[2154] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
[2430] | 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
[2154] | 9 |
|
---|
[2430] | 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
[2154] | 14 |
|
---|
[2430] | 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
[2154] | 17 |
|
---|
[2430] | 18 | >>> END OF LICENSE >>>
|
---|
[2154] | 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
[2430] | 23 | namespace alglib
|
---|
[2154] | 24 | {
|
---|
[2430] | 25 | public class lq
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | LQ decomposition of a rectangular matrix of size MxN
|
---|
[2154] | 29 |
|
---|
[2430] | 30 | Input parameters:
|
---|
| 31 | A - matrix A whose indexes range within [0..M-1, 0..N-1].
|
---|
| 32 | M - number of rows in matrix A.
|
---|
| 33 | N - number of columns in matrix A.
|
---|
[2154] | 34 |
|
---|
[2430] | 35 | Output parameters:
|
---|
| 36 | A - matrices L and Q in compact form (see below)
|
---|
| 37 | Tau - array of scalar factors which are used to form
|
---|
| 38 | matrix Q. Array whose index ranges within [0..Min(M,N)-1].
|
---|
[2154] | 39 |
|
---|
[2430] | 40 | Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
|
---|
| 41 | MxM, L - lower triangular (or lower trapezoid) matrix of size M x N.
|
---|
[2154] | 42 |
|
---|
[2430] | 43 | The elements of matrix L are located on and below the main diagonal of
|
---|
| 44 | matrix A. The elements which are located in Tau array and above the main
|
---|
| 45 | diagonal of matrix A are used to form matrix Q as follows:
|
---|
[2154] | 46 |
|
---|
[2430] | 47 | Matrix Q is represented as a product of elementary reflections
|
---|
[2154] | 48 |
|
---|
[2430] | 49 | Q = H(k-1)*H(k-2)*...*H(1)*H(0),
|
---|
[2154] | 50 |
|
---|
[2430] | 51 | where k = min(m,n), and each H(i) is of the form
|
---|
[2154] | 52 |
|
---|
[2430] | 53 | H(i) = 1 - tau * v * (v^T)
|
---|
[2154] | 54 |
|
---|
[2430] | 55 | where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0,
|
---|
| 56 | v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1).
|
---|
[2154] | 57 |
|
---|
[2430] | 58 | -- ALGLIB --
|
---|
| 59 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
| 60 | *************************************************************************/
|
---|
| 61 | public static void rmatrixlq(ref double[,] a,
|
---|
| 62 | int m,
|
---|
| 63 | int n,
|
---|
| 64 | ref double[] tau)
|
---|
| 65 | {
|
---|
| 66 | double[] work = new double[0];
|
---|
| 67 | double[] t = new double[0];
|
---|
| 68 | int i = 0;
|
---|
| 69 | int k = 0;
|
---|
| 70 | int minmn = 0;
|
---|
| 71 | int maxmn = 0;
|
---|
| 72 | double tmp = 0;
|
---|
| 73 | int i_ = 0;
|
---|
| 74 | int i1_ = 0;
|
---|
[2154] | 75 |
|
---|
[2430] | 76 | minmn = Math.Min(m, n);
|
---|
| 77 | maxmn = Math.Max(m, n);
|
---|
| 78 | work = new double[m+1];
|
---|
| 79 | t = new double[n+1];
|
---|
| 80 | tau = new double[minmn-1+1];
|
---|
| 81 | k = Math.Min(m, n);
|
---|
| 82 | for(i=0; i<=k-1; i++)
|
---|
[2154] | 83 | {
|
---|
| 84 |
|
---|
| 85 | //
|
---|
[2430] | 86 | // Generate elementary reflector H(i) to annihilate A(i,i+1:n-1)
|
---|
[2154] | 87 | //
|
---|
[2430] | 88 | i1_ = (i) - (1);
|
---|
| 89 | for(i_=1; i_<=n-i;i_++)
|
---|
| 90 | {
|
---|
| 91 | t[i_] = a[i,i_+i1_];
|
---|
| 92 | }
|
---|
| 93 | reflections.generatereflection(ref t, n-i, ref tmp);
|
---|
| 94 | tau[i] = tmp;
|
---|
| 95 | i1_ = (1) - (i);
|
---|
| 96 | for(i_=i; i_<=n-1;i_++)
|
---|
| 97 | {
|
---|
| 98 | a[i,i_] = t[i_+i1_];
|
---|
| 99 | }
|
---|
| 100 | t[1] = 1;
|
---|
| 101 | if( i<n )
|
---|
| 102 | {
|
---|
| 103 |
|
---|
| 104 | //
|
---|
| 105 | // Apply H(i) to A(i+1:m,i:n) from the right
|
---|
| 106 | //
|
---|
| 107 | reflections.applyreflectionfromtheright(ref a, tau[i], ref t, i+1, m-1, i, n-1, ref work);
|
---|
| 108 | }
|
---|
[2154] | 109 | }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 |
|
---|
[2430] | 113 | /*************************************************************************
|
---|
| 114 | Partial unpacking of matrix Q from the LQ decomposition of a matrix A
|
---|
[2154] | 115 |
|
---|
[2430] | 116 | Input parameters:
|
---|
| 117 | A - matrices L and Q in compact form.
|
---|
| 118 | Output of RMatrixLQ subroutine.
|
---|
| 119 | M - number of rows in given matrix A. M>=0.
|
---|
| 120 | N - number of columns in given matrix A. N>=0.
|
---|
| 121 | Tau - scalar factors which are used to form Q.
|
---|
| 122 | Output of the RMatrixLQ subroutine.
|
---|
| 123 | QRows - required number of rows in matrix Q. N>=QRows>=0.
|
---|
[2154] | 124 |
|
---|
[2430] | 125 | Output parameters:
|
---|
| 126 | Q - first QRows rows of matrix Q. Array whose indexes range
|
---|
| 127 | within [0..QRows-1, 0..N-1]. If QRows=0, the array remains
|
---|
| 128 | unchanged.
|
---|
[2154] | 129 |
|
---|
[2430] | 130 | -- ALGLIB --
|
---|
| 131 | Copyright 2005 by Bochkanov Sergey
|
---|
| 132 | *************************************************************************/
|
---|
| 133 | public static void rmatrixlqunpackq(ref double[,] a,
|
---|
| 134 | int m,
|
---|
| 135 | int n,
|
---|
| 136 | ref double[] tau,
|
---|
| 137 | int qrows,
|
---|
| 138 | ref double[,] q)
|
---|
| 139 | {
|
---|
| 140 | int i = 0;
|
---|
| 141 | int j = 0;
|
---|
| 142 | int k = 0;
|
---|
| 143 | int minmn = 0;
|
---|
| 144 | double[] v = new double[0];
|
---|
| 145 | double[] work = new double[0];
|
---|
| 146 | int i_ = 0;
|
---|
| 147 | int i1_ = 0;
|
---|
[2154] | 148 |
|
---|
[2430] | 149 | System.Diagnostics.Debug.Assert(qrows<=n, "RMatrixLQUnpackQ: QRows>N!");
|
---|
| 150 | if( m<=0 | n<=0 | qrows<=0 )
|
---|
[2154] | 151 | {
|
---|
[2430] | 152 | return;
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | //
|
---|
| 156 | // init
|
---|
| 157 | //
|
---|
| 158 | minmn = Math.Min(m, n);
|
---|
| 159 | k = Math.Min(minmn, qrows);
|
---|
| 160 | q = new double[qrows-1+1, n-1+1];
|
---|
| 161 | v = new double[n+1];
|
---|
| 162 | work = new double[qrows+1];
|
---|
| 163 | for(i=0; i<=qrows-1; i++)
|
---|
| 164 | {
|
---|
| 165 | for(j=0; j<=n-1; j++)
|
---|
[2154] | 166 | {
|
---|
[2430] | 167 | if( i==j )
|
---|
| 168 | {
|
---|
| 169 | q[i,j] = 1;
|
---|
| 170 | }
|
---|
| 171 | else
|
---|
| 172 | {
|
---|
| 173 | q[i,j] = 0;
|
---|
| 174 | }
|
---|
[2154] | 175 | }
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | //
|
---|
[2430] | 179 | // unpack Q
|
---|
[2154] | 180 | //
|
---|
[2430] | 181 | for(i=k-1; i>=0; i--)
|
---|
[2154] | 182 | {
|
---|
[2430] | 183 |
|
---|
| 184 | //
|
---|
| 185 | // Apply H(i)
|
---|
| 186 | //
|
---|
| 187 | i1_ = (i) - (1);
|
---|
| 188 | for(i_=1; i_<=n-i;i_++)
|
---|
| 189 | {
|
---|
| 190 | v[i_] = a[i,i_+i1_];
|
---|
| 191 | }
|
---|
| 192 | v[1] = 1;
|
---|
| 193 | reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 0, qrows-1, i, n-1, ref work);
|
---|
[2154] | 194 | }
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 |
|
---|
[2430] | 198 | /*************************************************************************
|
---|
| 199 | Unpacking of matrix L from the LQ decomposition of a matrix A
|
---|
[2154] | 200 |
|
---|
[2430] | 201 | Input parameters:
|
---|
| 202 | A - matrices Q and L in compact form.
|
---|
| 203 | Output of RMatrixLQ subroutine.
|
---|
| 204 | M - number of rows in given matrix A. M>=0.
|
---|
| 205 | N - number of columns in given matrix A. N>=0.
|
---|
[2154] | 206 |
|
---|
[2430] | 207 | Output parameters:
|
---|
| 208 | L - matrix L, array[0..M-1, 0..N-1].
|
---|
[2154] | 209 |
|
---|
[2430] | 210 | -- ALGLIB --
|
---|
| 211 | Copyright 2005 by Bochkanov Sergey
|
---|
| 212 | *************************************************************************/
|
---|
| 213 | public static void rmatrixlqunpackl(ref double[,] a,
|
---|
| 214 | int m,
|
---|
| 215 | int n,
|
---|
| 216 | ref double[,] l)
|
---|
| 217 | {
|
---|
| 218 | int i = 0;
|
---|
| 219 | int k = 0;
|
---|
| 220 | int i_ = 0;
|
---|
[2154] | 221 |
|
---|
[2430] | 222 | if( m<=0 | n<=0 )
|
---|
[2154] | 223 | {
|
---|
[2430] | 224 | return;
|
---|
[2154] | 225 | }
|
---|
[2430] | 226 | l = new double[m-1+1, n-1+1];
|
---|
| 227 | for(i=0; i<=n-1; i++)
|
---|
[2154] | 228 | {
|
---|
[2430] | 229 | l[0,i] = 0;
|
---|
[2154] | 230 | }
|
---|
[2430] | 231 | for(i=1; i<=m-1; i++)
|
---|
| 232 | {
|
---|
| 233 | for(i_=0; i_<=n-1;i_++)
|
---|
| 234 | {
|
---|
| 235 | l[i,i_] = l[0,i_];
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | for(i=0; i<=m-1; i++)
|
---|
| 239 | {
|
---|
| 240 | k = Math.Min(i, n-1);
|
---|
| 241 | for(i_=0; i_<=k;i_++)
|
---|
| 242 | {
|
---|
| 243 | l[i,i_] = a[i,i_];
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
[2154] | 246 | }
|
---|
| 247 |
|
---|
| 248 |
|
---|
[2430] | 249 | /*************************************************************************
|
---|
| 250 | Obsolete 1-based subroutine
|
---|
| 251 | See RMatrixLQ for 0-based replacement.
|
---|
| 252 | *************************************************************************/
|
---|
| 253 | public static void lqdecomposition(ref double[,] a,
|
---|
| 254 | int m,
|
---|
| 255 | int n,
|
---|
| 256 | ref double[] tau)
|
---|
| 257 | {
|
---|
| 258 | double[] work = new double[0];
|
---|
| 259 | double[] t = new double[0];
|
---|
| 260 | int i = 0;
|
---|
| 261 | int k = 0;
|
---|
| 262 | int nmip1 = 0;
|
---|
| 263 | int minmn = 0;
|
---|
| 264 | int maxmn = 0;
|
---|
| 265 | double tmp = 0;
|
---|
| 266 | int i_ = 0;
|
---|
| 267 | int i1_ = 0;
|
---|
[2154] | 268 |
|
---|
[2430] | 269 | minmn = Math.Min(m, n);
|
---|
| 270 | maxmn = Math.Max(m, n);
|
---|
| 271 | work = new double[m+1];
|
---|
| 272 | t = new double[n+1];
|
---|
| 273 | tau = new double[minmn+1];
|
---|
[2154] | 274 |
|
---|
| 275 | //
|
---|
[2430] | 276 | // Test the input arguments
|
---|
[2154] | 277 | //
|
---|
[2430] | 278 | k = Math.Min(m, n);
|
---|
| 279 | for(i=1; i<=k; i++)
|
---|
[2154] | 280 | {
|
---|
| 281 |
|
---|
| 282 | //
|
---|
[2430] | 283 | // Generate elementary reflector H(i) to annihilate A(i,i+1:n)
|
---|
[2154] | 284 | //
|
---|
[2430] | 285 | nmip1 = n-i+1;
|
---|
| 286 | i1_ = (i) - (1);
|
---|
| 287 | for(i_=1; i_<=nmip1;i_++)
|
---|
| 288 | {
|
---|
| 289 | t[i_] = a[i,i_+i1_];
|
---|
| 290 | }
|
---|
| 291 | reflections.generatereflection(ref t, nmip1, ref tmp);
|
---|
| 292 | tau[i] = tmp;
|
---|
| 293 | i1_ = (1) - (i);
|
---|
| 294 | for(i_=i; i_<=n;i_++)
|
---|
| 295 | {
|
---|
| 296 | a[i,i_] = t[i_+i1_];
|
---|
| 297 | }
|
---|
| 298 | t[1] = 1;
|
---|
| 299 | if( i<n )
|
---|
| 300 | {
|
---|
| 301 |
|
---|
| 302 | //
|
---|
| 303 | // Apply H(i) to A(i+1:m,i:n) from the right
|
---|
| 304 | //
|
---|
| 305 | reflections.applyreflectionfromtheright(ref a, tau[i], ref t, i+1, m, i, n, ref work);
|
---|
| 306 | }
|
---|
[2154] | 307 | }
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 |
|
---|
[2430] | 311 | /*************************************************************************
|
---|
| 312 | Obsolete 1-based subroutine
|
---|
| 313 | See RMatrixLQUnpackQ for 0-based replacement.
|
---|
| 314 | *************************************************************************/
|
---|
| 315 | public static void unpackqfromlq(ref double[,] a,
|
---|
| 316 | int m,
|
---|
| 317 | int n,
|
---|
| 318 | ref double[] tau,
|
---|
| 319 | int qrows,
|
---|
| 320 | ref double[,] q)
|
---|
| 321 | {
|
---|
| 322 | int i = 0;
|
---|
| 323 | int j = 0;
|
---|
| 324 | int k = 0;
|
---|
| 325 | int minmn = 0;
|
---|
| 326 | double[] v = new double[0];
|
---|
| 327 | double[] work = new double[0];
|
---|
| 328 | int vm = 0;
|
---|
| 329 | int i_ = 0;
|
---|
| 330 | int i1_ = 0;
|
---|
[2154] | 331 |
|
---|
[2430] | 332 | System.Diagnostics.Debug.Assert(qrows<=n, "UnpackQFromLQ: QRows>N!");
|
---|
| 333 | if( m==0 | n==0 | qrows==0 )
|
---|
[2154] | 334 | {
|
---|
[2430] | 335 | return;
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 | //
|
---|
| 339 | // init
|
---|
| 340 | //
|
---|
| 341 | minmn = Math.Min(m, n);
|
---|
| 342 | k = Math.Min(minmn, qrows);
|
---|
| 343 | q = new double[qrows+1, n+1];
|
---|
| 344 | v = new double[n+1];
|
---|
| 345 | work = new double[qrows+1];
|
---|
| 346 | for(i=1; i<=qrows; i++)
|
---|
| 347 | {
|
---|
| 348 | for(j=1; j<=n; j++)
|
---|
[2154] | 349 | {
|
---|
[2430] | 350 | if( i==j )
|
---|
| 351 | {
|
---|
| 352 | q[i,j] = 1;
|
---|
| 353 | }
|
---|
| 354 | else
|
---|
| 355 | {
|
---|
| 356 | q[i,j] = 0;
|
---|
| 357 | }
|
---|
[2154] | 358 | }
|
---|
| 359 | }
|
---|
| 360 |
|
---|
| 361 | //
|
---|
[2430] | 362 | // unpack Q
|
---|
[2154] | 363 | //
|
---|
[2430] | 364 | for(i=k; i>=1; i--)
|
---|
[2154] | 365 | {
|
---|
[2430] | 366 |
|
---|
| 367 | //
|
---|
| 368 | // Apply H(i)
|
---|
| 369 | //
|
---|
| 370 | vm = n-i+1;
|
---|
| 371 | i1_ = (i) - (1);
|
---|
| 372 | for(i_=1; i_<=vm;i_++)
|
---|
| 373 | {
|
---|
| 374 | v[i_] = a[i,i_+i1_];
|
---|
| 375 | }
|
---|
| 376 | v[1] = 1;
|
---|
| 377 | reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 1, qrows, i, n, ref work);
|
---|
[2154] | 378 | }
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 |
|
---|
[2430] | 382 | /*************************************************************************
|
---|
| 383 | Obsolete 1-based subroutine
|
---|
| 384 | *************************************************************************/
|
---|
| 385 | public static void lqdecompositionunpacked(double[,] a,
|
---|
| 386 | int m,
|
---|
| 387 | int n,
|
---|
| 388 | ref double[,] l,
|
---|
| 389 | ref double[,] q)
|
---|
| 390 | {
|
---|
| 391 | int i = 0;
|
---|
| 392 | int j = 0;
|
---|
| 393 | double[] tau = new double[0];
|
---|
[2154] | 394 |
|
---|
[2430] | 395 | a = (double[,])a.Clone();
|
---|
[2154] | 396 |
|
---|
[2430] | 397 | if( n<=0 )
|
---|
[2154] | 398 | {
|
---|
[2430] | 399 | return;
|
---|
| 400 | }
|
---|
| 401 | q = new double[n+1, n+1];
|
---|
| 402 | l = new double[m+1, n+1];
|
---|
| 403 |
|
---|
| 404 | //
|
---|
| 405 | // LQDecomposition
|
---|
| 406 | //
|
---|
| 407 | lqdecomposition(ref a, m, n, ref tau);
|
---|
| 408 |
|
---|
| 409 | //
|
---|
| 410 | // L
|
---|
| 411 | //
|
---|
| 412 | for(i=1; i<=m; i++)
|
---|
| 413 | {
|
---|
| 414 | for(j=1; j<=n; j++)
|
---|
[2154] | 415 | {
|
---|
[2430] | 416 | if( j>i )
|
---|
| 417 | {
|
---|
| 418 | l[i,j] = 0;
|
---|
| 419 | }
|
---|
| 420 | else
|
---|
| 421 | {
|
---|
| 422 | l[i,j] = a[i,j];
|
---|
| 423 | }
|
---|
[2154] | 424 | }
|
---|
| 425 | }
|
---|
[2430] | 426 |
|
---|
| 427 | //
|
---|
| 428 | // Q
|
---|
| 429 | //
|
---|
| 430 | unpackqfromlq(ref a, m, n, ref tau, n, ref q);
|
---|
[2154] | 431 | }
|
---|
| 432 | }
|
---|
| 433 | }
|
---|