,
|
---|
897 | double decay,
|
---|
898 | int restarts,
|
---|
899 | double wstep,
|
---|
900 | int maxits,
|
---|
901 | int foldscount,
|
---|
902 | ref int info,
|
---|
903 | ref mlpreport rep,
|
---|
904 | ref mlpcvreport cvrep)
|
---|
905 | {
|
---|
906 | mlpkfoldcvgeneral(ref network, ref xy, npoints, decay, restarts, foldscount, false, wstep, maxits, ref info, ref rep, ref cvrep);
|
---|
907 | }
|
---|
908 |
|
---|
909 |
|
---|
910 | /*************************************************************************
|
---|
911 | Cross-validation estimate of generalization error.
|
---|
912 |
|
---|
913 | Base algorithm - Levenberg-Marquardt.
|
---|
914 |
|
---|
915 | INPUT PARAMETERS:
|
---|
916 | Network - neural network with initialized geometry. Network is
|
---|
917 | not changed during cross-validation - it is used only
|
---|
918 | as a representative of its architecture.
|
---|
919 | XY - training set.
|
---|
920 | SSize - training set size
|
---|
921 | Decay - weight decay, same as in MLPTrainLBFGS
|
---|
922 | Restarts - number of restarts, >0.
|
---|
923 | restarts are counted for each partition separately, so
|
---|
924 | total number of restarts will be Restarts*FoldsCount.
|
---|
925 | FoldsCount - number of folds in k-fold cross-validation,
|
---|
926 | 2<=FoldsCount<=SSize.
|
---|
927 | recommended value: 10.
|
---|
928 |
|
---|
929 | OUTPUT PARAMETERS:
|
---|
930 | Info - return code, same as in MLPTrainLBFGS
|
---|
931 | Rep - report, same as in MLPTrainLM/MLPTrainLBFGS
|
---|
932 | CVRep - generalization error estimates
|
---|
933 |
|
---|
934 | -- ALGLIB --
|
---|
935 | Copyright 09.12.2007 by Bochkanov Sergey
|
---|
936 | *************************************************************************/
|
---|
937 | public static void mlpkfoldcvlm(ref mlpbase.multilayerperceptron network,
|
---|
938 | ref double[,] xy,
|
---|
939 | int npoints,
|
---|
940 | double decay,
|
---|
941 | int restarts,
|
---|
942 | int foldscount,
|
---|
943 | ref int info,
|
---|
944 | ref mlpreport rep,
|
---|
945 | ref mlpcvreport cvrep)
|
---|
946 | {
|
---|
947 | mlpkfoldcvgeneral(ref network, ref xy, npoints, decay, restarts, foldscount, true, 0.0, 0, ref info, ref rep, ref cvrep);
|
---|
948 | }
|
---|
949 |
|
---|
950 |
|
---|
951 | /*************************************************************************
|
---|
952 | Internal cross-validation subroutine
|
---|
953 | *************************************************************************/
|
---|
954 | private static void mlpkfoldcvgeneral(ref mlpbase.multilayerperceptron n,
|
---|
955 | ref double[,] xy,
|
---|
956 | int npoints,
|
---|
957 | double decay,
|
---|
958 | int restarts,
|
---|
959 | int foldscount,
|
---|
960 | bool lmalgorithm,
|
---|
961 | double wstep,
|
---|
962 | int maxits,
|
---|
963 | ref int info,
|
---|
964 | ref mlpreport rep,
|
---|
965 | ref mlpcvreport cvrep)
|
---|
966 | {
|
---|
967 | int i = 0;
|
---|
968 | int fold = 0;
|
---|
969 | int j = 0;
|
---|
970 | int k = 0;
|
---|
971 | mlpbase.multilayerperceptron network = new mlpbase.multilayerperceptron();
|
---|
972 | int nin = 0;
|
---|
973 | int nout = 0;
|
---|
974 | int rowlen = 0;
|
---|
975 | int wcount = 0;
|
---|
976 | int nclasses = 0;
|
---|
977 | int tssize = 0;
|
---|
978 | int cvssize = 0;
|
---|
979 | double[,] cvset = new double[0,0];
|
---|
980 | double[,] testset = new double[0,0];
|
---|
981 | int[] folds = new int[0];
|
---|
982 | int relcnt = 0;
|
---|
983 | mlpreport internalrep = new mlpreport();
|
---|
984 | double[] x = new double[0];
|
---|
985 | double[] y = new double[0];
|
---|
986 | int i_ = 0;
|
---|
987 |
|
---|
988 |
|
---|
989 | //
|
---|
990 | // Read network geometry, test parameters
|
---|
991 | //
|
---|
992 | mlpbase.mlpproperties(ref n, ref nin, ref nout, ref wcount);
|
---|
993 | if( mlpbase.mlpissoftmax(ref n) )
|
---|
994 | {
|
---|
995 | nclasses = nout;
|
---|
996 | rowlen = nin+1;
|
---|
997 | }
|
---|
998 | else
|
---|
999 | {
|
---|
1000 | nclasses = -nout;
|
---|
1001 | rowlen = nin+nout;
|
---|
1002 | }
|
---|
1003 | if( npoints<=0 | foldscount<2 | foldscount>npoints )
|
---|
1004 | {
|
---|
1005 | info = -1;
|
---|
1006 | return;
|
---|
1007 | }
|
---|
1008 | mlpbase.mlpcopy(ref n, ref network);
|
---|
1009 |
|
---|
1010 | //
|
---|
1011 | // K-fold out cross-validation.
|
---|
1012 | // First, estimate generalization error
|
---|
1013 | //
|
---|
1014 | testset = new double[npoints-1+1, rowlen-1+1];
|
---|
1015 | cvset = new double[npoints-1+1, rowlen-1+1];
|
---|
1016 | x = new double[nin-1+1];
|
---|
1017 | y = new double[nout-1+1];
|
---|
1018 | mlpkfoldsplit(ref xy, npoints, nclasses, foldscount, false, ref folds);
|
---|
1019 | cvrep.relclserror = 0;
|
---|
1020 | cvrep.avgce = 0;
|
---|
1021 | cvrep.rmserror = 0;
|
---|
1022 | cvrep.avgerror = 0;
|
---|
1023 | cvrep.avgrelerror = 0;
|
---|
1024 | rep.ngrad = 0;
|
---|
1025 | rep.nhess = 0;
|
---|
1026 | rep.ncholesky = 0;
|
---|
1027 | relcnt = 0;
|
---|
1028 | for(fold=0; fold<=foldscount-1; fold++)
|
---|
1029 | {
|
---|
1030 |
|
---|
1031 | //
|
---|
1032 | // Separate set
|
---|
1033 | //
|
---|
1034 | tssize = 0;
|
---|
1035 | cvssize = 0;
|
---|
1036 | for(i=0; i<=npoints-1; i++)
|
---|
1037 | {
|
---|
1038 | if( folds[i]==fold )
|
---|
1039 | {
|
---|
1040 | for(i_=0; i_<=rowlen-1;i_++)
|
---|
1041 | {
|
---|
1042 | testset[tssize,i_] = xy[i,i_];
|
---|
1043 | }
|
---|
1044 | tssize = tssize+1;
|
---|
1045 | }
|
---|
1046 | else
|
---|
1047 | {
|
---|
1048 | for(i_=0; i_<=rowlen-1;i_++)
|
---|
1049 | {
|
---|
1050 | cvset[cvssize,i_] = xy[i,i_];
|
---|
1051 | }
|
---|
1052 | cvssize = cvssize+1;
|
---|
1053 | }
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | //
|
---|
1057 | // Train on CV training set
|
---|
1058 | //
|
---|
1059 | if( lmalgorithm )
|
---|
1060 | {
|
---|
1061 | mlptrainlm(ref network, ref cvset, cvssize, decay, restarts, ref info, ref internalrep);
|
---|
1062 | }
|
---|
1063 | else
|
---|
1064 | {
|
---|
1065 | mlptrainlbfgs(ref network, ref cvset, cvssize, decay, restarts, wstep, maxits, ref info, ref internalrep);
|
---|
1066 | }
|
---|
1067 | if( info<0 )
|
---|
1068 | {
|
---|
1069 | cvrep.relclserror = 0;
|
---|
1070 | cvrep.avgce = 0;
|
---|
1071 | cvrep.rmserror = 0;
|
---|
1072 | cvrep.avgerror = 0;
|
---|
1073 | cvrep.avgrelerror = 0;
|
---|
1074 | return;
|
---|
1075 | }
|
---|
1076 | rep.ngrad = rep.ngrad+internalrep.ngrad;
|
---|
1077 | rep.nhess = rep.nhess+internalrep.nhess;
|
---|
1078 | rep.ncholesky = rep.ncholesky+internalrep.ncholesky;
|
---|
1079 |
|
---|
1080 | //
|
---|
1081 | // Estimate error using CV test set
|
---|
1082 | //
|
---|
1083 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
1084 | {
|
---|
1085 |
|
---|
1086 | //
|
---|
1087 | // classification-only code
|
---|
1088 | //
|
---|
1089 | cvrep.relclserror = cvrep.relclserror+mlpbase.mlpclserror(ref network, ref testset, tssize);
|
---|
1090 | cvrep.avgce = cvrep.avgce+mlpbase.mlperrorn(ref network, ref testset, tssize);
|
---|
1091 | }
|
---|
1092 | for(i=0; i<=tssize-1; i++)
|
---|
1093 | {
|
---|
1094 | for(i_=0; i_<=nin-1;i_++)
|
---|
1095 | {
|
---|
1096 | x[i_] = testset[i,i_];
|
---|
1097 | }
|
---|
1098 | mlpbase.mlpprocess(ref network, ref x, ref y);
|
---|
1099 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
1100 | {
|
---|
1101 |
|
---|
1102 | //
|
---|
1103 | // Classification-specific code
|
---|
1104 | //
|
---|
1105 | k = (int)Math.Round(testset[i,nin]);
|
---|
1106 | for(j=0; j<=nout-1; j++)
|
---|
1107 | {
|
---|
1108 | if( j==k )
|
---|
1109 | {
|
---|
1110 | cvrep.rmserror = cvrep.rmserror+AP.Math.Sqr(y[j]-1);
|
---|
1111 | cvrep.avgerror = cvrep.avgerror+Math.Abs(y[j]-1);
|
---|
1112 | cvrep.avgrelerror = cvrep.avgrelerror+Math.Abs(y[j]-1);
|
---|
1113 | relcnt = relcnt+1;
|
---|
1114 | }
|
---|
1115 | else
|
---|
1116 | {
|
---|
1117 | cvrep.rmserror = cvrep.rmserror+AP.Math.Sqr(y[j]);
|
---|
1118 | cvrep.avgerror = cvrep.avgerror+Math.Abs(y[j]);
|
---|
1119 | }
|
---|
1120 | }
|
---|
1121 | }
|
---|
1122 | else
|
---|
1123 | {
|
---|
1124 |
|
---|
1125 | //
|
---|
1126 | // Regression-specific code
|
---|
1127 | //
|
---|
1128 | for(j=0; j<=nout-1; j++)
|
---|
1129 | {
|
---|
1130 | cvrep.rmserror = cvrep.rmserror+AP.Math.Sqr(y[j]-testset[i,nin+j]);
|
---|
1131 | cvrep.avgerror = cvrep.avgerror+Math.Abs(y[j]-testset[i,nin+j]);
|
---|
1132 | if( (double)(testset[i,nin+j])!=(double)(0) )
|
---|
1133 | {
|
---|
1134 | cvrep.avgrelerror = cvrep.avgrelerror+Math.Abs((y[j]-testset[i,nin+j])/testset[i,nin+j]);
|
---|
1135 | relcnt = relcnt+1;
|
---|
1136 | }
|
---|
1137 | }
|
---|
1138 | }
|
---|
1139 | }
|
---|
1140 | }
|
---|
1141 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
1142 | {
|
---|
1143 | cvrep.relclserror = cvrep.relclserror/npoints;
|
---|
1144 | cvrep.avgce = cvrep.avgce/(Math.Log(2)*npoints);
|
---|
1145 | }
|
---|
1146 | cvrep.rmserror = Math.Sqrt(cvrep.rmserror/(npoints*nout));
|
---|
1147 | cvrep.avgerror = cvrep.avgerror/(npoints*nout);
|
---|
1148 | cvrep.avgrelerror = cvrep.avgrelerror/relcnt;
|
---|
1149 | info = 1;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 |
|
---|
1153 | /*************************************************************************
|
---|
1154 | Subroutine prepares K-fold split of the training set.
|
---|
1155 |
|
---|
1156 | NOTES:
|
---|
1157 | "NClasses>0" means that we have classification task.
|
---|
1158 | "NClasses<0" means regression task with -NClasses real outputs.
|
---|
1159 | *************************************************************************/
|
---|
1160 | private static void mlpkfoldsplit(ref double[,] xy,
|
---|
1161 | int npoints,
|
---|
1162 | int nclasses,
|
---|
1163 | int foldscount,
|
---|
1164 | bool stratifiedsplits,
|
---|
1165 | ref int[] folds)
|
---|
1166 | {
|
---|
1167 | int i = 0;
|
---|
1168 | int j = 0;
|
---|
1169 | int k = 0;
|
---|
1170 |
|
---|
1171 |
|
---|
1172 | //
|
---|
1173 | // test parameters
|
---|
1174 | //
|
---|
1175 | System.Diagnostics.Debug.Assert(npoints>0, "MLPKFoldSplit: wrong NPoints!");
|
---|
1176 | System.Diagnostics.Debug.Assert(nclasses>1 | nclasses<0, "MLPKFoldSplit: wrong NClasses!");
|
---|
1177 | System.Diagnostics.Debug.Assert(foldscount>=2 & foldscount<=npoints, "MLPKFoldSplit: wrong FoldsCount!");
|
---|
1178 | System.Diagnostics.Debug.Assert(!stratifiedsplits, "MLPKFoldSplit: stratified splits are not supported!");
|
---|
1179 |
|
---|
1180 | //
|
---|
1181 | // Folds
|
---|
1182 | //
|
---|
1183 | folds = new int[npoints-1+1];
|
---|
1184 | for(i=0; i<=npoints-1; i++)
|
---|
1185 | {
|
---|
1186 | folds[i] = i*foldscount/npoints;
|
---|
1187 | }
|
---|
1188 | for(i=0; i<=npoints-2; i++)
|
---|
1189 | {
|
---|
1190 | j = i+AP.Math.RandomInteger(npoints-i);
|
---|
1191 | if( j!=i )
|
---|
1192 | {
|
---|
1193 | k = folds[i];
|
---|
1194 | folds[i] = folds[j];
|
---|
1195 | folds[j] = k;
|
---|
1196 | }
|
---|
1197 | }
|
---|
1198 | }
|
---|
1199 | }
|
---|
1200 | }
|
---|