1 | /*************************************************************************
|
---|
2 | Copyright (c) 2008, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class logit
|
---|
26 | {
|
---|
27 | public struct logitmodel
|
---|
28 | {
|
---|
29 | public double[] w;
|
---|
30 | };
|
---|
31 |
|
---|
32 |
|
---|
33 | public struct logitmcstate
|
---|
34 | {
|
---|
35 | public bool brackt;
|
---|
36 | public bool stage1;
|
---|
37 | public int infoc;
|
---|
38 | public double dg;
|
---|
39 | public double dgm;
|
---|
40 | public double dginit;
|
---|
41 | public double dgtest;
|
---|
42 | public double dgx;
|
---|
43 | public double dgxm;
|
---|
44 | public double dgy;
|
---|
45 | public double dgym;
|
---|
46 | public double finit;
|
---|
47 | public double ftest1;
|
---|
48 | public double fm;
|
---|
49 | public double fx;
|
---|
50 | public double fxm;
|
---|
51 | public double fy;
|
---|
52 | public double fym;
|
---|
53 | public double stx;
|
---|
54 | public double sty;
|
---|
55 | public double stmin;
|
---|
56 | public double stmax;
|
---|
57 | public double width;
|
---|
58 | public double width1;
|
---|
59 | public double xtrapf;
|
---|
60 | };
|
---|
61 |
|
---|
62 |
|
---|
63 | /*************************************************************************
|
---|
64 | MNLReport structure contains information about training process:
|
---|
65 | * NGrad - number of gradient calculations
|
---|
66 | * NHess - number of Hessian calculations
|
---|
67 | *************************************************************************/
|
---|
68 | public struct mnlreport
|
---|
69 | {
|
---|
70 | public int ngrad;
|
---|
71 | public int nhess;
|
---|
72 | };
|
---|
73 |
|
---|
74 |
|
---|
75 |
|
---|
76 |
|
---|
77 | public const double xtol = 100*AP.Math.MachineEpsilon;
|
---|
78 | public const double ftol = 0.0001;
|
---|
79 | public const double gtol = 0.3;
|
---|
80 | public const int maxfev = 20;
|
---|
81 | public const double stpmin = 1.0E-2;
|
---|
82 | public const double stpmax = 1.0E5;
|
---|
83 | public const int logitvnum = 6;
|
---|
84 |
|
---|
85 |
|
---|
86 | /*************************************************************************
|
---|
87 | This subroutine trains logit model.
|
---|
88 |
|
---|
89 | INPUT PARAMETERS:
|
---|
90 | XY - training set, array[0..NPoints-1,0..NVars]
|
---|
91 | First NVars columns store values of independent
|
---|
92 | variables, next column stores number of class (from 0
|
---|
93 | to NClasses-1) which dataset element belongs to. Fractional
|
---|
94 | values are rounded to nearest integer.
|
---|
95 | NPoints - training set size, NPoints>=1
|
---|
96 | NVars - number of independent variables, NVars>=1
|
---|
97 | NClasses - number of classes, NClasses>=2
|
---|
98 |
|
---|
99 | OUTPUT PARAMETERS:
|
---|
100 | Info - return code:
|
---|
101 | * -2, if there is a point with class number
|
---|
102 | outside of [0..NClasses-1].
|
---|
103 | * -1, if incorrect parameters was passed
|
---|
104 | (NPoints<NVars+2, NVars<1, NClasses<2).
|
---|
105 | * 1, if task has been solved
|
---|
106 | LM - model built
|
---|
107 | Rep - training report
|
---|
108 |
|
---|
109 | -- ALGLIB --
|
---|
110 | Copyright 10.09.2008 by Bochkanov Sergey
|
---|
111 | *************************************************************************/
|
---|
112 | public static void mnltrainh(ref double[,] xy,
|
---|
113 | int npoints,
|
---|
114 | int nvars,
|
---|
115 | int nclasses,
|
---|
116 | ref int info,
|
---|
117 | ref logitmodel lm,
|
---|
118 | ref mnlreport rep)
|
---|
119 | {
|
---|
120 | int i = 0;
|
---|
121 | int j = 0;
|
---|
122 | int k = 0;
|
---|
123 | int m = 0;
|
---|
124 | int n = 0;
|
---|
125 | int ssize = 0;
|
---|
126 | bool allsame = new bool();
|
---|
127 | int offs = 0;
|
---|
128 | double threshold = 0;
|
---|
129 | double wminstep = 0;
|
---|
130 | double decay = 0;
|
---|
131 | int wdim = 0;
|
---|
132 | int expoffs = 0;
|
---|
133 | double v = 0;
|
---|
134 | double s = 0;
|
---|
135 | mlpbase.multilayerperceptron network = new mlpbase.multilayerperceptron();
|
---|
136 | int nin = 0;
|
---|
137 | int nout = 0;
|
---|
138 | int wcount = 0;
|
---|
139 | double e = 0;
|
---|
140 | double[] g = new double[0];
|
---|
141 | double[,] h = new double[0,0];
|
---|
142 | bool spd = new bool();
|
---|
143 | int cvcnt = 0;
|
---|
144 | double[] x = new double[0];
|
---|
145 | double[] y = new double[0];
|
---|
146 | double[] wbase = new double[0];
|
---|
147 | double wstep = 0;
|
---|
148 | double[] wdir = new double[0];
|
---|
149 | double[] work = new double[0];
|
---|
150 | int mcstage = 0;
|
---|
151 | logitmcstate mcstate = new logitmcstate();
|
---|
152 | int mcinfo = 0;
|
---|
153 | int mcnfev = 0;
|
---|
154 | int i_ = 0;
|
---|
155 | int i1_ = 0;
|
---|
156 |
|
---|
157 | threshold = 1000*AP.Math.MachineEpsilon;
|
---|
158 | wminstep = 0.001;
|
---|
159 | decay = 0.001;
|
---|
160 |
|
---|
161 | //
|
---|
162 | // Test for inputs
|
---|
163 | //
|
---|
164 | if( npoints<nvars+2 | nvars<1 | nclasses<2 )
|
---|
165 | {
|
---|
166 | info = -1;
|
---|
167 | return;
|
---|
168 | }
|
---|
169 | for(i=0; i<=npoints-1; i++)
|
---|
170 | {
|
---|
171 | if( (int)Math.Round(xy[i,nvars])<0 | (int)Math.Round(xy[i,nvars])>=nclasses )
|
---|
172 | {
|
---|
173 | info = -2;
|
---|
174 | return;
|
---|
175 | }
|
---|
176 | }
|
---|
177 | info = 1;
|
---|
178 |
|
---|
179 | //
|
---|
180 | // Initialize data
|
---|
181 | //
|
---|
182 | rep.ngrad = 0;
|
---|
183 | rep.nhess = 0;
|
---|
184 |
|
---|
185 | //
|
---|
186 | // Allocate array
|
---|
187 | //
|
---|
188 | wdim = (nvars+1)*(nclasses-1);
|
---|
189 | offs = 5;
|
---|
190 | expoffs = offs+wdim;
|
---|
191 | ssize = 5+(nvars+1)*(nclasses-1)+nclasses;
|
---|
192 | lm.w = new double[ssize-1+1];
|
---|
193 | lm.w[0] = ssize;
|
---|
194 | lm.w[1] = logitvnum;
|
---|
195 | lm.w[2] = nvars;
|
---|
196 | lm.w[3] = nclasses;
|
---|
197 | lm.w[4] = offs;
|
---|
198 |
|
---|
199 | //
|
---|
200 | // Degenerate case: all outputs are equal
|
---|
201 | //
|
---|
202 | allsame = true;
|
---|
203 | for(i=1; i<=npoints-1; i++)
|
---|
204 | {
|
---|
205 | if( (int)Math.Round(xy[i,nvars])!=(int)Math.Round(xy[i-1,nvars]) )
|
---|
206 | {
|
---|
207 | allsame = false;
|
---|
208 | }
|
---|
209 | }
|
---|
210 | if( allsame )
|
---|
211 | {
|
---|
212 | for(i=0; i<=(nvars+1)*(nclasses-1)-1; i++)
|
---|
213 | {
|
---|
214 | lm.w[offs+i] = 0;
|
---|
215 | }
|
---|
216 | v = -(2*Math.Log(AP.Math.MinRealNumber));
|
---|
217 | k = (int)Math.Round(xy[0,nvars]);
|
---|
218 | if( k==nclasses-1 )
|
---|
219 | {
|
---|
220 | for(i=0; i<=nclasses-2; i++)
|
---|
221 | {
|
---|
222 | lm.w[offs+i*(nvars+1)+nvars] = -v;
|
---|
223 | }
|
---|
224 | }
|
---|
225 | else
|
---|
226 | {
|
---|
227 | for(i=0; i<=nclasses-2; i++)
|
---|
228 | {
|
---|
229 | if( i==k )
|
---|
230 | {
|
---|
231 | lm.w[offs+i*(nvars+1)+nvars] = +v;
|
---|
232 | }
|
---|
233 | else
|
---|
234 | {
|
---|
235 | lm.w[offs+i*(nvars+1)+nvars] = 0;
|
---|
236 | }
|
---|
237 | }
|
---|
238 | }
|
---|
239 | return;
|
---|
240 | }
|
---|
241 |
|
---|
242 | //
|
---|
243 | // General case.
|
---|
244 | // Prepare task and network. Allocate space.
|
---|
245 | //
|
---|
246 | mlpbase.mlpcreatec0(nvars, nclasses, ref network);
|
---|
247 | mlpbase.mlpinitpreprocessor(ref network, ref xy, npoints);
|
---|
248 | mlpbase.mlpproperties(ref network, ref nin, ref nout, ref wcount);
|
---|
249 | for(i=0; i<=wcount-1; i++)
|
---|
250 | {
|
---|
251 | network.weights[i] = (2*AP.Math.RandomReal()-1)/nvars;
|
---|
252 | }
|
---|
253 | g = new double[wcount-1+1];
|
---|
254 | h = new double[wcount-1+1, wcount-1+1];
|
---|
255 | wbase = new double[wcount-1+1];
|
---|
256 | wdir = new double[wcount-1+1];
|
---|
257 | work = new double[wcount-1+1];
|
---|
258 |
|
---|
259 | //
|
---|
260 | // First stage: optimize in gradient direction.
|
---|
261 | //
|
---|
262 | for(k=0; k<=wcount/3+10; k++)
|
---|
263 | {
|
---|
264 |
|
---|
265 | //
|
---|
266 | // Calculate gradient in starting point
|
---|
267 | //
|
---|
268 | mlpbase.mlpgradnbatch(ref network, ref xy, npoints, ref e, ref g);
|
---|
269 | v = 0.0;
|
---|
270 | for(i_=0; i_<=wcount-1;i_++)
|
---|
271 | {
|
---|
272 | v += network.weights[i_]*network.weights[i_];
|
---|
273 | }
|
---|
274 | e = e+0.5*decay*v;
|
---|
275 | for(i_=0; i_<=wcount-1;i_++)
|
---|
276 | {
|
---|
277 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
278 | }
|
---|
279 | rep.ngrad = rep.ngrad+1;
|
---|
280 |
|
---|
281 | //
|
---|
282 | // Setup optimization scheme
|
---|
283 | //
|
---|
284 | for(i_=0; i_<=wcount-1;i_++)
|
---|
285 | {
|
---|
286 | wdir[i_] = -g[i_];
|
---|
287 | }
|
---|
288 | v = 0.0;
|
---|
289 | for(i_=0; i_<=wcount-1;i_++)
|
---|
290 | {
|
---|
291 | v += wdir[i_]*wdir[i_];
|
---|
292 | }
|
---|
293 | wstep = Math.Sqrt(v);
|
---|
294 | v = 1/Math.Sqrt(v);
|
---|
295 | for(i_=0; i_<=wcount-1;i_++)
|
---|
296 | {
|
---|
297 | wdir[i_] = v*wdir[i_];
|
---|
298 | }
|
---|
299 | mcstage = 0;
|
---|
300 | mnlmcsrch(wcount, ref network.weights, ref e, ref g, ref wdir, ref wstep, ref mcinfo, ref mcnfev, ref work, ref mcstate, ref mcstage);
|
---|
301 | while( mcstage!=0 )
|
---|
302 | {
|
---|
303 | mlpbase.mlpgradnbatch(ref network, ref xy, npoints, ref e, ref g);
|
---|
304 | v = 0.0;
|
---|
305 | for(i_=0; i_<=wcount-1;i_++)
|
---|
306 | {
|
---|
307 | v += network.weights[i_]*network.weights[i_];
|
---|
308 | }
|
---|
309 | e = e+0.5*decay*v;
|
---|
310 | for(i_=0; i_<=wcount-1;i_++)
|
---|
311 | {
|
---|
312 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
313 | }
|
---|
314 | rep.ngrad = rep.ngrad+1;
|
---|
315 | mnlmcsrch(wcount, ref network.weights, ref e, ref g, ref wdir, ref wstep, ref mcinfo, ref mcnfev, ref work, ref mcstate, ref mcstage);
|
---|
316 | }
|
---|
317 | }
|
---|
318 |
|
---|
319 | //
|
---|
320 | // Second stage: use Hessian when we are close to the minimum
|
---|
321 | //
|
---|
322 | while( true )
|
---|
323 | {
|
---|
324 |
|
---|
325 | //
|
---|
326 | // Calculate and update E/G/H
|
---|
327 | //
|
---|
328 | mlpbase.mlphessiannbatch(ref network, ref xy, npoints, ref e, ref g, ref h);
|
---|
329 | v = 0.0;
|
---|
330 | for(i_=0; i_<=wcount-1;i_++)
|
---|
331 | {
|
---|
332 | v += network.weights[i_]*network.weights[i_];
|
---|
333 | }
|
---|
334 | e = e+0.5*decay*v;
|
---|
335 | for(i_=0; i_<=wcount-1;i_++)
|
---|
336 | {
|
---|
337 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
338 | }
|
---|
339 | for(k=0; k<=wcount-1; k++)
|
---|
340 | {
|
---|
341 | h[k,k] = h[k,k]+decay;
|
---|
342 | }
|
---|
343 | rep.nhess = rep.nhess+1;
|
---|
344 |
|
---|
345 | //
|
---|
346 | // Select step direction
|
---|
347 | // NOTE: it is important to use lower-triangle Cholesky
|
---|
348 | // factorization since it is much faster than higher-triangle version.
|
---|
349 | //
|
---|
350 | spd = cholesky.spdmatrixcholesky(ref h, wcount, false);
|
---|
351 | if( spd )
|
---|
352 | {
|
---|
353 | spd = spdsolve.spdmatrixcholeskysolve(ref h, g, wcount, false, ref wdir);
|
---|
354 | }
|
---|
355 | if( spd )
|
---|
356 | {
|
---|
357 |
|
---|
358 | //
|
---|
359 | // H is positive definite.
|
---|
360 | // Step in Newton direction.
|
---|
361 | //
|
---|
362 | for(i_=0; i_<=wcount-1;i_++)
|
---|
363 | {
|
---|
364 | wdir[i_] = -1*wdir[i_];
|
---|
365 | }
|
---|
366 | spd = true;
|
---|
367 | }
|
---|
368 | else
|
---|
369 | {
|
---|
370 |
|
---|
371 | //
|
---|
372 | // H is indefinite.
|
---|
373 | // Step in gradient direction.
|
---|
374 | //
|
---|
375 | for(i_=0; i_<=wcount-1;i_++)
|
---|
376 | {
|
---|
377 | wdir[i_] = -g[i_];
|
---|
378 | }
|
---|
379 | spd = false;
|
---|
380 | }
|
---|
381 |
|
---|
382 | //
|
---|
383 | // Optimize in WDir direction
|
---|
384 | //
|
---|
385 | v = 0.0;
|
---|
386 | for(i_=0; i_<=wcount-1;i_++)
|
---|
387 | {
|
---|
388 | v += wdir[i_]*wdir[i_];
|
---|
389 | }
|
---|
390 | wstep = Math.Sqrt(v);
|
---|
391 | v = 1/Math.Sqrt(v);
|
---|
392 | for(i_=0; i_<=wcount-1;i_++)
|
---|
393 | {
|
---|
394 | wdir[i_] = v*wdir[i_];
|
---|
395 | }
|
---|
396 | mcstage = 0;
|
---|
397 | mnlmcsrch(wcount, ref network.weights, ref e, ref g, ref wdir, ref wstep, ref mcinfo, ref mcnfev, ref work, ref mcstate, ref mcstage);
|
---|
398 | while( mcstage!=0 )
|
---|
399 | {
|
---|
400 | mlpbase.mlpgradnbatch(ref network, ref xy, npoints, ref e, ref g);
|
---|
401 | v = 0.0;
|
---|
402 | for(i_=0; i_<=wcount-1;i_++)
|
---|
403 | {
|
---|
404 | v += network.weights[i_]*network.weights[i_];
|
---|
405 | }
|
---|
406 | e = e+0.5*decay*v;
|
---|
407 | for(i_=0; i_<=wcount-1;i_++)
|
---|
408 | {
|
---|
409 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
410 | }
|
---|
411 | rep.ngrad = rep.ngrad+1;
|
---|
412 | mnlmcsrch(wcount, ref network.weights, ref e, ref g, ref wdir, ref wstep, ref mcinfo, ref mcnfev, ref work, ref mcstate, ref mcstage);
|
---|
413 | }
|
---|
414 | if( spd & (mcinfo==2 | mcinfo==4 | mcinfo==6) )
|
---|
415 | {
|
---|
416 | break;
|
---|
417 | }
|
---|
418 | }
|
---|
419 |
|
---|
420 | //
|
---|
421 | // Convert from NN format to MNL format
|
---|
422 | //
|
---|
423 | i1_ = (0) - (offs);
|
---|
424 | for(i_=offs; i_<=offs+wcount-1;i_++)
|
---|
425 | {
|
---|
426 | lm.w[i_] = network.weights[i_+i1_];
|
---|
427 | }
|
---|
428 | for(k=0; k<=nvars-1; k++)
|
---|
429 | {
|
---|
430 | for(i=0; i<=nclasses-2; i++)
|
---|
431 | {
|
---|
432 | s = network.columnsigmas[k];
|
---|
433 | if( (double)(s)==(double)(0) )
|
---|
434 | {
|
---|
435 | s = 1;
|
---|
436 | }
|
---|
437 | j = offs+(nvars+1)*i;
|
---|
438 | v = lm.w[j+k];
|
---|
439 | lm.w[j+k] = v/s;
|
---|
440 | lm.w[j+nvars] = lm.w[j+nvars]+v*network.columnmeans[k]/s;
|
---|
441 | }
|
---|
442 | }
|
---|
443 | for(k=0; k<=nclasses-2; k++)
|
---|
444 | {
|
---|
445 | lm.w[offs+(nvars+1)*k+nvars] = -lm.w[offs+(nvars+1)*k+nvars];
|
---|
446 | }
|
---|
447 | }
|
---|
448 |
|
---|
449 |
|
---|
450 | /*************************************************************************
|
---|
451 | Procesing
|
---|
452 |
|
---|
453 | INPUT PARAMETERS:
|
---|
454 | LM - logit model, passed by non-constant reference
|
---|
455 | (some fields of structure are used as temporaries
|
---|
456 | when calculating model output).
|
---|
457 | X - input vector, array[0..NVars-1].
|
---|
458 |
|
---|
459 | OUTPUT PARAMETERS:
|
---|
460 | Y - result, array[0..NClasses-1]
|
---|
461 | Vector of posterior probabilities for classification task.
|
---|
462 | Subroutine does not allocate memory for this vector, it is
|
---|
463 | responsibility of a caller to allocate it. Array must be
|
---|
464 | at least [0..NClasses-1].
|
---|
465 |
|
---|
466 | -- ALGLIB --
|
---|
467 | Copyright 10.09.2008 by Bochkanov Sergey
|
---|
468 | *************************************************************************/
|
---|
469 | public static void mnlprocess(ref logitmodel lm,
|
---|
470 | ref double[] x,
|
---|
471 | ref double[] y)
|
---|
472 | {
|
---|
473 | int nvars = 0;
|
---|
474 | int nclasses = 0;
|
---|
475 | int offs = 0;
|
---|
476 | int i = 0;
|
---|
477 | int i1 = 0;
|
---|
478 | double v = 0;
|
---|
479 | double mx = 0;
|
---|
480 | double s = 0;
|
---|
481 |
|
---|
482 | System.Diagnostics.Debug.Assert((double)(lm.w[1])==(double)(logitvnum), "MNLProcess: unexpected model version");
|
---|
483 | nvars = (int)Math.Round(lm.w[2]);
|
---|
484 | nclasses = (int)Math.Round(lm.w[3]);
|
---|
485 | offs = (int)Math.Round(lm.w[4]);
|
---|
486 | mnliexp(ref lm.w, ref x);
|
---|
487 | s = 0;
|
---|
488 | i1 = offs+(nvars+1)*(nclasses-1);
|
---|
489 | for(i=i1; i<=i1+nclasses-1; i++)
|
---|
490 | {
|
---|
491 | s = s+lm.w[i];
|
---|
492 | }
|
---|
493 | for(i=0; i<=nclasses-1; i++)
|
---|
494 | {
|
---|
495 | y[i] = lm.w[i1+i]/s;
|
---|
496 | }
|
---|
497 | }
|
---|
498 |
|
---|
499 |
|
---|
500 | /*************************************************************************
|
---|
501 | Unpacks coefficients of logit model. Logit model have form:
|
---|
502 |
|
---|
503 | P(class=i) = S(i) / (S(0) + S(1) + ... +S(M-1))
|
---|
504 | S(i) = Exp(A[i,0]*X[0] + ... + A[i,N-1]*X[N-1] + A[i,N]), when i<M-1
|
---|
505 | S(M-1) = 1
|
---|
506 |
|
---|
507 | INPUT PARAMETERS:
|
---|
508 | LM - logit model in ALGLIB format
|
---|
509 |
|
---|
510 | OUTPUT PARAMETERS:
|
---|
511 | V - coefficients, array[0..NClasses-2,0..NVars]
|
---|
512 | NVars - number of independent variables
|
---|
513 | NClasses - number of classes
|
---|
514 |
|
---|
515 | -- ALGLIB --
|
---|
516 | Copyright 10.09.2008 by Bochkanov Sergey
|
---|
517 | *************************************************************************/
|
---|
518 | public static void mnlunpack(ref logitmodel lm,
|
---|
519 | ref double[,] a,
|
---|
520 | ref int nvars,
|
---|
521 | ref int nclasses)
|
---|
522 | {
|
---|
523 | int offs = 0;
|
---|
524 | int i = 0;
|
---|
525 | int i_ = 0;
|
---|
526 | int i1_ = 0;
|
---|
527 |
|
---|
528 | System.Diagnostics.Debug.Assert((double)(lm.w[1])==(double)(logitvnum), "MNLUnpack: unexpected model version");
|
---|
529 | nvars = (int)Math.Round(lm.w[2]);
|
---|
530 | nclasses = (int)Math.Round(lm.w[3]);
|
---|
531 | offs = (int)Math.Round(lm.w[4]);
|
---|
532 | a = new double[nclasses-2+1, nvars+1];
|
---|
533 | for(i=0; i<=nclasses-2; i++)
|
---|
534 | {
|
---|
535 | i1_ = (offs+i*(nvars+1)) - (0);
|
---|
536 | for(i_=0; i_<=nvars;i_++)
|
---|
537 | {
|
---|
538 | a[i,i_] = lm.w[i_+i1_];
|
---|
539 | }
|
---|
540 | }
|
---|
541 | }
|
---|
542 |
|
---|
543 |
|
---|
544 | /*************************************************************************
|
---|
545 | "Packs" coefficients and creates logit model in ALGLIB format (MNLUnpack
|
---|
546 | reversed).
|
---|
547 |
|
---|
548 | INPUT PARAMETERS:
|
---|
549 | A - model (see MNLUnpack)
|
---|
550 | NVars - number of independent variables
|
---|
551 | NClasses - number of classes
|
---|
552 |
|
---|
553 | OUTPUT PARAMETERS:
|
---|
554 | LM - logit model.
|
---|
555 |
|
---|
556 | -- ALGLIB --
|
---|
557 | Copyright 10.09.2008 by Bochkanov Sergey
|
---|
558 | *************************************************************************/
|
---|
559 | public static void mnlpack(ref double[,] a,
|
---|
560 | int nvars,
|
---|
561 | int nclasses,
|
---|
562 | ref logitmodel lm)
|
---|
563 | {
|
---|
564 | int offs = 0;
|
---|
565 | int i = 0;
|
---|
566 | int wdim = 0;
|
---|
567 | int ssize = 0;
|
---|
568 | int i_ = 0;
|
---|
569 | int i1_ = 0;
|
---|
570 |
|
---|
571 | wdim = (nvars+1)*(nclasses-1);
|
---|
572 | offs = 5;
|
---|
573 | ssize = 5+(nvars+1)*(nclasses-1)+nclasses;
|
---|
574 | lm.w = new double[ssize-1+1];
|
---|
575 | lm.w[0] = ssize;
|
---|
576 | lm.w[1] = logitvnum;
|
---|
577 | lm.w[2] = nvars;
|
---|
578 | lm.w[3] = nclasses;
|
---|
579 | lm.w[4] = offs;
|
---|
580 | for(i=0; i<=nclasses-2; i++)
|
---|
581 | {
|
---|
582 | i1_ = (0) - (offs+i*(nvars+1));
|
---|
583 | for(i_=offs+i*(nvars+1); i_<=offs+i*(nvars+1)+nvars;i_++)
|
---|
584 | {
|
---|
585 | lm.w[i_] = a[i,i_+i1_];
|
---|
586 | }
|
---|
587 | }
|
---|
588 | }
|
---|
589 |
|
---|
590 |
|
---|
591 | /*************************************************************************
|
---|
592 | Copying of LogitModel strucure
|
---|
593 |
|
---|
594 | INPUT PARAMETERS:
|
---|
595 | LM1 - original
|
---|
596 |
|
---|
597 | OUTPUT PARAMETERS:
|
---|
598 | LM2 - copy
|
---|
599 |
|
---|
600 | -- ALGLIB --
|
---|
601 | Copyright 15.03.2009 by Bochkanov Sergey
|
---|
602 | *************************************************************************/
|
---|
603 | public static void mnlcopy(ref logitmodel lm1,
|
---|
604 | ref logitmodel lm2)
|
---|
605 | {
|
---|
606 | int k = 0;
|
---|
607 | int i_ = 0;
|
---|
608 |
|
---|
609 | k = (int)Math.Round(lm1.w[0]);
|
---|
610 | lm2.w = new double[k-1+1];
|
---|
611 | for(i_=0; i_<=k-1;i_++)
|
---|
612 | {
|
---|
613 | lm2.w[i_] = lm1.w[i_];
|
---|
614 | }
|
---|
615 | }
|
---|
616 |
|
---|
617 |
|
---|
618 | /*************************************************************************
|
---|
619 | Serialization of LogitModel strucure
|
---|
620 |
|
---|
621 | INPUT PARAMETERS:
|
---|
622 | LM - original
|
---|
623 |
|
---|
624 | OUTPUT PARAMETERS:
|
---|
625 | RA - array of real numbers which stores model,
|
---|
626 | array[0..RLen-1]
|
---|
627 | RLen - RA lenght
|
---|
628 |
|
---|
629 | -- ALGLIB --
|
---|
630 | Copyright 15.03.2009 by Bochkanov Sergey
|
---|
631 | *************************************************************************/
|
---|
632 | public static void mnlserialize(ref logitmodel lm,
|
---|
633 | ref double[] ra,
|
---|
634 | ref int rlen)
|
---|
635 | {
|
---|
636 | int i_ = 0;
|
---|
637 | int i1_ = 0;
|
---|
638 |
|
---|
639 | rlen = (int)Math.Round(lm.w[0])+1;
|
---|
640 | ra = new double[rlen-1+1];
|
---|
641 | ra[0] = logitvnum;
|
---|
642 | i1_ = (0) - (1);
|
---|
643 | for(i_=1; i_<=rlen-1;i_++)
|
---|
644 | {
|
---|
645 | ra[i_] = lm.w[i_+i1_];
|
---|
646 | }
|
---|
647 | }
|
---|
648 |
|
---|
649 |
|
---|
650 | /*************************************************************************
|
---|
651 | Unserialization of LogitModel strucure
|
---|
652 |
|
---|
653 | INPUT PARAMETERS:
|
---|
654 | RA - real array which stores model
|
---|
655 |
|
---|
656 | OUTPUT PARAMETERS:
|
---|
657 | LM - restored model
|
---|
658 |
|
---|
659 | -- ALGLIB --
|
---|
660 | Copyright 15.03.2009 by Bochkanov Sergey
|
---|
661 | *************************************************************************/
|
---|
662 | public static void mnlunserialize(ref double[] ra,
|
---|
663 | ref logitmodel lm)
|
---|
664 | {
|
---|
665 | int i_ = 0;
|
---|
666 | int i1_ = 0;
|
---|
667 |
|
---|
668 | System.Diagnostics.Debug.Assert((int)Math.Round(ra[0])==logitvnum, "MNLUnserialize: incorrect array!");
|
---|
669 | lm.w = new double[(int)Math.Round(ra[1])-1+1];
|
---|
670 | i1_ = (1) - (0);
|
---|
671 | for(i_=0; i_<=(int)Math.Round(ra[1])-1;i_++)
|
---|
672 | {
|
---|
673 | lm.w[i_] = ra[i_+i1_];
|
---|
674 | }
|
---|
675 | }
|
---|
676 |
|
---|
677 |
|
---|
678 | /*************************************************************************
|
---|
679 | Average cross-entropy (in bits per element) on the test set
|
---|
680 |
|
---|
681 | INPUT PARAMETERS:
|
---|
682 | LM - logit model
|
---|
683 | XY - test set
|
---|
684 | NPoints - test set size
|
---|
685 |
|
---|
686 | RESULT:
|
---|
687 | CrossEntropy/(NPoints*ln(2)).
|
---|
688 |
|
---|
689 | -- ALGLIB --
|
---|
690 | Copyright 10.09.2008 by Bochkanov Sergey
|
---|
691 | *************************************************************************/
|
---|
692 | public static double mnlavgce(ref logitmodel lm,
|
---|
693 | ref double[,] xy,
|
---|
694 | int npoints)
|
---|
695 | {
|
---|
696 | double result = 0;
|
---|
697 | int nvars = 0;
|
---|
698 | int nclasses = 0;
|
---|
699 | int i = 0;
|
---|
700 | int j = 0;
|
---|
701 | double[] workx = new double[0];
|
---|
702 | double[] worky = new double[0];
|
---|
703 | int nmax = 0;
|
---|
704 | int i_ = 0;
|
---|
705 |
|
---|
706 | System.Diagnostics.Debug.Assert((double)(lm.w[1])==(double)(logitvnum), "MNLClsError: unexpected model version");
|
---|
707 | nvars = (int)Math.Round(lm.w[2]);
|
---|
708 | nclasses = (int)Math.Round(lm.w[3]);
|
---|
709 | workx = new double[nvars-1+1];
|
---|
710 | worky = new double[nclasses-1+1];
|
---|
711 | result = 0;
|
---|
712 | for(i=0; i<=npoints-1; i++)
|
---|
713 | {
|
---|
714 | System.Diagnostics.Debug.Assert((int)Math.Round(xy[i,nvars])>=0 & (int)Math.Round(xy[i,nvars])<nclasses, "MNLAvgCE: incorrect class number!");
|
---|
715 |
|
---|
716 | //
|
---|
717 | // Process
|
---|
718 | //
|
---|
719 | for(i_=0; i_<=nvars-1;i_++)
|
---|
720 | {
|
---|
721 | workx[i_] = xy[i,i_];
|
---|
722 | }
|
---|
723 | mnlprocess(ref lm, ref workx, ref worky);
|
---|
724 | if( (double)(worky[(int)Math.Round(xy[i,nvars])])>(double)(0) )
|
---|
725 | {
|
---|
726 | result = result-Math.Log(worky[(int)Math.Round(xy[i,nvars])]);
|
---|
727 | }
|
---|
728 | else
|
---|
729 | {
|
---|
730 | result = result-Math.Log(AP.Math.MinRealNumber);
|
---|
731 | }
|
---|
732 | }
|
---|
733 | result = result/(npoints*Math.Log(2));
|
---|
734 | return result;
|
---|
735 | }
|
---|
736 |
|
---|
737 |
|
---|
738 | /*************************************************************************
|
---|
739 | Relative classification error on the test set
|
---|
740 |
|
---|
741 | INPUT PARAMETERS:
|
---|
742 | LM - logit model
|
---|
743 | XY - test set
|
---|
744 | NPoints - test set size
|
---|
745 |
|
---|
746 | RESULT:
|
---|
747 | percent of incorrectly classified cases.
|
---|
748 |
|
---|
749 | -- ALGLIB --
|
---|
750 | Copyright 10.09.2008 by Bochkanov Sergey
|
---|
751 | *************************************************************************/
|
---|
752 | public static double mnlrelclserror(ref logitmodel lm,
|
---|
753 | ref double[,] xy,
|
---|
754 | int npoints)
|
---|
755 | {
|
---|
756 | double result = 0;
|
---|
757 |
|
---|
758 | result = (double)(mnlclserror(ref lm, ref xy, npoints))/(double)(npoints);
|
---|
759 | return result;
|
---|
760 | }
|
---|
761 |
|
---|
762 |
|
---|
763 | /*************************************************************************
|
---|
764 | RMS error on the test set
|
---|
765 |
|
---|
766 | INPUT PARAMETERS:
|
---|
767 | LM - logit model
|
---|
768 | XY - test set
|
---|
769 | NPoints - test set size
|
---|
770 |
|
---|
771 | RESULT:
|
---|
772 | root mean square error (error when estimating posterior probabilities).
|
---|
773 |
|
---|
774 | -- ALGLIB --
|
---|
775 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
776 | *************************************************************************/
|
---|
777 | public static double mnlrmserror(ref logitmodel lm,
|
---|
778 | ref double[,] xy,
|
---|
779 | int npoints)
|
---|
780 | {
|
---|
781 | double result = 0;
|
---|
782 | double relcls = 0;
|
---|
783 | double avgce = 0;
|
---|
784 | double rms = 0;
|
---|
785 | double avg = 0;
|
---|
786 | double avgrel = 0;
|
---|
787 |
|
---|
788 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==logitvnum, "MNLRMSError: Incorrect MNL version!");
|
---|
789 | mnlallerrors(ref lm, ref xy, npoints, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
790 | result = rms;
|
---|
791 | return result;
|
---|
792 | }
|
---|
793 |
|
---|
794 |
|
---|
795 | /*************************************************************************
|
---|
796 | Average error on the test set
|
---|
797 |
|
---|
798 | INPUT PARAMETERS:
|
---|
799 | LM - logit model
|
---|
800 | XY - test set
|
---|
801 | NPoints - test set size
|
---|
802 |
|
---|
803 | RESULT:
|
---|
804 | average error (error when estimating posterior probabilities).
|
---|
805 |
|
---|
806 | -- ALGLIB --
|
---|
807 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
808 | *************************************************************************/
|
---|
809 | public static double mnlavgerror(ref logitmodel lm,
|
---|
810 | ref double[,] xy,
|
---|
811 | int npoints)
|
---|
812 | {
|
---|
813 | double result = 0;
|
---|
814 | double relcls = 0;
|
---|
815 | double avgce = 0;
|
---|
816 | double rms = 0;
|
---|
817 | double avg = 0;
|
---|
818 | double avgrel = 0;
|
---|
819 |
|
---|
820 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==logitvnum, "MNLRMSError: Incorrect MNL version!");
|
---|
821 | mnlallerrors(ref lm, ref xy, npoints, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
822 | result = avg;
|
---|
823 | return result;
|
---|
824 | }
|
---|
825 |
|
---|
826 |
|
---|
827 | /*************************************************************************
|
---|
828 | Average relative error on the test set
|
---|
829 |
|
---|
830 | INPUT PARAMETERS:
|
---|
831 | LM - logit model
|
---|
832 | XY - test set
|
---|
833 | NPoints - test set size
|
---|
834 |
|
---|
835 | RESULT:
|
---|
836 | average relative error (error when estimating posterior probabilities).
|
---|
837 |
|
---|
838 | -- ALGLIB --
|
---|
839 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
840 | *************************************************************************/
|
---|
841 | public static double mnlavgrelerror(ref logitmodel lm,
|
---|
842 | ref double[,] xy,
|
---|
843 | int ssize)
|
---|
844 | {
|
---|
845 | double result = 0;
|
---|
846 | double relcls = 0;
|
---|
847 | double avgce = 0;
|
---|
848 | double rms = 0;
|
---|
849 | double avg = 0;
|
---|
850 | double avgrel = 0;
|
---|
851 |
|
---|
852 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==logitvnum, "MNLRMSError: Incorrect MNL version!");
|
---|
853 | mnlallerrors(ref lm, ref xy, ssize, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
854 | result = avgrel;
|
---|
855 | return result;
|
---|
856 | }
|
---|
857 |
|
---|
858 |
|
---|
859 | /*************************************************************************
|
---|
860 | Classification error on test set = MNLRelClsError*NPoints
|
---|
861 |
|
---|
862 | -- ALGLIB --
|
---|
863 | Copyright 10.09.2008 by Bochkanov Sergey
|
---|
864 | *************************************************************************/
|
---|
865 | public static int mnlclserror(ref logitmodel lm,
|
---|
866 | ref double[,] xy,
|
---|
867 | int npoints)
|
---|
868 | {
|
---|
869 | int result = 0;
|
---|
870 | int nvars = 0;
|
---|
871 | int nclasses = 0;
|
---|
872 | int i = 0;
|
---|
873 | int j = 0;
|
---|
874 | double[] workx = new double[0];
|
---|
875 | double[] worky = new double[0];
|
---|
876 | int nmax = 0;
|
---|
877 | int i_ = 0;
|
---|
878 |
|
---|
879 | System.Diagnostics.Debug.Assert((double)(lm.w[1])==(double)(logitvnum), "MNLClsError: unexpected model version");
|
---|
880 | nvars = (int)Math.Round(lm.w[2]);
|
---|
881 | nclasses = (int)Math.Round(lm.w[3]);
|
---|
882 | workx = new double[nvars-1+1];
|
---|
883 | worky = new double[nclasses-1+1];
|
---|
884 | result = 0;
|
---|
885 | for(i=0; i<=npoints-1; i++)
|
---|
886 | {
|
---|
887 |
|
---|
888 | //
|
---|
889 | // Process
|
---|
890 | //
|
---|
891 | for(i_=0; i_<=nvars-1;i_++)
|
---|
892 | {
|
---|
893 | workx[i_] = xy[i,i_];
|
---|
894 | }
|
---|
895 | mnlprocess(ref lm, ref workx, ref worky);
|
---|
896 |
|
---|
897 | //
|
---|
898 | // Logit version of the answer
|
---|
899 | //
|
---|
900 | nmax = 0;
|
---|
901 | for(j=0; j<=nclasses-1; j++)
|
---|
902 | {
|
---|
903 | if( (double)(worky[j])>(double)(worky[nmax]) )
|
---|
904 | {
|
---|
905 | nmax = j;
|
---|
906 | }
|
---|
907 | }
|
---|
908 |
|
---|
909 | //
|
---|
910 | // compare
|
---|
911 | //
|
---|
912 | if( nmax!=(int)Math.Round(xy[i,nvars]) )
|
---|
913 | {
|
---|
914 | result = result+1;
|
---|
915 | }
|
---|
916 | }
|
---|
917 | return result;
|
---|
918 | }
|
---|
919 |
|
---|
920 |
|
---|
921 | /*************************************************************************
|
---|
922 | Internal subroutine. Places exponents of the anti-overflow shifted
|
---|
923 | internal linear outputs into the service part of the W array.
|
---|
924 | *************************************************************************/
|
---|
925 | private static void mnliexp(ref double[] w,
|
---|
926 | ref double[] x)
|
---|
927 | {
|
---|
928 | int nvars = 0;
|
---|
929 | int nclasses = 0;
|
---|
930 | int offs = 0;
|
---|
931 | int i = 0;
|
---|
932 | int i1 = 0;
|
---|
933 | double v = 0;
|
---|
934 | double mx = 0;
|
---|
935 | int i_ = 0;
|
---|
936 | int i1_ = 0;
|
---|
937 |
|
---|
938 | System.Diagnostics.Debug.Assert((double)(w[1])==(double)(logitvnum), "LOGIT: unexpected model version");
|
---|
939 | nvars = (int)Math.Round(w[2]);
|
---|
940 | nclasses = (int)Math.Round(w[3]);
|
---|
941 | offs = (int)Math.Round(w[4]);
|
---|
942 | i1 = offs+(nvars+1)*(nclasses-1);
|
---|
943 | for(i=0; i<=nclasses-2; i++)
|
---|
944 | {
|
---|
945 | i1_ = (0)-(offs+i*(nvars+1));
|
---|
946 | v = 0.0;
|
---|
947 | for(i_=offs+i*(nvars+1); i_<=offs+i*(nvars+1)+nvars-1;i_++)
|
---|
948 | {
|
---|
949 | v += w[i_]*x[i_+i1_];
|
---|
950 | }
|
---|
951 | w[i1+i] = v+w[offs+i*(nvars+1)+nvars];
|
---|
952 | }
|
---|
953 | w[i1+nclasses-1] = 0;
|
---|
954 | mx = 0;
|
---|
955 | for(i=i1; i<=i1+nclasses-1; i++)
|
---|
956 | {
|
---|
957 | mx = Math.Max(mx, w[i]);
|
---|
958 | }
|
---|
959 | for(i=i1; i<=i1+nclasses-1; i++)
|
---|
960 | {
|
---|
961 | w[i] = Math.Exp(w[i]-mx);
|
---|
962 | }
|
---|
963 | }
|
---|
964 |
|
---|
965 |
|
---|
966 | /*************************************************************************
|
---|
967 | Calculation of all types of errors
|
---|
968 |
|
---|
969 | -- ALGLIB --
|
---|
970 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
971 | *************************************************************************/
|
---|
972 | private static void mnlallerrors(ref logitmodel lm,
|
---|
973 | ref double[,] xy,
|
---|
974 | int npoints,
|
---|
975 | ref double relcls,
|
---|
976 | ref double avgce,
|
---|
977 | ref double rms,
|
---|
978 | ref double avg,
|
---|
979 | ref double avgrel)
|
---|
980 | {
|
---|
981 | int nvars = 0;
|
---|
982 | int nclasses = 0;
|
---|
983 | int i = 0;
|
---|
984 | double[] buf = new double[0];
|
---|
985 | double[] workx = new double[0];
|
---|
986 | double[] y = new double[0];
|
---|
987 | double[] dy = new double[0];
|
---|
988 | int i_ = 0;
|
---|
989 |
|
---|
990 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==logitvnum, "MNL unit: Incorrect MNL version!");
|
---|
991 | nvars = (int)Math.Round(lm.w[2]);
|
---|
992 | nclasses = (int)Math.Round(lm.w[3]);
|
---|
993 | workx = new double[nvars-1+1];
|
---|
994 | y = new double[nclasses-1+1];
|
---|
995 | dy = new double[0+1];
|
---|
996 | bdss.dserrallocate(nclasses, ref buf);
|
---|
997 | for(i=0; i<=npoints-1; i++)
|
---|
998 | {
|
---|
999 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1000 | {
|
---|
1001 | workx[i_] = xy[i,i_];
|
---|
1002 | }
|
---|
1003 | mnlprocess(ref lm, ref workx, ref y);
|
---|
1004 | dy[0] = xy[i,nvars];
|
---|
1005 | bdss.dserraccumulate(ref buf, ref y, ref dy);
|
---|
1006 | }
|
---|
1007 | bdss.dserrfinish(ref buf);
|
---|
1008 | relcls = buf[0];
|
---|
1009 | avgce = buf[1];
|
---|
1010 | rms = buf[2];
|
---|
1011 | avg = buf[3];
|
---|
1012 | avgrel = buf[4];
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 |
|
---|
1016 | /*************************************************************************
|
---|
1017 | THE PURPOSE OF MCSRCH IS TO FIND A STEP WHICH SATISFIES A SUFFICIENT
|
---|
1018 | DECREASE CONDITION AND A CURVATURE CONDITION.
|
---|
1019 |
|
---|
1020 | AT EACH STAGE THE SUBROUTINE UPDATES AN INTERVAL OF UNCERTAINTY WITH
|
---|
1021 | ENDPOINTS STX AND STY. THE INTERVAL OF UNCERTAINTY IS INITIALLY CHOSEN
|
---|
1022 | SO THAT IT CONTAINS A MINIMIZER OF THE MODIFIED FUNCTION
|
---|
1023 |
|
---|
1024 | F(X+STP*S) - F(X) - FTOL*STP*(GRADF(X)'S).
|
---|
1025 |
|
---|
1026 | IF A STEP IS OBTAINED FOR WHICH THE MODIFIED FUNCTION HAS A NONPOSITIVE
|
---|
1027 | FUNCTION VALUE AND NONNEGATIVE DERIVATIVE, THEN THE INTERVAL OF
|
---|
1028 | UNCERTAINTY IS CHOSEN SO THAT IT CONTAINS A MINIMIZER OF F(X+STP*S).
|
---|
1029 |
|
---|
1030 | THE ALGORITHM IS DESIGNED TO FIND A STEP WHICH SATISFIES THE SUFFICIENT
|
---|
1031 | DECREASE CONDITION
|
---|
1032 |
|
---|
1033 | F(X+STP*S) .LE. F(X) + FTOL*STP*(GRADF(X)'S),
|
---|
1034 |
|
---|
1035 | AND THE CURVATURE CONDITION
|
---|
1036 |
|
---|
1037 | ABS(GRADF(X+STP*S)'S)) .LE. GTOL*ABS(GRADF(X)'S).
|
---|
1038 |
|
---|
1039 | IF FTOL IS LESS THAN GTOL AND IF, FOR EXAMPLE, THE FUNCTION IS BOUNDED
|
---|
1040 | BELOW, THEN THERE IS ALWAYS A STEP WHICH SATISFIES BOTH CONDITIONS.
|
---|
1041 | IF NO STEP CAN BE FOUND WHICH SATISFIES BOTH CONDITIONS, THEN THE
|
---|
1042 | ALGORITHM USUALLY STOPS WHEN ROUNDING ERRORS PREVENT FURTHER PROGRESS.
|
---|
1043 | IN THIS CASE STP ONLY SATISFIES THE SUFFICIENT DECREASE CONDITION.
|
---|
1044 |
|
---|
1045 | PARAMETERS DESCRIPRION
|
---|
1046 |
|
---|
1047 | N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF VARIABLES.
|
---|
1048 |
|
---|
1049 | X IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE BASE POINT FOR
|
---|
1050 | THE LINE SEARCH. ON OUTPUT IT CONTAINS X+STP*S.
|
---|
1051 |
|
---|
1052 | F IS A VARIABLE. ON INPUT IT MUST CONTAIN THE VALUE OF F AT X. ON OUTPUT
|
---|
1053 | IT CONTAINS THE VALUE OF F AT X + STP*S.
|
---|
1054 |
|
---|
1055 | G IS AN ARRAY OF LENGTH N. ON INPUT IT MUST CONTAIN THE GRADIENT OF F AT X.
|
---|
1056 | ON OUTPUT IT CONTAINS THE GRADIENT OF F AT X + STP*S.
|
---|
1057 |
|
---|
1058 | S IS AN INPUT ARRAY OF LENGTH N WHICH SPECIFIES THE SEARCH DIRECTION.
|
---|
1059 |
|
---|
1060 | STP IS A NONNEGATIVE VARIABLE. ON INPUT STP CONTAINS AN INITIAL ESTIMATE
|
---|
1061 | OF A SATISFACTORY STEP. ON OUTPUT STP CONTAINS THE FINAL ESTIMATE.
|
---|
1062 |
|
---|
1063 | FTOL AND GTOL ARE NONNEGATIVE INPUT VARIABLES. TERMINATION OCCURS WHEN THE
|
---|
1064 | SUFFICIENT DECREASE CONDITION AND THE DIRECTIONAL DERIVATIVE CONDITION ARE
|
---|
1065 | SATISFIED.
|
---|
1066 |
|
---|
1067 | XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE RELATIVE
|
---|
1068 | WIDTH OF THE INTERVAL OF UNCERTAINTY IS AT MOST XTOL.
|
---|
1069 |
|
---|
1070 | STPMIN AND STPMAX ARE NONNEGATIVE INPUT VARIABLES WHICH SPECIFY LOWER AND
|
---|
1071 | UPPER BOUNDS FOR THE STEP.
|
---|
1072 |
|
---|
1073 | MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN THE
|
---|
1074 | NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN ITERATION.
|
---|
1075 |
|
---|
1076 | INFO IS AN INTEGER OUTPUT VARIABLE SET AS FOLLOWS:
|
---|
1077 | INFO = 0 IMPROPER INPUT PARAMETERS.
|
---|
1078 |
|
---|
1079 | INFO = 1 THE SUFFICIENT DECREASE CONDITION AND THE
|
---|
1080 | DIRECTIONAL DERIVATIVE CONDITION HOLD.
|
---|
1081 |
|
---|
1082 | INFO = 2 RELATIVE WIDTH OF THE INTERVAL OF UNCERTAINTY
|
---|
1083 | IS AT MOST XTOL.
|
---|
1084 |
|
---|
1085 | INFO = 3 NUMBER OF CALLS TO FCN HAS REACHED MAXFEV.
|
---|
1086 |
|
---|
1087 | INFO = 4 THE STEP IS AT THE LOWER BOUND STPMIN.
|
---|
1088 |
|
---|
1089 | INFO = 5 THE STEP IS AT THE UPPER BOUND STPMAX.
|
---|
1090 |
|
---|
1091 | INFO = 6 ROUNDING ERRORS PREVENT FURTHER PROGRESS.
|
---|
1092 | THERE MAY NOT BE A STEP WHICH SATISFIES THE
|
---|
1093 | SUFFICIENT DECREASE AND CURVATURE CONDITIONS.
|
---|
1094 | TOLERANCES MAY BE TOO SMALL.
|
---|
1095 |
|
---|
1096 | NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN.
|
---|
1097 |
|
---|
1098 | WA IS A WORK ARRAY OF LENGTH N.
|
---|
1099 |
|
---|
1100 | ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. JUNE 1983
|
---|
1101 | JORGE J. MORE', DAVID J. THUENTE
|
---|
1102 | *************************************************************************/
|
---|
1103 | private static void mnlmcsrch(int n,
|
---|
1104 | ref double[] x,
|
---|
1105 | ref double f,
|
---|
1106 | ref double[] g,
|
---|
1107 | ref double[] s,
|
---|
1108 | ref double stp,
|
---|
1109 | ref int info,
|
---|
1110 | ref int nfev,
|
---|
1111 | ref double[] wa,
|
---|
1112 | ref logitmcstate state,
|
---|
1113 | ref int stage)
|
---|
1114 | {
|
---|
1115 | double v = 0;
|
---|
1116 | double p5 = 0;
|
---|
1117 | double p66 = 0;
|
---|
1118 | double zero = 0;
|
---|
1119 | int i_ = 0;
|
---|
1120 |
|
---|
1121 |
|
---|
1122 | //
|
---|
1123 | // init
|
---|
1124 | //
|
---|
1125 | p5 = 0.5;
|
---|
1126 | p66 = 0.66;
|
---|
1127 | state.xtrapf = 4.0;
|
---|
1128 | zero = 0;
|
---|
1129 |
|
---|
1130 | //
|
---|
1131 | // Main cycle
|
---|
1132 | //
|
---|
1133 | while( true )
|
---|
1134 | {
|
---|
1135 | if( stage==0 )
|
---|
1136 | {
|
---|
1137 |
|
---|
1138 | //
|
---|
1139 | // NEXT
|
---|
1140 | //
|
---|
1141 | stage = 2;
|
---|
1142 | continue;
|
---|
1143 | }
|
---|
1144 | if( stage==2 )
|
---|
1145 | {
|
---|
1146 | state.infoc = 1;
|
---|
1147 | info = 0;
|
---|
1148 |
|
---|
1149 | //
|
---|
1150 | // CHECK THE INPUT PARAMETERS FOR ERRORS.
|
---|
1151 | //
|
---|
1152 | if( n<=0 | (double)(stp)<=(double)(0) | (double)(ftol)<(double)(0) | (double)(gtol)<(double)(zero) | (double)(xtol)<(double)(zero) | (double)(stpmin)<(double)(zero) | (double)(stpmax)<(double)(stpmin) | maxfev<=0 )
|
---|
1153 | {
|
---|
1154 | stage = 0;
|
---|
1155 | return;
|
---|
1156 | }
|
---|
1157 |
|
---|
1158 | //
|
---|
1159 | // COMPUTE THE INITIAL GRADIENT IN THE SEARCH DIRECTION
|
---|
1160 | // AND CHECK THAT S IS A DESCENT DIRECTION.
|
---|
1161 | //
|
---|
1162 | v = 0.0;
|
---|
1163 | for(i_=0; i_<=n-1;i_++)
|
---|
1164 | {
|
---|
1165 | v += g[i_]*s[i_];
|
---|
1166 | }
|
---|
1167 | state.dginit = v;
|
---|
1168 | if( (double)(state.dginit)>=(double)(0) )
|
---|
1169 | {
|
---|
1170 | stage = 0;
|
---|
1171 | return;
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | //
|
---|
1175 | // INITIALIZE LOCAL VARIABLES.
|
---|
1176 | //
|
---|
1177 | state.brackt = false;
|
---|
1178 | state.stage1 = true;
|
---|
1179 | nfev = 0;
|
---|
1180 | state.finit = f;
|
---|
1181 | state.dgtest = ftol*state.dginit;
|
---|
1182 | state.width = stpmax-stpmin;
|
---|
1183 | state.width1 = state.width/p5;
|
---|
1184 | for(i_=0; i_<=n-1;i_++)
|
---|
1185 | {
|
---|
1186 | wa[i_] = x[i_];
|
---|
1187 | }
|
---|
1188 |
|
---|
1189 | //
|
---|
1190 | // THE VARIABLES STX, FX, DGX CONTAIN THE VALUES OF THE STEP,
|
---|
1191 | // FUNCTION, AND DIRECTIONAL DERIVATIVE AT THE BEST STEP.
|
---|
1192 | // THE VARIABLES STY, FY, DGY CONTAIN THE VALUE OF THE STEP,
|
---|
1193 | // FUNCTION, AND DERIVATIVE AT THE OTHER ENDPOINT OF
|
---|
1194 | // THE INTERVAL OF UNCERTAINTY.
|
---|
1195 | // THE VARIABLES STP, F, DG CONTAIN THE VALUES OF THE STEP,
|
---|
1196 | // FUNCTION, AND DERIVATIVE AT THE CURRENT STEP.
|
---|
1197 | //
|
---|
1198 | state.stx = 0;
|
---|
1199 | state.fx = state.finit;
|
---|
1200 | state.dgx = state.dginit;
|
---|
1201 | state.sty = 0;
|
---|
1202 | state.fy = state.finit;
|
---|
1203 | state.dgy = state.dginit;
|
---|
1204 |
|
---|
1205 | //
|
---|
1206 | // NEXT
|
---|
1207 | //
|
---|
1208 | stage = 3;
|
---|
1209 | continue;
|
---|
1210 | }
|
---|
1211 | if( stage==3 )
|
---|
1212 | {
|
---|
1213 |
|
---|
1214 | //
|
---|
1215 | // START OF ITERATION.
|
---|
1216 | //
|
---|
1217 | // SET THE MINIMUM AND MAXIMUM STEPS TO CORRESPOND
|
---|
1218 | // TO THE PRESENT INTERVAL OF UNCERTAINTY.
|
---|
1219 | //
|
---|
1220 | if( state.brackt )
|
---|
1221 | {
|
---|
1222 | if( (double)(state.stx)<(double)(state.sty) )
|
---|
1223 | {
|
---|
1224 | state.stmin = state.stx;
|
---|
1225 | state.stmax = state.sty;
|
---|
1226 | }
|
---|
1227 | else
|
---|
1228 | {
|
---|
1229 | state.stmin = state.sty;
|
---|
1230 | state.stmax = state.stx;
|
---|
1231 | }
|
---|
1232 | }
|
---|
1233 | else
|
---|
1234 | {
|
---|
1235 | state.stmin = state.stx;
|
---|
1236 | state.stmax = stp+state.xtrapf*(stp-state.stx);
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 | //
|
---|
1240 | // FORCE THE STEP TO BE WITHIN THE BOUNDS STPMAX AND STPMIN.
|
---|
1241 | //
|
---|
1242 | if( (double)(stp)>(double)(stpmax) )
|
---|
1243 | {
|
---|
1244 | stp = stpmax;
|
---|
1245 | }
|
---|
1246 | if( (double)(stp)<(double)(stpmin) )
|
---|
1247 | {
|
---|
1248 | stp = stpmin;
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 | //
|
---|
1252 | // IF AN UNUSUAL TERMINATION IS TO OCCUR THEN LET
|
---|
1253 | // STP BE THE LOWEST POINT OBTAINED SO FAR.
|
---|
1254 | //
|
---|
1255 | if( state.brackt & ((double)(stp)<=(double)(state.stmin) | (double)(stp)>=(double)(state.stmax)) | nfev>=maxfev-1 | state.infoc==0 | state.brackt & (double)(state.stmax-state.stmin)<=(double)(xtol*state.stmax) )
|
---|
1256 | {
|
---|
1257 | stp = state.stx;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | //
|
---|
1261 | // EVALUATE THE FUNCTION AND GRADIENT AT STP
|
---|
1262 | // AND COMPUTE THE DIRECTIONAL DERIVATIVE.
|
---|
1263 | //
|
---|
1264 | for(i_=0; i_<=n-1;i_++)
|
---|
1265 | {
|
---|
1266 | x[i_] = wa[i_];
|
---|
1267 | }
|
---|
1268 | for(i_=0; i_<=n-1;i_++)
|
---|
1269 | {
|
---|
1270 | x[i_] = x[i_] + stp*s[i_];
|
---|
1271 | }
|
---|
1272 |
|
---|
1273 | //
|
---|
1274 | // NEXT
|
---|
1275 | //
|
---|
1276 | stage = 4;
|
---|
1277 | return;
|
---|
1278 | }
|
---|
1279 | if( stage==4 )
|
---|
1280 | {
|
---|
1281 | info = 0;
|
---|
1282 | nfev = nfev+1;
|
---|
1283 | v = 0.0;
|
---|
1284 | for(i_=0; i_<=n-1;i_++)
|
---|
1285 | {
|
---|
1286 | v += g[i_]*s[i_];
|
---|
1287 | }
|
---|
1288 | state.dg = v;
|
---|
1289 | state.ftest1 = state.finit+stp*state.dgtest;
|
---|
1290 |
|
---|
1291 | //
|
---|
1292 | // TEST FOR CONVERGENCE.
|
---|
1293 | //
|
---|
1294 | if( state.brackt & ((double)(stp)<=(double)(state.stmin) | (double)(stp)>=(double)(state.stmax)) | state.infoc==0 )
|
---|
1295 | {
|
---|
1296 | info = 6;
|
---|
1297 | }
|
---|
1298 | if( (double)(stp)==(double)(stpmax) & (double)(f)<=(double)(state.ftest1) & (double)(state.dg)<=(double)(state.dgtest) )
|
---|
1299 | {
|
---|
1300 | info = 5;
|
---|
1301 | }
|
---|
1302 | if( (double)(stp)==(double)(stpmin) & ((double)(f)>(double)(state.ftest1) | (double)(state.dg)>=(double)(state.dgtest)) )
|
---|
1303 | {
|
---|
1304 | info = 4;
|
---|
1305 | }
|
---|
1306 | if( nfev>=maxfev )
|
---|
1307 | {
|
---|
1308 | info = 3;
|
---|
1309 | }
|
---|
1310 | if( state.brackt & (double)(state.stmax-state.stmin)<=(double)(xtol*state.stmax) )
|
---|
1311 | {
|
---|
1312 | info = 2;
|
---|
1313 | }
|
---|
1314 | if( (double)(f)<=(double)(state.ftest1) & (double)(Math.Abs(state.dg))<=(double)(-(gtol*state.dginit)) )
|
---|
1315 | {
|
---|
1316 | info = 1;
|
---|
1317 | }
|
---|
1318 |
|
---|
1319 | //
|
---|
1320 | // CHECK FOR TERMINATION.
|
---|
1321 | //
|
---|
1322 | if( info!=0 )
|
---|
1323 | {
|
---|
1324 | stage = 0;
|
---|
1325 | return;
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | //
|
---|
1329 | // IN THE FIRST STAGE WE SEEK A STEP FOR WHICH THE MODIFIED
|
---|
1330 | // FUNCTION HAS A NONPOSITIVE VALUE AND NONNEGATIVE DERIVATIVE.
|
---|
1331 | //
|
---|
1332 | if( state.stage1 & (double)(f)<=(double)(state.ftest1) & (double)(state.dg)>=(double)(Math.Min(ftol, gtol)*state.dginit) )
|
---|
1333 | {
|
---|
1334 | state.stage1 = false;
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | //
|
---|
1338 | // A MODIFIED FUNCTION IS USED TO PREDICT THE STEP ONLY IF
|
---|
1339 | // WE HAVE NOT OBTAINED A STEP FOR WHICH THE MODIFIED
|
---|
1340 | // FUNCTION HAS A NONPOSITIVE FUNCTION VALUE AND NONNEGATIVE
|
---|
1341 | // DERIVATIVE, AND IF A LOWER FUNCTION VALUE HAS BEEN
|
---|
1342 | // OBTAINED BUT THE DECREASE IS NOT SUFFICIENT.
|
---|
1343 | //
|
---|
1344 | if( state.stage1 & (double)(f)<=(double)(state.fx) & (double)(f)>(double)(state.ftest1) )
|
---|
1345 | {
|
---|
1346 |
|
---|
1347 | //
|
---|
1348 | // DEFINE THE MODIFIED FUNCTION AND DERIVATIVE VALUES.
|
---|
1349 | //
|
---|
1350 | state.fm = f-stp*state.dgtest;
|
---|
1351 | state.fxm = state.fx-state.stx*state.dgtest;
|
---|
1352 | state.fym = state.fy-state.sty*state.dgtest;
|
---|
1353 | state.dgm = state.dg-state.dgtest;
|
---|
1354 | state.dgxm = state.dgx-state.dgtest;
|
---|
1355 | state.dgym = state.dgy-state.dgtest;
|
---|
1356 |
|
---|
1357 | //
|
---|
1358 | // CALL CSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
|
---|
1359 | // AND TO COMPUTE THE NEW STEP.
|
---|
1360 | //
|
---|
1361 | mnlmcstep(ref state.stx, ref state.fxm, ref state.dgxm, ref state.sty, ref state.fym, ref state.dgym, ref stp, state.fm, state.dgm, ref state.brackt, state.stmin, state.stmax, ref state.infoc);
|
---|
1362 |
|
---|
1363 | //
|
---|
1364 | // RESET THE FUNCTION AND GRADIENT VALUES FOR F.
|
---|
1365 | //
|
---|
1366 | state.fx = state.fxm+state.stx*state.dgtest;
|
---|
1367 | state.fy = state.fym+state.sty*state.dgtest;
|
---|
1368 | state.dgx = state.dgxm+state.dgtest;
|
---|
1369 | state.dgy = state.dgym+state.dgtest;
|
---|
1370 | }
|
---|
1371 | else
|
---|
1372 | {
|
---|
1373 |
|
---|
1374 | //
|
---|
1375 | // CALL MCSTEP TO UPDATE THE INTERVAL OF UNCERTAINTY
|
---|
1376 | // AND TO COMPUTE THE NEW STEP.
|
---|
1377 | //
|
---|
1378 | mnlmcstep(ref state.stx, ref state.fx, ref state.dgx, ref state.sty, ref state.fy, ref state.dgy, ref stp, f, state.dg, ref state.brackt, state.stmin, state.stmax, ref state.infoc);
|
---|
1379 | }
|
---|
1380 |
|
---|
1381 | //
|
---|
1382 | // FORCE A SUFFICIENT DECREASE IN THE SIZE OF THE
|
---|
1383 | // INTERVAL OF UNCERTAINTY.
|
---|
1384 | //
|
---|
1385 | if( state.brackt )
|
---|
1386 | {
|
---|
1387 | if( (double)(Math.Abs(state.sty-state.stx))>=(double)(p66*state.width1) )
|
---|
1388 | {
|
---|
1389 | stp = state.stx+p5*(state.sty-state.stx);
|
---|
1390 | }
|
---|
1391 | state.width1 = state.width;
|
---|
1392 | state.width = Math.Abs(state.sty-state.stx);
|
---|
1393 | }
|
---|
1394 |
|
---|
1395 | //
|
---|
1396 | // NEXT.
|
---|
1397 | //
|
---|
1398 | stage = 3;
|
---|
1399 | continue;
|
---|
1400 | }
|
---|
1401 | }
|
---|
1402 | }
|
---|
1403 |
|
---|
1404 |
|
---|
1405 | private static void mnlmcstep(ref double stx,
|
---|
1406 | ref double fx,
|
---|
1407 | ref double dx,
|
---|
1408 | ref double sty,
|
---|
1409 | ref double fy,
|
---|
1410 | ref double dy,
|
---|
1411 | ref double stp,
|
---|
1412 | double fp,
|
---|
1413 | double dp,
|
---|
1414 | ref bool brackt,
|
---|
1415 | double stmin,
|
---|
1416 | double stmax,
|
---|
1417 | ref int info)
|
---|
1418 | {
|
---|
1419 | bool bound = new bool();
|
---|
1420 | double gamma = 0;
|
---|
1421 | double p = 0;
|
---|
1422 | double q = 0;
|
---|
1423 | double r = 0;
|
---|
1424 | double s = 0;
|
---|
1425 | double sgnd = 0;
|
---|
1426 | double stpc = 0;
|
---|
1427 | double stpf = 0;
|
---|
1428 | double stpq = 0;
|
---|
1429 | double theta = 0;
|
---|
1430 |
|
---|
1431 | info = 0;
|
---|
1432 |
|
---|
1433 | //
|
---|
1434 | // CHECK THE INPUT PARAMETERS FOR ERRORS.
|
---|
1435 | //
|
---|
1436 | if( brackt & ((double)(stp)<=(double)(Math.Min(stx, sty)) | (double)(stp)>=(double)(Math.Max(stx, sty))) | (double)(dx*(stp-stx))>=(double)(0) | (double)(stmax)<(double)(stmin) )
|
---|
1437 | {
|
---|
1438 | return;
|
---|
1439 | }
|
---|
1440 |
|
---|
1441 | //
|
---|
1442 | // DETERMINE IF THE DERIVATIVES HAVE OPPOSITE SIGN.
|
---|
1443 | //
|
---|
1444 | sgnd = dp*(dx/Math.Abs(dx));
|
---|
1445 |
|
---|
1446 | //
|
---|
1447 | // FIRST CASE. A HIGHER FUNCTION VALUE.
|
---|
1448 | // THE MINIMUM IS BRACKETED. IF THE CUBIC STEP IS CLOSER
|
---|
1449 | // TO STX THAN THE QUADRATIC STEP, THE CUBIC STEP IS TAKEN,
|
---|
1450 | // ELSE THE AVERAGE OF THE CUBIC AND QUADRATIC STEPS IS TAKEN.
|
---|
1451 | //
|
---|
1452 | if( (double)(fp)>(double)(fx) )
|
---|
1453 | {
|
---|
1454 | info = 1;
|
---|
1455 | bound = true;
|
---|
1456 | theta = 3*(fx-fp)/(stp-stx)+dx+dp;
|
---|
1457 | s = Math.Max(Math.Abs(theta), Math.Max(Math.Abs(dx), Math.Abs(dp)));
|
---|
1458 | gamma = s*Math.Sqrt(AP.Math.Sqr(theta/s)-dx/s*(dp/s));
|
---|
1459 | if( (double)(stp)<(double)(stx) )
|
---|
1460 | {
|
---|
1461 | gamma = -gamma;
|
---|
1462 | }
|
---|
1463 | p = gamma-dx+theta;
|
---|
1464 | q = gamma-dx+gamma+dp;
|
---|
1465 | r = p/q;
|
---|
1466 | stpc = stx+r*(stp-stx);
|
---|
1467 | stpq = stx+dx/((fx-fp)/(stp-stx)+dx)/2*(stp-stx);
|
---|
1468 | if( (double)(Math.Abs(stpc-stx))<(double)(Math.Abs(stpq-stx)) )
|
---|
1469 | {
|
---|
1470 | stpf = stpc;
|
---|
1471 | }
|
---|
1472 | else
|
---|
1473 | {
|
---|
1474 | stpf = stpc+(stpq-stpc)/2;
|
---|
1475 | }
|
---|
1476 | brackt = true;
|
---|
1477 | }
|
---|
1478 | else
|
---|
1479 | {
|
---|
1480 | if( (double)(sgnd)<(double)(0) )
|
---|
1481 | {
|
---|
1482 |
|
---|
1483 | //
|
---|
1484 | // SECOND CASE. A LOWER FUNCTION VALUE AND DERIVATIVES OF
|
---|
1485 | // OPPOSITE SIGN. THE MINIMUM IS BRACKETED. IF THE CUBIC
|
---|
1486 | // STEP IS CLOSER TO STX THAN THE QUADRATIC (SECANT) STEP,
|
---|
1487 | // THE CUBIC STEP IS TAKEN, ELSE THE QUADRATIC STEP IS TAKEN.
|
---|
1488 | //
|
---|
1489 | info = 2;
|
---|
1490 | bound = false;
|
---|
1491 | theta = 3*(fx-fp)/(stp-stx)+dx+dp;
|
---|
1492 | s = Math.Max(Math.Abs(theta), Math.Max(Math.Abs(dx), Math.Abs(dp)));
|
---|
1493 | gamma = s*Math.Sqrt(AP.Math.Sqr(theta/s)-dx/s*(dp/s));
|
---|
1494 | if( (double)(stp)>(double)(stx) )
|
---|
1495 | {
|
---|
1496 | gamma = -gamma;
|
---|
1497 | }
|
---|
1498 | p = gamma-dp+theta;
|
---|
1499 | q = gamma-dp+gamma+dx;
|
---|
1500 | r = p/q;
|
---|
1501 | stpc = stp+r*(stx-stp);
|
---|
1502 | stpq = stp+dp/(dp-dx)*(stx-stp);
|
---|
1503 | if( (double)(Math.Abs(stpc-stp))>(double)(Math.Abs(stpq-stp)) )
|
---|
1504 | {
|
---|
1505 | stpf = stpc;
|
---|
1506 | }
|
---|
1507 | else
|
---|
1508 | {
|
---|
1509 | stpf = stpq;
|
---|
1510 | }
|
---|
1511 | brackt = true;
|
---|
1512 | }
|
---|
1513 | else
|
---|
1514 | {
|
---|
1515 | if( (double)(Math.Abs(dp))<(double)(Math.Abs(dx)) )
|
---|
1516 | {
|
---|
1517 |
|
---|
1518 | //
|
---|
1519 | // THIRD CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
|
---|
1520 | // SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DECREASES.
|
---|
1521 | // THE CUBIC STEP IS ONLY USED IF THE CUBIC TENDS TO INFINITY
|
---|
1522 | // IN THE DIRECTION OF THE STEP OR IF THE MINIMUM OF THE CUBIC
|
---|
1523 | // IS BEYOND STP. OTHERWISE THE CUBIC STEP IS DEFINED TO BE
|
---|
1524 | // EITHER STPMIN OR STPMAX. THE QUADRATIC (SECANT) STEP IS ALSO
|
---|
1525 | // COMPUTED AND IF THE MINIMUM IS BRACKETED THEN THE THE STEP
|
---|
1526 | // CLOSEST TO STX IS TAKEN, ELSE THE STEP FARTHEST AWAY IS TAKEN.
|
---|
1527 | //
|
---|
1528 | info = 3;
|
---|
1529 | bound = true;
|
---|
1530 | theta = 3*(fx-fp)/(stp-stx)+dx+dp;
|
---|
1531 | s = Math.Max(Math.Abs(theta), Math.Max(Math.Abs(dx), Math.Abs(dp)));
|
---|
1532 |
|
---|
1533 | //
|
---|
1534 | // THE CASE GAMMA = 0 ONLY ARISES IF THE CUBIC DOES NOT TEND
|
---|
1535 | // TO INFINITY IN THE DIRECTION OF THE STEP.
|
---|
1536 | //
|
---|
1537 | gamma = s*Math.Sqrt(Math.Max(0, AP.Math.Sqr(theta/s)-dx/s*(dp/s)));
|
---|
1538 | if( (double)(stp)>(double)(stx) )
|
---|
1539 | {
|
---|
1540 | gamma = -gamma;
|
---|
1541 | }
|
---|
1542 | p = gamma-dp+theta;
|
---|
1543 | q = gamma+(dx-dp)+gamma;
|
---|
1544 | r = p/q;
|
---|
1545 | if( (double)(r)<(double)(0) & (double)(gamma)!=(double)(0) )
|
---|
1546 | {
|
---|
1547 | stpc = stp+r*(stx-stp);
|
---|
1548 | }
|
---|
1549 | else
|
---|
1550 | {
|
---|
1551 | if( (double)(stp)>(double)(stx) )
|
---|
1552 | {
|
---|
1553 | stpc = stmax;
|
---|
1554 | }
|
---|
1555 | else
|
---|
1556 | {
|
---|
1557 | stpc = stmin;
|
---|
1558 | }
|
---|
1559 | }
|
---|
1560 | stpq = stp+dp/(dp-dx)*(stx-stp);
|
---|
1561 | if( brackt )
|
---|
1562 | {
|
---|
1563 | if( (double)(Math.Abs(stp-stpc))<(double)(Math.Abs(stp-stpq)) )
|
---|
1564 | {
|
---|
1565 | stpf = stpc;
|
---|
1566 | }
|
---|
1567 | else
|
---|
1568 | {
|
---|
1569 | stpf = stpq;
|
---|
1570 | }
|
---|
1571 | }
|
---|
1572 | else
|
---|
1573 | {
|
---|
1574 | if( (double)(Math.Abs(stp-stpc))>(double)(Math.Abs(stp-stpq)) )
|
---|
1575 | {
|
---|
1576 | stpf = stpc;
|
---|
1577 | }
|
---|
1578 | else
|
---|
1579 | {
|
---|
1580 | stpf = stpq;
|
---|
1581 | }
|
---|
1582 | }
|
---|
1583 | }
|
---|
1584 | else
|
---|
1585 | {
|
---|
1586 |
|
---|
1587 | //
|
---|
1588 | // FOURTH CASE. A LOWER FUNCTION VALUE, DERIVATIVES OF THE
|
---|
1589 | // SAME SIGN, AND THE MAGNITUDE OF THE DERIVATIVE DOES
|
---|
1590 | // NOT DECREASE. IF THE MINIMUM IS NOT BRACKETED, THE STEP
|
---|
1591 | // IS EITHER STPMIN OR STPMAX, ELSE THE CUBIC STEP IS TAKEN.
|
---|
1592 | //
|
---|
1593 | info = 4;
|
---|
1594 | bound = false;
|
---|
1595 | if( brackt )
|
---|
1596 | {
|
---|
1597 | theta = 3*(fp-fy)/(sty-stp)+dy+dp;
|
---|
1598 | s = Math.Max(Math.Abs(theta), Math.Max(Math.Abs(dy), Math.Abs(dp)));
|
---|
1599 | gamma = s*Math.Sqrt(AP.Math.Sqr(theta/s)-dy/s*(dp/s));
|
---|
1600 | if( (double)(stp)>(double)(sty) )
|
---|
1601 | {
|
---|
1602 | gamma = -gamma;
|
---|
1603 | }
|
---|
1604 | p = gamma-dp+theta;
|
---|
1605 | q = gamma-dp+gamma+dy;
|
---|
1606 | r = p/q;
|
---|
1607 | stpc = stp+r*(sty-stp);
|
---|
1608 | stpf = stpc;
|
---|
1609 | }
|
---|
1610 | else
|
---|
1611 | {
|
---|
1612 | if( (double)(stp)>(double)(stx) )
|
---|
1613 | {
|
---|
1614 | stpf = stmax;
|
---|
1615 | }
|
---|
1616 | else
|
---|
1617 | {
|
---|
1618 | stpf = stmin;
|
---|
1619 | }
|
---|
1620 | }
|
---|
1621 | }
|
---|
1622 | }
|
---|
1623 | }
|
---|
1624 |
|
---|
1625 | //
|
---|
1626 | // UPDATE THE INTERVAL OF UNCERTAINTY. THIS UPDATE DOES NOT
|
---|
1627 | // DEPEND ON THE NEW STEP OR THE CASE ANALYSIS ABOVE.
|
---|
1628 | //
|
---|
1629 | if( (double)(fp)>(double)(fx) )
|
---|
1630 | {
|
---|
1631 | sty = stp;
|
---|
1632 | fy = fp;
|
---|
1633 | dy = dp;
|
---|
1634 | }
|
---|
1635 | else
|
---|
1636 | {
|
---|
1637 | if( (double)(sgnd)<(double)(0.0) )
|
---|
1638 | {
|
---|
1639 | sty = stx;
|
---|
1640 | fy = fx;
|
---|
1641 | dy = dx;
|
---|
1642 | }
|
---|
1643 | stx = stp;
|
---|
1644 | fx = fp;
|
---|
1645 | dx = dp;
|
---|
1646 | }
|
---|
1647 |
|
---|
1648 | //
|
---|
1649 | // COMPUTE THE NEW STEP AND SAFEGUARD IT.
|
---|
1650 | //
|
---|
1651 | stpf = Math.Min(stmax, stpf);
|
---|
1652 | stpf = Math.Max(stmin, stpf);
|
---|
1653 | stp = stpf;
|
---|
1654 | if( brackt & bound )
|
---|
1655 | {
|
---|
1656 | if( (double)(sty)>(double)(stx) )
|
---|
1657 | {
|
---|
1658 | stp = Math.Min(stx+0.66*(sty-stx), stp);
|
---|
1659 | }
|
---|
1660 | else
|
---|
1661 | {
|
---|
1662 | stp = Math.Max(stx+0.66*(sty-stx), stp);
|
---|
1663 | }
|
---|
1664 | }
|
---|
1665 | }
|
---|
1666 | }
|
---|
1667 | }
|
---|