[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class lu
|
---|
| 32 | {
|
---|
| 33 | public const int lunb = 8;
|
---|
| 34 |
|
---|
| 35 |
|
---|
| 36 | /*************************************************************************
|
---|
| 37 | LU decomposition of a general matrix of size MxN
|
---|
| 38 |
|
---|
| 39 | The subroutine calculates the LU decomposition of a rectangular general
|
---|
| 40 | matrix with partial pivoting (with row permutations).
|
---|
| 41 |
|
---|
| 42 | Input parameters:
|
---|
| 43 | A - matrix A whose indexes range within [0..M-1, 0..N-1].
|
---|
| 44 | M - number of rows in matrix A.
|
---|
| 45 | N - number of columns in matrix A.
|
---|
| 46 |
|
---|
| 47 | Output parameters:
|
---|
| 48 | A - matrices L and U in compact form (see below).
|
---|
| 49 | Array whose indexes range within [0..M-1, 0..N-1].
|
---|
| 50 | Pivots - permutation matrix in compact form (see below).
|
---|
| 51 | Array whose index ranges within [0..Min(M-1,N-1)].
|
---|
| 52 |
|
---|
| 53 | Matrix A is represented as A = P * L * U, where P is a permutation matrix,
|
---|
| 54 | matrix L - lower triangular (or lower trapezoid, if M>N) matrix,
|
---|
| 55 | U - upper triangular (or upper trapezoid, if M<N) matrix.
|
---|
| 56 |
|
---|
| 57 | Let M be equal to 4 and N be equal to 3:
|
---|
| 58 |
|
---|
| 59 | ( 1 ) ( U11 U12 U13 )
|
---|
| 60 | A = P1 * P2 * P3 * ( L21 1 ) * ( U22 U23 )
|
---|
| 61 | ( L31 L32 1 ) ( U33 )
|
---|
| 62 | ( L41 L42 L43 )
|
---|
| 63 |
|
---|
| 64 | Matrix L has size MxMin(M,N), matrix U has size Min(M,N)xN, matrix P(i) is
|
---|
| 65 | a permutation of the identity matrix of size MxM with numbers I and Pivots[I].
|
---|
| 66 |
|
---|
| 67 | The algorithm returns array Pivots and the following matrix which replaces
|
---|
| 68 | matrix A and contains matrices L and U in compact form (the example applies
|
---|
| 69 | to M=4, N=3).
|
---|
| 70 |
|
---|
| 71 | ( U11 U12 U13 )
|
---|
| 72 | ( L21 U22 U23 )
|
---|
| 73 | ( L31 L32 U33 )
|
---|
| 74 | ( L41 L42 L43 )
|
---|
| 75 |
|
---|
| 76 | As we can see, the unit diagonal isn't stored.
|
---|
| 77 |
|
---|
| 78 | -- LAPACK routine (version 3.0) --
|
---|
| 79 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 80 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 81 | June 30, 1992
|
---|
| 82 | *************************************************************************/
|
---|
| 83 | public static void rmatrixlu(ref double[,] a,
|
---|
| 84 | int m,
|
---|
| 85 | int n,
|
---|
| 86 | ref int[] pivots)
|
---|
| 87 | {
|
---|
| 88 | double[,] b = new double[0,0];
|
---|
| 89 | double[] t = new double[0];
|
---|
| 90 | int[] bp = new int[0];
|
---|
| 91 | int minmn = 0;
|
---|
| 92 | int i = 0;
|
---|
| 93 | int ip = 0;
|
---|
| 94 | int j = 0;
|
---|
| 95 | int j1 = 0;
|
---|
| 96 | int j2 = 0;
|
---|
| 97 | int cb = 0;
|
---|
| 98 | int nb = 0;
|
---|
| 99 | double v = 0;
|
---|
| 100 | int i_ = 0;
|
---|
| 101 | int i1_ = 0;
|
---|
| 102 |
|
---|
| 103 | System.Diagnostics.Debug.Assert(lunb>=1, "RMatrixLU internal error");
|
---|
| 104 | nb = lunb;
|
---|
| 105 |
|
---|
| 106 | //
|
---|
| 107 | // Decide what to use - blocked or unblocked code
|
---|
| 108 | //
|
---|
| 109 | if( n<=1 | Math.Min(m, n)<=nb | nb==1 )
|
---|
| 110 | {
|
---|
| 111 |
|
---|
| 112 | //
|
---|
| 113 | // Unblocked code
|
---|
| 114 | //
|
---|
| 115 | rmatrixlu2(ref a, m, n, ref pivots);
|
---|
| 116 | }
|
---|
| 117 | else
|
---|
| 118 | {
|
---|
| 119 |
|
---|
| 120 | //
|
---|
| 121 | // Blocked code.
|
---|
| 122 | // First, prepare temporary matrix and indices
|
---|
| 123 | //
|
---|
| 124 | b = new double[m-1+1, nb-1+1];
|
---|
| 125 | t = new double[n-1+1];
|
---|
| 126 | pivots = new int[Math.Min(m, n)-1+1];
|
---|
| 127 | minmn = Math.Min(m, n);
|
---|
| 128 | j1 = 0;
|
---|
| 129 | j2 = Math.Min(minmn, nb)-1;
|
---|
| 130 |
|
---|
| 131 | //
|
---|
| 132 | // Main cycle
|
---|
| 133 | //
|
---|
| 134 | while( j1<minmn )
|
---|
| 135 | {
|
---|
| 136 | cb = j2-j1+1;
|
---|
| 137 |
|
---|
| 138 | //
|
---|
| 139 | // LU factorization of diagonal and subdiagonal blocks:
|
---|
| 140 | // 1. Copy columns J1..J2 of A to B
|
---|
| 141 | // 2. LU(B)
|
---|
| 142 | // 3. Copy result back to A
|
---|
| 143 | // 4. Copy pivots, apply pivots
|
---|
| 144 | //
|
---|
| 145 | for(i=j1; i<=m-1; i++)
|
---|
| 146 | {
|
---|
| 147 | i1_ = (j1) - (0);
|
---|
| 148 | for(i_=0; i_<=cb-1;i_++)
|
---|
| 149 | {
|
---|
| 150 | b[i-j1,i_] = a[i,i_+i1_];
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 | rmatrixlu2(ref b, m-j1, cb, ref bp);
|
---|
| 154 | for(i=j1; i<=m-1; i++)
|
---|
| 155 | {
|
---|
| 156 | i1_ = (0) - (j1);
|
---|
| 157 | for(i_=j1; i_<=j2;i_++)
|
---|
| 158 | {
|
---|
| 159 | a[i,i_] = b[i-j1,i_+i1_];
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | for(i=0; i<=cb-1; i++)
|
---|
| 163 | {
|
---|
| 164 | ip = bp[i];
|
---|
| 165 | pivots[j1+i] = j1+ip;
|
---|
| 166 | if( bp[i]!=i )
|
---|
| 167 | {
|
---|
| 168 | if( j1!=0 )
|
---|
| 169 | {
|
---|
| 170 |
|
---|
| 171 | //
|
---|
| 172 | // Interchange columns 0:J1-1
|
---|
| 173 | //
|
---|
| 174 | for(i_=0; i_<=j1-1;i_++)
|
---|
| 175 | {
|
---|
| 176 | t[i_] = a[j1+i,i_];
|
---|
| 177 | }
|
---|
| 178 | for(i_=0; i_<=j1-1;i_++)
|
---|
| 179 | {
|
---|
| 180 | a[j1+i,i_] = a[j1+ip,i_];
|
---|
| 181 | }
|
---|
| 182 | for(i_=0; i_<=j1-1;i_++)
|
---|
| 183 | {
|
---|
| 184 | a[j1+ip,i_] = t[i_];
|
---|
| 185 | }
|
---|
| 186 | }
|
---|
| 187 | if( j2<n-1 )
|
---|
| 188 | {
|
---|
| 189 |
|
---|
| 190 | //
|
---|
| 191 | // Interchange the rest of the matrix, if needed
|
---|
| 192 | //
|
---|
| 193 | for(i_=j2+1; i_<=n-1;i_++)
|
---|
| 194 | {
|
---|
| 195 | t[i_] = a[j1+i,i_];
|
---|
| 196 | }
|
---|
| 197 | for(i_=j2+1; i_<=n-1;i_++)
|
---|
| 198 | {
|
---|
| 199 | a[j1+i,i_] = a[j1+ip,i_];
|
---|
| 200 | }
|
---|
| 201 | for(i_=j2+1; i_<=n-1;i_++)
|
---|
| 202 | {
|
---|
| 203 | a[j1+ip,i_] = t[i_];
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | //
|
---|
| 210 | // Compute block row of U
|
---|
| 211 | //
|
---|
| 212 | if( j2<n-1 )
|
---|
| 213 | {
|
---|
| 214 | for(i=j1+1; i<=j2; i++)
|
---|
| 215 | {
|
---|
| 216 | for(j=j1; j<=i-1; j++)
|
---|
| 217 | {
|
---|
| 218 | v = a[i,j];
|
---|
| 219 | for(i_=j2+1; i_<=n-1;i_++)
|
---|
| 220 | {
|
---|
| 221 | a[i,i_] = a[i,i_] - v*a[j,i_];
|
---|
| 222 | }
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | //
|
---|
| 228 | // Update trailing submatrix
|
---|
| 229 | //
|
---|
| 230 | if( j2<n-1 )
|
---|
| 231 | {
|
---|
| 232 | for(i=j2+1; i<=m-1; i++)
|
---|
| 233 | {
|
---|
| 234 | for(j=j1; j<=j2; j++)
|
---|
| 235 | {
|
---|
| 236 | v = a[i,j];
|
---|
| 237 | for(i_=j2+1; i_<=n-1;i_++)
|
---|
| 238 | {
|
---|
| 239 | a[i,i_] = a[i,i_] - v*a[j,i_];
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | //
|
---|
| 246 | // Next step
|
---|
| 247 | //
|
---|
| 248 | j1 = j2+1;
|
---|
| 249 | j2 = Math.Min(minmn, j1+nb)-1;
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 |
|
---|
| 255 | public static void ludecomposition(ref double[,] a,
|
---|
| 256 | int m,
|
---|
| 257 | int n,
|
---|
| 258 | ref int[] pivots)
|
---|
| 259 | {
|
---|
| 260 | int i = 0;
|
---|
| 261 | int j = 0;
|
---|
| 262 | int jp = 0;
|
---|
| 263 | double[] t1 = new double[0];
|
---|
| 264 | double s = 0;
|
---|
| 265 | int i_ = 0;
|
---|
| 266 |
|
---|
| 267 | pivots = new int[Math.Min(m, n)+1];
|
---|
| 268 | t1 = new double[Math.Max(m, n)+1];
|
---|
| 269 | System.Diagnostics.Debug.Assert(m>=0 & n>=0, "Error in LUDecomposition: incorrect function arguments");
|
---|
| 270 |
|
---|
| 271 | //
|
---|
| 272 | // Quick return if possible
|
---|
| 273 | //
|
---|
| 274 | if( m==0 | n==0 )
|
---|
| 275 | {
|
---|
| 276 | return;
|
---|
| 277 | }
|
---|
| 278 | for(j=1; j<=Math.Min(m, n); j++)
|
---|
| 279 | {
|
---|
| 280 |
|
---|
| 281 | //
|
---|
| 282 | // Find pivot and test for singularity.
|
---|
| 283 | //
|
---|
| 284 | jp = j;
|
---|
| 285 | for(i=j+1; i<=m; i++)
|
---|
| 286 | {
|
---|
| 287 | if( (double)(Math.Abs(a[i,j]))>(double)(Math.Abs(a[jp,j])) )
|
---|
| 288 | {
|
---|
| 289 | jp = i;
|
---|
| 290 | }
|
---|
| 291 | }
|
---|
| 292 | pivots[j] = jp;
|
---|
| 293 | if( (double)(a[jp,j])!=(double)(0) )
|
---|
| 294 | {
|
---|
| 295 |
|
---|
| 296 | //
|
---|
| 297 | //Apply the interchange to rows
|
---|
| 298 | //
|
---|
| 299 | if( jp!=j )
|
---|
| 300 | {
|
---|
| 301 | for(i_=1; i_<=n;i_++)
|
---|
| 302 | {
|
---|
| 303 | t1[i_] = a[j,i_];
|
---|
| 304 | }
|
---|
| 305 | for(i_=1; i_<=n;i_++)
|
---|
| 306 | {
|
---|
| 307 | a[j,i_] = a[jp,i_];
|
---|
| 308 | }
|
---|
| 309 | for(i_=1; i_<=n;i_++)
|
---|
| 310 | {
|
---|
| 311 | a[jp,i_] = t1[i_];
|
---|
| 312 | }
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | //
|
---|
| 316 | //Compute elements J+1:M of J-th column.
|
---|
| 317 | //
|
---|
| 318 | if( j<m )
|
---|
| 319 | {
|
---|
| 320 |
|
---|
| 321 | //
|
---|
| 322 | // CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
|
---|
| 323 | //
|
---|
| 324 | jp = j+1;
|
---|
| 325 | s = 1/a[j,j];
|
---|
| 326 | for(i_=jp; i_<=m;i_++)
|
---|
| 327 | {
|
---|
| 328 | a[i_,j] = s*a[i_,j];
|
---|
| 329 | }
|
---|
| 330 | }
|
---|
| 331 | }
|
---|
| 332 | if( j<Math.Min(m, n) )
|
---|
| 333 | {
|
---|
| 334 |
|
---|
| 335 | //
|
---|
| 336 | //Update trailing submatrix.
|
---|
| 337 | //CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,A( J+1, J+1 ), LDA )
|
---|
| 338 | //
|
---|
| 339 | jp = j+1;
|
---|
| 340 | for(i=j+1; i<=m; i++)
|
---|
| 341 | {
|
---|
| 342 | s = a[i,j];
|
---|
| 343 | for(i_=jp; i_<=n;i_++)
|
---|
| 344 | {
|
---|
| 345 | a[i,i_] = a[i,i_] - s*a[j,i_];
|
---|
| 346 | }
|
---|
| 347 | }
|
---|
| 348 | }
|
---|
| 349 | }
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 |
|
---|
| 353 | public static void ludecompositionunpacked(double[,] a,
|
---|
| 354 | int m,
|
---|
| 355 | int n,
|
---|
| 356 | ref double[,] l,
|
---|
| 357 | ref double[,] u,
|
---|
| 358 | ref int[] pivots)
|
---|
| 359 | {
|
---|
| 360 | int i = 0;
|
---|
| 361 | int j = 0;
|
---|
| 362 | int minmn = 0;
|
---|
| 363 |
|
---|
| 364 | a = (double[,])a.Clone();
|
---|
| 365 |
|
---|
| 366 | if( m==0 | n==0 )
|
---|
| 367 | {
|
---|
| 368 | return;
|
---|
| 369 | }
|
---|
| 370 | minmn = Math.Min(m, n);
|
---|
| 371 | l = new double[m+1, minmn+1];
|
---|
| 372 | u = new double[minmn+1, n+1];
|
---|
| 373 | ludecomposition(ref a, m, n, ref pivots);
|
---|
| 374 | for(i=1; i<=m; i++)
|
---|
| 375 | {
|
---|
| 376 | for(j=1; j<=minmn; j++)
|
---|
| 377 | {
|
---|
| 378 | if( j>i )
|
---|
| 379 | {
|
---|
| 380 | l[i,j] = 0;
|
---|
| 381 | }
|
---|
| 382 | if( j==i )
|
---|
| 383 | {
|
---|
| 384 | l[i,j] = 1;
|
---|
| 385 | }
|
---|
| 386 | if( j<i )
|
---|
| 387 | {
|
---|
| 388 | l[i,j] = a[i,j];
|
---|
| 389 | }
|
---|
| 390 | }
|
---|
| 391 | }
|
---|
| 392 | for(i=1; i<=minmn; i++)
|
---|
| 393 | {
|
---|
| 394 | for(j=1; j<=n; j++)
|
---|
| 395 | {
|
---|
| 396 | if( j<i )
|
---|
| 397 | {
|
---|
| 398 | u[i,j] = 0;
|
---|
| 399 | }
|
---|
| 400 | if( j>=i )
|
---|
| 401 | {
|
---|
| 402 | u[i,j] = a[i,j];
|
---|
| 403 | }
|
---|
| 404 | }
|
---|
| 405 | }
|
---|
| 406 | }
|
---|
| 407 |
|
---|
| 408 |
|
---|
| 409 | /*************************************************************************
|
---|
| 410 | Level 2 BLAS version of RMatrixLU
|
---|
| 411 |
|
---|
| 412 | -- LAPACK routine (version 3.0) --
|
---|
| 413 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 414 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 415 | June 30, 1992
|
---|
| 416 | *************************************************************************/
|
---|
| 417 | private static void rmatrixlu2(ref double[,] a,
|
---|
| 418 | int m,
|
---|
| 419 | int n,
|
---|
| 420 | ref int[] pivots)
|
---|
| 421 | {
|
---|
| 422 | int i = 0;
|
---|
| 423 | int j = 0;
|
---|
| 424 | int jp = 0;
|
---|
| 425 | double[] t1 = new double[0];
|
---|
| 426 | double s = 0;
|
---|
| 427 | int i_ = 0;
|
---|
| 428 |
|
---|
| 429 | pivots = new int[Math.Min(m-1, n-1)+1];
|
---|
| 430 | t1 = new double[Math.Max(m-1, n-1)+1];
|
---|
| 431 | System.Diagnostics.Debug.Assert(m>=0 & n>=0, "Error in LUDecomposition: incorrect function arguments");
|
---|
| 432 |
|
---|
| 433 | //
|
---|
| 434 | // Quick return if possible
|
---|
| 435 | //
|
---|
| 436 | if( m==0 | n==0 )
|
---|
| 437 | {
|
---|
| 438 | return;
|
---|
| 439 | }
|
---|
| 440 | for(j=0; j<=Math.Min(m-1, n-1); j++)
|
---|
| 441 | {
|
---|
| 442 |
|
---|
| 443 | //
|
---|
| 444 | // Find pivot and test for singularity.
|
---|
| 445 | //
|
---|
| 446 | jp = j;
|
---|
| 447 | for(i=j+1; i<=m-1; i++)
|
---|
| 448 | {
|
---|
| 449 | if( (double)(Math.Abs(a[i,j]))>(double)(Math.Abs(a[jp,j])) )
|
---|
| 450 | {
|
---|
| 451 | jp = i;
|
---|
| 452 | }
|
---|
| 453 | }
|
---|
| 454 | pivots[j] = jp;
|
---|
| 455 | if( (double)(a[jp,j])!=(double)(0) )
|
---|
| 456 | {
|
---|
| 457 |
|
---|
| 458 | //
|
---|
| 459 | //Apply the interchange to rows
|
---|
| 460 | //
|
---|
| 461 | if( jp!=j )
|
---|
| 462 | {
|
---|
| 463 | for(i_=0; i_<=n-1;i_++)
|
---|
| 464 | {
|
---|
| 465 | t1[i_] = a[j,i_];
|
---|
| 466 | }
|
---|
| 467 | for(i_=0; i_<=n-1;i_++)
|
---|
| 468 | {
|
---|
| 469 | a[j,i_] = a[jp,i_];
|
---|
| 470 | }
|
---|
| 471 | for(i_=0; i_<=n-1;i_++)
|
---|
| 472 | {
|
---|
| 473 | a[jp,i_] = t1[i_];
|
---|
| 474 | }
|
---|
| 475 | }
|
---|
| 476 |
|
---|
| 477 | //
|
---|
| 478 | //Compute elements J+1:M of J-th column.
|
---|
| 479 | //
|
---|
| 480 | if( j<m )
|
---|
| 481 | {
|
---|
| 482 | jp = j+1;
|
---|
| 483 | s = 1/a[j,j];
|
---|
| 484 | for(i_=jp; i_<=m-1;i_++)
|
---|
| 485 | {
|
---|
| 486 | a[i_,j] = s*a[i_,j];
|
---|
| 487 | }
|
---|
| 488 | }
|
---|
| 489 | }
|
---|
| 490 | if( j<Math.Min(m, n)-1 )
|
---|
| 491 | {
|
---|
| 492 |
|
---|
| 493 | //
|
---|
| 494 | //Update trailing submatrix.
|
---|
| 495 | //
|
---|
| 496 | jp = j+1;
|
---|
| 497 | for(i=j+1; i<=m-1; i++)
|
---|
| 498 | {
|
---|
| 499 | s = a[i,j];
|
---|
| 500 | for(i_=jp; i_<=n-1;i_++)
|
---|
| 501 | {
|
---|
| 502 | a[i,i_] = a[i,i_] - s*a[j,i_];
|
---|
| 503 | }
|
---|
| 504 | }
|
---|
| 505 | }
|
---|
| 506 | }
|
---|
| 507 | }
|
---|
| 508 | }
|
---|
| 509 | }
|
---|