1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class linreg
|
---|
26 | {
|
---|
27 | public struct linearmodel
|
---|
28 | {
|
---|
29 | public double[] w;
|
---|
30 | };
|
---|
31 |
|
---|
32 |
|
---|
33 | /*************************************************************************
|
---|
34 | LRReport structure contains additional information about linear model:
|
---|
35 | * C - covariation matrix, array[0..NVars,0..NVars].
|
---|
36 | C[i,j] = Cov(A[i],A[j])
|
---|
37 | * RMSError - root mean square error on a training set
|
---|
38 | * AvgError - average error on a training set
|
---|
39 | * AvgRelError - average relative error on a training set (excluding
|
---|
40 | observations with zero function value).
|
---|
41 | * CVRMSError - leave-one-out cross-validation estimate of
|
---|
42 | generalization error. Calculated using fast algorithm
|
---|
43 | with O(NVars*NPoints) complexity.
|
---|
44 | * CVAvgError - cross-validation estimate of average error
|
---|
45 | * CVAvgRelError - cross-validation estimate of average relative error
|
---|
46 |
|
---|
47 | All other fields of the structure are intended for internal use and should
|
---|
48 | not be used outside ALGLIB.
|
---|
49 | *************************************************************************/
|
---|
50 | public struct lrreport
|
---|
51 | {
|
---|
52 | public double[,] c;
|
---|
53 | public double rmserror;
|
---|
54 | public double avgerror;
|
---|
55 | public double avgrelerror;
|
---|
56 | public double cvrmserror;
|
---|
57 | public double cvavgerror;
|
---|
58 | public double cvavgrelerror;
|
---|
59 | public int ncvdefects;
|
---|
60 | public int[] cvdefects;
|
---|
61 | };
|
---|
62 |
|
---|
63 |
|
---|
64 |
|
---|
65 |
|
---|
66 | public const int lrvnum = 5;
|
---|
67 |
|
---|
68 |
|
---|
69 | /*************************************************************************
|
---|
70 | Linear regression
|
---|
71 |
|
---|
72 | Subroutine builds model:
|
---|
73 |
|
---|
74 | Y = A(0)*X[0] + ... + A(N-1)*X[N-1] + A(N)
|
---|
75 |
|
---|
76 | and model found in ALGLIB format, covariation matrix, training set errors
|
---|
77 | (rms, average, average relative) and leave-one-out cross-validation
|
---|
78 | estimate of the generalization error. CV estimate calculated using fast
|
---|
79 | algorithm with O(NPoints*NVars) complexity.
|
---|
80 |
|
---|
81 | When covariation matrix is calculated standard deviations of function
|
---|
82 | values are assumed to be equal to RMS error on the training set.
|
---|
83 |
|
---|
84 | INPUT PARAMETERS:
|
---|
85 | XY - training set, array [0..NPoints-1,0..NVars]:
|
---|
86 | * NVars columns - independent variables
|
---|
87 | * last column - dependent variable
|
---|
88 | NPoints - training set size, NPoints>NVars+1
|
---|
89 | NVars - number of independent variables
|
---|
90 |
|
---|
91 | OUTPUT PARAMETERS:
|
---|
92 | Info - return code:
|
---|
93 | * -255, in case of unknown internal error
|
---|
94 | * -4, if internal SVD subroutine haven't converged
|
---|
95 | * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
|
---|
96 | * 1, if subroutine successfully finished
|
---|
97 | LM - linear model in the ALGLIB format. Use subroutines of
|
---|
98 | this unit to work with the model.
|
---|
99 | AR - additional results
|
---|
100 |
|
---|
101 |
|
---|
102 | -- ALGLIB --
|
---|
103 | Copyright 02.08.2008 by Bochkanov Sergey
|
---|
104 | *************************************************************************/
|
---|
105 | public static void lrbuild(ref double[,] xy,
|
---|
106 | int npoints,
|
---|
107 | int nvars,
|
---|
108 | ref int info,
|
---|
109 | ref linearmodel lm,
|
---|
110 | ref lrreport ar)
|
---|
111 | {
|
---|
112 | double[] s = new double[0];
|
---|
113 | int i = 0;
|
---|
114 | double sigma2 = 0;
|
---|
115 | int i_ = 0;
|
---|
116 |
|
---|
117 | if( npoints<=nvars+1 | nvars<1 )
|
---|
118 | {
|
---|
119 | info = -1;
|
---|
120 | return;
|
---|
121 | }
|
---|
122 | s = new double[npoints-1+1];
|
---|
123 | for(i=0; i<=npoints-1; i++)
|
---|
124 | {
|
---|
125 | s[i] = 1;
|
---|
126 | }
|
---|
127 | lrbuilds(ref xy, ref s, npoints, nvars, ref info, ref lm, ref ar);
|
---|
128 | if( info<0 )
|
---|
129 | {
|
---|
130 | return;
|
---|
131 | }
|
---|
132 | sigma2 = AP.Math.Sqr(ar.rmserror)*npoints/(npoints-nvars-1);
|
---|
133 | for(i=0; i<=nvars; i++)
|
---|
134 | {
|
---|
135 | for(i_=0; i_<=nvars;i_++)
|
---|
136 | {
|
---|
137 | ar.c[i,i_] = sigma2*ar.c[i,i_];
|
---|
138 | }
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 |
|
---|
143 | /*************************************************************************
|
---|
144 | Linear regression
|
---|
145 |
|
---|
146 | Variant of LRBuild which uses vector of standatd deviations (errors in
|
---|
147 | function values).
|
---|
148 |
|
---|
149 | INPUT PARAMETERS:
|
---|
150 | XY - training set, array [0..NPoints-1,0..NVars]:
|
---|
151 | * NVars columns - independent variables
|
---|
152 | * last column - dependent variable
|
---|
153 | S - standard deviations (errors in function values)
|
---|
154 | array[0..NPoints-1], S[i]>0.
|
---|
155 | NPoints - training set size, NPoints>NVars+1
|
---|
156 | NVars - number of independent variables
|
---|
157 |
|
---|
158 | OUTPUT PARAMETERS:
|
---|
159 | Info - return code:
|
---|
160 | * -255, in case of unknown internal error
|
---|
161 | * -4, if internal SVD subroutine haven't converged
|
---|
162 | * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
|
---|
163 | * -2, if S[I]<=0
|
---|
164 | * 1, if subroutine successfully finished
|
---|
165 | LM - linear model in the ALGLIB format. Use subroutines of
|
---|
166 | this unit to work with the model.
|
---|
167 | AR - additional results
|
---|
168 |
|
---|
169 |
|
---|
170 | -- ALGLIB --
|
---|
171 | Copyright 02.08.2008 by Bochkanov Sergey
|
---|
172 | *************************************************************************/
|
---|
173 | public static void lrbuilds(ref double[,] xy,
|
---|
174 | ref double[] s,
|
---|
175 | int npoints,
|
---|
176 | int nvars,
|
---|
177 | ref int info,
|
---|
178 | ref linearmodel lm,
|
---|
179 | ref lrreport ar)
|
---|
180 | {
|
---|
181 | double[,] xyi = new double[0,0];
|
---|
182 | double[] x = new double[0];
|
---|
183 | double[] means = new double[0];
|
---|
184 | double[] sigmas = new double[0];
|
---|
185 | int i = 0;
|
---|
186 | int j = 0;
|
---|
187 | double v = 0;
|
---|
188 | int offs = 0;
|
---|
189 | double mean = 0;
|
---|
190 | double variance = 0;
|
---|
191 | double skewness = 0;
|
---|
192 | double kurtosis = 0;
|
---|
193 | int i_ = 0;
|
---|
194 |
|
---|
195 |
|
---|
196 | //
|
---|
197 | // Test parameters
|
---|
198 | //
|
---|
199 | if( npoints<=nvars+1 | nvars<1 )
|
---|
200 | {
|
---|
201 | info = -1;
|
---|
202 | return;
|
---|
203 | }
|
---|
204 |
|
---|
205 | //
|
---|
206 | // Copy data, add one more column (constant term)
|
---|
207 | //
|
---|
208 | xyi = new double[npoints-1+1, nvars+1+1];
|
---|
209 | for(i=0; i<=npoints-1; i++)
|
---|
210 | {
|
---|
211 | for(i_=0; i_<=nvars-1;i_++)
|
---|
212 | {
|
---|
213 | xyi[i,i_] = xy[i,i_];
|
---|
214 | }
|
---|
215 | xyi[i,nvars] = 1;
|
---|
216 | xyi[i,nvars+1] = xy[i,nvars];
|
---|
217 | }
|
---|
218 |
|
---|
219 | //
|
---|
220 | // Standartization
|
---|
221 | //
|
---|
222 | x = new double[npoints-1+1];
|
---|
223 | means = new double[nvars-1+1];
|
---|
224 | sigmas = new double[nvars-1+1];
|
---|
225 | for(j=0; j<=nvars-1; j++)
|
---|
226 | {
|
---|
227 | for(i_=0; i_<=npoints-1;i_++)
|
---|
228 | {
|
---|
229 | x[i_] = xy[i_,j];
|
---|
230 | }
|
---|
231 | descriptivestatistics.calculatemoments(ref x, npoints, ref mean, ref variance, ref skewness, ref kurtosis);
|
---|
232 | means[j] = mean;
|
---|
233 | sigmas[j] = Math.Sqrt(variance);
|
---|
234 | if( sigmas[j]==0 )
|
---|
235 | {
|
---|
236 | sigmas[j] = 1;
|
---|
237 | }
|
---|
238 | for(i=0; i<=npoints-1; i++)
|
---|
239 | {
|
---|
240 | xyi[i,j] = (xyi[i,j]-means[j])/sigmas[j];
|
---|
241 | }
|
---|
242 | }
|
---|
243 |
|
---|
244 | //
|
---|
245 | // Internal processing
|
---|
246 | //
|
---|
247 | lrinternal(ref xyi, ref s, npoints, nvars+1, ref info, ref lm, ref ar);
|
---|
248 | if( info<0 )
|
---|
249 | {
|
---|
250 | return;
|
---|
251 | }
|
---|
252 |
|
---|
253 | //
|
---|
254 | // Un-standartization
|
---|
255 | //
|
---|
256 | offs = (int)Math.Round(lm.w[3]);
|
---|
257 | for(j=0; j<=nvars-1; j++)
|
---|
258 | {
|
---|
259 |
|
---|
260 | //
|
---|
261 | // Constant term is updated (and its covariance too,
|
---|
262 | // since it gets some variance from J-th component)
|
---|
263 | //
|
---|
264 | lm.w[offs+nvars] = lm.w[offs+nvars]-lm.w[offs+j]*means[j]/sigmas[j];
|
---|
265 | v = means[j]/sigmas[j];
|
---|
266 | for(i_=0; i_<=nvars;i_++)
|
---|
267 | {
|
---|
268 | ar.c[nvars,i_] = ar.c[nvars,i_] - v*ar.c[j,i_];
|
---|
269 | }
|
---|
270 | for(i_=0; i_<=nvars;i_++)
|
---|
271 | {
|
---|
272 | ar.c[i_,nvars] = ar.c[i_,nvars] - v*ar.c[i_,j];
|
---|
273 | }
|
---|
274 |
|
---|
275 | //
|
---|
276 | // J-th term is updated
|
---|
277 | //
|
---|
278 | lm.w[offs+j] = lm.w[offs+j]/sigmas[j];
|
---|
279 | v = 1/sigmas[j];
|
---|
280 | for(i_=0; i_<=nvars;i_++)
|
---|
281 | {
|
---|
282 | ar.c[j,i_] = v*ar.c[j,i_];
|
---|
283 | }
|
---|
284 | for(i_=0; i_<=nvars;i_++)
|
---|
285 | {
|
---|
286 | ar.c[i_,j] = v*ar.c[i_,j];
|
---|
287 | }
|
---|
288 | }
|
---|
289 | }
|
---|
290 |
|
---|
291 |
|
---|
292 | /*************************************************************************
|
---|
293 | Like LRBuildS, but builds model
|
---|
294 |
|
---|
295 | Y = A(0)*X[0] + ... + A(N-1)*X[N-1]
|
---|
296 |
|
---|
297 | i.e. with zero constant term.
|
---|
298 |
|
---|
299 | -- ALGLIB --
|
---|
300 | Copyright 30.10.2008 by Bochkanov Sergey
|
---|
301 | *************************************************************************/
|
---|
302 | public static void lrbuildzs(ref double[,] xy,
|
---|
303 | ref double[] s,
|
---|
304 | int npoints,
|
---|
305 | int nvars,
|
---|
306 | ref int info,
|
---|
307 | ref linearmodel lm,
|
---|
308 | ref lrreport ar)
|
---|
309 | {
|
---|
310 | double[,] xyi = new double[0,0];
|
---|
311 | double[] x = new double[0];
|
---|
312 | double[] c = new double[0];
|
---|
313 | int i = 0;
|
---|
314 | int j = 0;
|
---|
315 | double v = 0;
|
---|
316 | int offs = 0;
|
---|
317 | double mean = 0;
|
---|
318 | double variance = 0;
|
---|
319 | double skewness = 0;
|
---|
320 | double kurtosis = 0;
|
---|
321 | int i_ = 0;
|
---|
322 |
|
---|
323 |
|
---|
324 | //
|
---|
325 | // Test parameters
|
---|
326 | //
|
---|
327 | if( npoints<=nvars+1 | nvars<1 )
|
---|
328 | {
|
---|
329 | info = -1;
|
---|
330 | return;
|
---|
331 | }
|
---|
332 |
|
---|
333 | //
|
---|
334 | // Copy data, add one more column (constant term)
|
---|
335 | //
|
---|
336 | xyi = new double[npoints-1+1, nvars+1+1];
|
---|
337 | for(i=0; i<=npoints-1; i++)
|
---|
338 | {
|
---|
339 | for(i_=0; i_<=nvars-1;i_++)
|
---|
340 | {
|
---|
341 | xyi[i,i_] = xy[i,i_];
|
---|
342 | }
|
---|
343 | xyi[i,nvars] = 0;
|
---|
344 | xyi[i,nvars+1] = xy[i,nvars];
|
---|
345 | }
|
---|
346 |
|
---|
347 | //
|
---|
348 | // Standartization: unusual scaling
|
---|
349 | //
|
---|
350 | x = new double[npoints-1+1];
|
---|
351 | c = new double[nvars-1+1];
|
---|
352 | for(j=0; j<=nvars-1; j++)
|
---|
353 | {
|
---|
354 | for(i_=0; i_<=npoints-1;i_++)
|
---|
355 | {
|
---|
356 | x[i_] = xy[i_,j];
|
---|
357 | }
|
---|
358 | descriptivestatistics.calculatemoments(ref x, npoints, ref mean, ref variance, ref skewness, ref kurtosis);
|
---|
359 | if( Math.Abs(mean)>Math.Sqrt(variance) )
|
---|
360 | {
|
---|
361 |
|
---|
362 | //
|
---|
363 | // variation is relatively small, it is better to
|
---|
364 | // bring mean value to 1
|
---|
365 | //
|
---|
366 | c[j] = mean;
|
---|
367 | }
|
---|
368 | else
|
---|
369 | {
|
---|
370 |
|
---|
371 | //
|
---|
372 | // variation is large, it is better to bring variance to 1
|
---|
373 | //
|
---|
374 | if( variance==0 )
|
---|
375 | {
|
---|
376 | variance = 1;
|
---|
377 | }
|
---|
378 | c[j] = Math.Sqrt(variance);
|
---|
379 | }
|
---|
380 | for(i=0; i<=npoints-1; i++)
|
---|
381 | {
|
---|
382 | xyi[i,j] = xyi[i,j]/c[j];
|
---|
383 | }
|
---|
384 | }
|
---|
385 |
|
---|
386 | //
|
---|
387 | // Internal processing
|
---|
388 | //
|
---|
389 | lrinternal(ref xyi, ref s, npoints, nvars+1, ref info, ref lm, ref ar);
|
---|
390 | if( info<0 )
|
---|
391 | {
|
---|
392 | return;
|
---|
393 | }
|
---|
394 |
|
---|
395 | //
|
---|
396 | // Un-standartization
|
---|
397 | //
|
---|
398 | offs = (int)Math.Round(lm.w[3]);
|
---|
399 | for(j=0; j<=nvars-1; j++)
|
---|
400 | {
|
---|
401 |
|
---|
402 | //
|
---|
403 | // J-th term is updated
|
---|
404 | //
|
---|
405 | lm.w[offs+j] = lm.w[offs+j]/c[j];
|
---|
406 | v = 1/c[j];
|
---|
407 | for(i_=0; i_<=nvars;i_++)
|
---|
408 | {
|
---|
409 | ar.c[j,i_] = v*ar.c[j,i_];
|
---|
410 | }
|
---|
411 | for(i_=0; i_<=nvars;i_++)
|
---|
412 | {
|
---|
413 | ar.c[i_,j] = v*ar.c[i_,j];
|
---|
414 | }
|
---|
415 | }
|
---|
416 | }
|
---|
417 |
|
---|
418 |
|
---|
419 | /*************************************************************************
|
---|
420 | Like LRBuild but builds model
|
---|
421 |
|
---|
422 | Y = A(0)*X[0] + ... + A(N-1)*X[N-1]
|
---|
423 |
|
---|
424 | i.e. with zero constant term.
|
---|
425 |
|
---|
426 | -- ALGLIB --
|
---|
427 | Copyright 30.10.2008 by Bochkanov Sergey
|
---|
428 | *************************************************************************/
|
---|
429 | public static void lrbuildz(ref double[,] xy,
|
---|
430 | int npoints,
|
---|
431 | int nvars,
|
---|
432 | ref int info,
|
---|
433 | ref linearmodel lm,
|
---|
434 | ref lrreport ar)
|
---|
435 | {
|
---|
436 | double[] s = new double[0];
|
---|
437 | int i = 0;
|
---|
438 | double sigma2 = 0;
|
---|
439 | int i_ = 0;
|
---|
440 |
|
---|
441 | if( npoints<=nvars+1 | nvars<1 )
|
---|
442 | {
|
---|
443 | info = -1;
|
---|
444 | return;
|
---|
445 | }
|
---|
446 | s = new double[npoints-1+1];
|
---|
447 | for(i=0; i<=npoints-1; i++)
|
---|
448 | {
|
---|
449 | s[i] = 1;
|
---|
450 | }
|
---|
451 | lrbuildzs(ref xy, ref s, npoints, nvars, ref info, ref lm, ref ar);
|
---|
452 | if( info<0 )
|
---|
453 | {
|
---|
454 | return;
|
---|
455 | }
|
---|
456 | sigma2 = AP.Math.Sqr(ar.rmserror)*npoints/(npoints-nvars-1);
|
---|
457 | for(i=0; i<=nvars; i++)
|
---|
458 | {
|
---|
459 | for(i_=0; i_<=nvars;i_++)
|
---|
460 | {
|
---|
461 | ar.c[i,i_] = sigma2*ar.c[i,i_];
|
---|
462 | }
|
---|
463 | }
|
---|
464 | }
|
---|
465 |
|
---|
466 |
|
---|
467 | /*************************************************************************
|
---|
468 | Unpacks coefficients of linear model.
|
---|
469 |
|
---|
470 | INPUT PARAMETERS:
|
---|
471 | LM - linear model in ALGLIB format
|
---|
472 |
|
---|
473 | OUTPUT PARAMETERS:
|
---|
474 | V - coefficients, array[0..NVars]
|
---|
475 | NVars - number of independent variables (one less than number
|
---|
476 | of coefficients)
|
---|
477 |
|
---|
478 | -- ALGLIB --
|
---|
479 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
480 | *************************************************************************/
|
---|
481 | public static void lrunpack(ref linearmodel lm,
|
---|
482 | ref double[] v,
|
---|
483 | ref int nvars)
|
---|
484 | {
|
---|
485 | int offs = 0;
|
---|
486 | int i_ = 0;
|
---|
487 | int i1_ = 0;
|
---|
488 |
|
---|
489 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
|
---|
490 | nvars = (int)Math.Round(lm.w[2]);
|
---|
491 | offs = (int)Math.Round(lm.w[3]);
|
---|
492 | v = new double[nvars+1];
|
---|
493 | i1_ = (offs) - (0);
|
---|
494 | for(i_=0; i_<=nvars;i_++)
|
---|
495 | {
|
---|
496 | v[i_] = lm.w[i_+i1_];
|
---|
497 | }
|
---|
498 | }
|
---|
499 |
|
---|
500 |
|
---|
501 | /*************************************************************************
|
---|
502 | "Packs" coefficients and creates linear model in ALGLIB format (LRUnpack
|
---|
503 | reversed).
|
---|
504 |
|
---|
505 | INPUT PARAMETERS:
|
---|
506 | V - coefficients, array[0..NVars]
|
---|
507 | NVars - number of independent variables
|
---|
508 |
|
---|
509 | OUTPUT PAREMETERS:
|
---|
510 | LM - linear model.
|
---|
511 |
|
---|
512 | -- ALGLIB --
|
---|
513 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
514 | *************************************************************************/
|
---|
515 | public static void lrpack(ref double[] v,
|
---|
516 | int nvars,
|
---|
517 | ref linearmodel lm)
|
---|
518 | {
|
---|
519 | int offs = 0;
|
---|
520 | int i_ = 0;
|
---|
521 | int i1_ = 0;
|
---|
522 |
|
---|
523 | lm.w = new double[4+nvars+1];
|
---|
524 | offs = 4;
|
---|
525 | lm.w[0] = 4+nvars+1;
|
---|
526 | lm.w[1] = lrvnum;
|
---|
527 | lm.w[2] = nvars;
|
---|
528 | lm.w[3] = offs;
|
---|
529 | i1_ = (0) - (offs);
|
---|
530 | for(i_=offs; i_<=offs+nvars;i_++)
|
---|
531 | {
|
---|
532 | lm.w[i_] = v[i_+i1_];
|
---|
533 | }
|
---|
534 | }
|
---|
535 |
|
---|
536 |
|
---|
537 | /*************************************************************************
|
---|
538 | Procesing
|
---|
539 |
|
---|
540 | INPUT PARAMETERS:
|
---|
541 | LM - linear model
|
---|
542 | X - input vector, array[0..NVars-1].
|
---|
543 |
|
---|
544 | Result:
|
---|
545 | value of linear model regression estimate
|
---|
546 |
|
---|
547 | -- ALGLIB --
|
---|
548 | Copyright 03.09.2008 by Bochkanov Sergey
|
---|
549 | *************************************************************************/
|
---|
550 | public static double lrprocess(ref linearmodel lm,
|
---|
551 | ref double[] x)
|
---|
552 | {
|
---|
553 | double result = 0;
|
---|
554 | double v = 0;
|
---|
555 | int offs = 0;
|
---|
556 | int nvars = 0;
|
---|
557 | int i_ = 0;
|
---|
558 | int i1_ = 0;
|
---|
559 |
|
---|
560 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
|
---|
561 | nvars = (int)Math.Round(lm.w[2]);
|
---|
562 | offs = (int)Math.Round(lm.w[3]);
|
---|
563 | i1_ = (offs)-(0);
|
---|
564 | v = 0.0;
|
---|
565 | for(i_=0; i_<=nvars-1;i_++)
|
---|
566 | {
|
---|
567 | v += x[i_]*lm.w[i_+i1_];
|
---|
568 | }
|
---|
569 | result = v+lm.w[offs+nvars];
|
---|
570 | return result;
|
---|
571 | }
|
---|
572 |
|
---|
573 |
|
---|
574 | /*************************************************************************
|
---|
575 | RMS error on the test set
|
---|
576 |
|
---|
577 | INPUT PARAMETERS:
|
---|
578 | LM - linear model
|
---|
579 | XY - test set
|
---|
580 | NPoints - test set size
|
---|
581 |
|
---|
582 | RESULT:
|
---|
583 | root mean square error.
|
---|
584 |
|
---|
585 | -- ALGLIB --
|
---|
586 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
587 | *************************************************************************/
|
---|
588 | public static double lrrmserror(ref linearmodel lm,
|
---|
589 | ref double[,] xy,
|
---|
590 | int npoints)
|
---|
591 | {
|
---|
592 | double result = 0;
|
---|
593 | int i = 0;
|
---|
594 | double v = 0;
|
---|
595 | int offs = 0;
|
---|
596 | int nvars = 0;
|
---|
597 | int i_ = 0;
|
---|
598 | int i1_ = 0;
|
---|
599 |
|
---|
600 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
|
---|
601 | nvars = (int)Math.Round(lm.w[2]);
|
---|
602 | offs = (int)Math.Round(lm.w[3]);
|
---|
603 | result = 0;
|
---|
604 | for(i=0; i<=npoints-1; i++)
|
---|
605 | {
|
---|
606 | i1_ = (offs)-(0);
|
---|
607 | v = 0.0;
|
---|
608 | for(i_=0; i_<=nvars-1;i_++)
|
---|
609 | {
|
---|
610 | v += xy[i,i_]*lm.w[i_+i1_];
|
---|
611 | }
|
---|
612 | v = v+lm.w[offs+nvars];
|
---|
613 | result = result+AP.Math.Sqr(v-xy[i,nvars]);
|
---|
614 | }
|
---|
615 | result = Math.Sqrt(result/npoints);
|
---|
616 | return result;
|
---|
617 | }
|
---|
618 |
|
---|
619 |
|
---|
620 | /*************************************************************************
|
---|
621 | Average error on the test set
|
---|
622 |
|
---|
623 | INPUT PARAMETERS:
|
---|
624 | LM - linear model
|
---|
625 | XY - test set
|
---|
626 | NPoints - test set size
|
---|
627 |
|
---|
628 | RESULT:
|
---|
629 | average error.
|
---|
630 |
|
---|
631 | -- ALGLIB --
|
---|
632 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
633 | *************************************************************************/
|
---|
634 | public static double lravgerror(ref linearmodel lm,
|
---|
635 | ref double[,] xy,
|
---|
636 | int npoints)
|
---|
637 | {
|
---|
638 | double result = 0;
|
---|
639 | int i = 0;
|
---|
640 | double v = 0;
|
---|
641 | int offs = 0;
|
---|
642 | int nvars = 0;
|
---|
643 | int i_ = 0;
|
---|
644 | int i1_ = 0;
|
---|
645 |
|
---|
646 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
|
---|
647 | nvars = (int)Math.Round(lm.w[2]);
|
---|
648 | offs = (int)Math.Round(lm.w[3]);
|
---|
649 | result = 0;
|
---|
650 | for(i=0; i<=npoints-1; i++)
|
---|
651 | {
|
---|
652 | i1_ = (offs)-(0);
|
---|
653 | v = 0.0;
|
---|
654 | for(i_=0; i_<=nvars-1;i_++)
|
---|
655 | {
|
---|
656 | v += xy[i,i_]*lm.w[i_+i1_];
|
---|
657 | }
|
---|
658 | v = v+lm.w[offs+nvars];
|
---|
659 | result = result+Math.Abs(v-xy[i,nvars]);
|
---|
660 | }
|
---|
661 | result = result/npoints;
|
---|
662 | return result;
|
---|
663 | }
|
---|
664 |
|
---|
665 |
|
---|
666 | /*************************************************************************
|
---|
667 | RMS error on the test set
|
---|
668 |
|
---|
669 | INPUT PARAMETERS:
|
---|
670 | LM - linear model
|
---|
671 | XY - test set
|
---|
672 | NPoints - test set size
|
---|
673 |
|
---|
674 | RESULT:
|
---|
675 | average relative error.
|
---|
676 |
|
---|
677 | -- ALGLIB --
|
---|
678 | Copyright 30.08.2008 by Bochkanov Sergey
|
---|
679 | *************************************************************************/
|
---|
680 | public static double lravgrelerror(ref linearmodel lm,
|
---|
681 | ref double[,] xy,
|
---|
682 | int npoints)
|
---|
683 | {
|
---|
684 | double result = 0;
|
---|
685 | int i = 0;
|
---|
686 | int k = 0;
|
---|
687 | double v = 0;
|
---|
688 | int offs = 0;
|
---|
689 | int nvars = 0;
|
---|
690 | int i_ = 0;
|
---|
691 | int i1_ = 0;
|
---|
692 |
|
---|
693 | System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
|
---|
694 | nvars = (int)Math.Round(lm.w[2]);
|
---|
695 | offs = (int)Math.Round(lm.w[3]);
|
---|
696 | result = 0;
|
---|
697 | k = 0;
|
---|
698 | for(i=0; i<=npoints-1; i++)
|
---|
699 | {
|
---|
700 | if( xy[i,nvars]!=0 )
|
---|
701 | {
|
---|
702 | i1_ = (offs)-(0);
|
---|
703 | v = 0.0;
|
---|
704 | for(i_=0; i_<=nvars-1;i_++)
|
---|
705 | {
|
---|
706 | v += xy[i,i_]*lm.w[i_+i1_];
|
---|
707 | }
|
---|
708 | v = v+lm.w[offs+nvars];
|
---|
709 | result = result+Math.Abs((v-xy[i,nvars])/xy[i,nvars]);
|
---|
710 | k = k+1;
|
---|
711 | }
|
---|
712 | }
|
---|
713 | if( k!=0 )
|
---|
714 | {
|
---|
715 | result = result/k;
|
---|
716 | }
|
---|
717 | return result;
|
---|
718 | }
|
---|
719 |
|
---|
720 |
|
---|
721 | /*************************************************************************
|
---|
722 | Copying of LinearModel strucure
|
---|
723 |
|
---|
724 | INPUT PARAMETERS:
|
---|
725 | LM1 - original
|
---|
726 |
|
---|
727 | OUTPUT PARAMETERS:
|
---|
728 | LM2 - copy
|
---|
729 |
|
---|
730 | -- ALGLIB --
|
---|
731 | Copyright 15.03.2009 by Bochkanov Sergey
|
---|
732 | *************************************************************************/
|
---|
733 | public static void lrcopy(ref linearmodel lm1,
|
---|
734 | ref linearmodel lm2)
|
---|
735 | {
|
---|
736 | int k = 0;
|
---|
737 | int i_ = 0;
|
---|
738 |
|
---|
739 | k = (int)Math.Round(lm1.w[0]);
|
---|
740 | lm2.w = new double[k-1+1];
|
---|
741 | for(i_=0; i_<=k-1;i_++)
|
---|
742 | {
|
---|
743 | lm2.w[i_] = lm1.w[i_];
|
---|
744 | }
|
---|
745 | }
|
---|
746 |
|
---|
747 |
|
---|
748 | /*************************************************************************
|
---|
749 | Serialization of LinearModel strucure
|
---|
750 |
|
---|
751 | INPUT PARAMETERS:
|
---|
752 | LM - original
|
---|
753 |
|
---|
754 | OUTPUT PARAMETERS:
|
---|
755 | RA - array of real numbers which stores model,
|
---|
756 | array[0..RLen-1]
|
---|
757 | RLen - RA lenght
|
---|
758 |
|
---|
759 | -- ALGLIB --
|
---|
760 | Copyright 15.03.2009 by Bochkanov Sergey
|
---|
761 | *************************************************************************/
|
---|
762 | public static void lrserialize(ref linearmodel lm,
|
---|
763 | ref double[] ra,
|
---|
764 | ref int rlen)
|
---|
765 | {
|
---|
766 | int i_ = 0;
|
---|
767 | int i1_ = 0;
|
---|
768 |
|
---|
769 | rlen = (int)Math.Round(lm.w[0])+1;
|
---|
770 | ra = new double[rlen-1+1];
|
---|
771 | ra[0] = lrvnum;
|
---|
772 | i1_ = (0) - (1);
|
---|
773 | for(i_=1; i_<=rlen-1;i_++)
|
---|
774 | {
|
---|
775 | ra[i_] = lm.w[i_+i1_];
|
---|
776 | }
|
---|
777 | }
|
---|
778 |
|
---|
779 |
|
---|
780 | /*************************************************************************
|
---|
781 | Unserialization of DecisionForest strucure
|
---|
782 |
|
---|
783 | INPUT PARAMETERS:
|
---|
784 | RA - real array which stores decision forest
|
---|
785 |
|
---|
786 | OUTPUT PARAMETERS:
|
---|
787 | LM - unserialized structure
|
---|
788 |
|
---|
789 | -- ALGLIB --
|
---|
790 | Copyright 15.03.2009 by Bochkanov Sergey
|
---|
791 | *************************************************************************/
|
---|
792 | public static void lrunserialize(ref double[] ra,
|
---|
793 | ref linearmodel lm)
|
---|
794 | {
|
---|
795 | int i_ = 0;
|
---|
796 | int i1_ = 0;
|
---|
797 |
|
---|
798 | System.Diagnostics.Debug.Assert((int)Math.Round(ra[0])==lrvnum, "LRUnserialize: incorrect array!");
|
---|
799 | lm.w = new double[(int)Math.Round(ra[1])-1+1];
|
---|
800 | i1_ = (1) - (0);
|
---|
801 | for(i_=0; i_<=(int)Math.Round(ra[1])-1;i_++)
|
---|
802 | {
|
---|
803 | lm.w[i_] = ra[i_+i1_];
|
---|
804 | }
|
---|
805 | }
|
---|
806 |
|
---|
807 |
|
---|
808 | /*************************************************************************
|
---|
809 | Obsolete subroutine, use LRBuildS
|
---|
810 |
|
---|
811 | -- ALGLIB --
|
---|
812 | Copyright 26.04.2008 by Bochkanov Sergey
|
---|
813 |
|
---|
814 | References:
|
---|
815 | 1. Numerical Recipes in C, "15.2 Fitting Data to a Straight Line"
|
---|
816 | *************************************************************************/
|
---|
817 | public static void lrlines(ref double[,] xy,
|
---|
818 | ref double[] s,
|
---|
819 | int n,
|
---|
820 | ref int info,
|
---|
821 | ref double a,
|
---|
822 | ref double b,
|
---|
823 | ref double vara,
|
---|
824 | ref double varb,
|
---|
825 | ref double covab,
|
---|
826 | ref double corrab,
|
---|
827 | ref double p)
|
---|
828 | {
|
---|
829 | int i = 0;
|
---|
830 | double ss = 0;
|
---|
831 | double sx = 0;
|
---|
832 | double sxx = 0;
|
---|
833 | double sy = 0;
|
---|
834 | double stt = 0;
|
---|
835 | double e1 = 0;
|
---|
836 | double e2 = 0;
|
---|
837 | double t = 0;
|
---|
838 | double chi2 = 0;
|
---|
839 |
|
---|
840 | if( n<2 )
|
---|
841 | {
|
---|
842 | info = -1;
|
---|
843 | return;
|
---|
844 | }
|
---|
845 | for(i=0; i<=n-1; i++)
|
---|
846 | {
|
---|
847 | if( s[i]<=0 )
|
---|
848 | {
|
---|
849 | info = -2;
|
---|
850 | return;
|
---|
851 | }
|
---|
852 | }
|
---|
853 | info = 1;
|
---|
854 |
|
---|
855 | //
|
---|
856 | // Calculate S, SX, SY, SXX
|
---|
857 | //
|
---|
858 | ss = 0;
|
---|
859 | sx = 0;
|
---|
860 | sy = 0;
|
---|
861 | sxx = 0;
|
---|
862 | for(i=0; i<=n-1; i++)
|
---|
863 | {
|
---|
864 | t = AP.Math.Sqr(s[i]);
|
---|
865 | ss = ss+1/t;
|
---|
866 | sx = sx+xy[i,0]/t;
|
---|
867 | sy = sy+xy[i,1]/t;
|
---|
868 | sxx = sxx+AP.Math.Sqr(xy[i,0])/t;
|
---|
869 | }
|
---|
870 |
|
---|
871 | //
|
---|
872 | // Test for condition number
|
---|
873 | //
|
---|
874 | t = Math.Sqrt(4*AP.Math.Sqr(sx)+AP.Math.Sqr(ss-sxx));
|
---|
875 | e1 = 0.5*(ss+sxx+t);
|
---|
876 | e2 = 0.5*(ss+sxx-t);
|
---|
877 | if( Math.Min(e1, e2)<=1000*AP.Math.MachineEpsilon*Math.Max(e1, e2) )
|
---|
878 | {
|
---|
879 | info = -3;
|
---|
880 | return;
|
---|
881 | }
|
---|
882 |
|
---|
883 | //
|
---|
884 | // Calculate A, B
|
---|
885 | //
|
---|
886 | a = 0;
|
---|
887 | b = 0;
|
---|
888 | stt = 0;
|
---|
889 | for(i=0; i<=n-1; i++)
|
---|
890 | {
|
---|
891 | t = (xy[i,0]-sx/ss)/s[i];
|
---|
892 | b = b+t*xy[i,1]/s[i];
|
---|
893 | stt = stt+AP.Math.Sqr(t);
|
---|
894 | }
|
---|
895 | b = b/stt;
|
---|
896 | a = (sy-sx*b)/ss;
|
---|
897 |
|
---|
898 | //
|
---|
899 | // Calculate goodness-of-fit
|
---|
900 | //
|
---|
901 | if( n>2 )
|
---|
902 | {
|
---|
903 | chi2 = 0;
|
---|
904 | for(i=0; i<=n-1; i++)
|
---|
905 | {
|
---|
906 | chi2 = chi2+AP.Math.Sqr((xy[i,1]-a-b*xy[i,0])/s[i]);
|
---|
907 | }
|
---|
908 | p = igammaf.incompletegammac(((double)(n-2))/(double)(2), chi2/2);
|
---|
909 | }
|
---|
910 | else
|
---|
911 | {
|
---|
912 | p = 1;
|
---|
913 | }
|
---|
914 |
|
---|
915 | //
|
---|
916 | // Calculate other parameters
|
---|
917 | //
|
---|
918 | vara = (1+AP.Math.Sqr(sx)/(ss*stt))/ss;
|
---|
919 | varb = 1/stt;
|
---|
920 | covab = -(sx/(ss*stt));
|
---|
921 | corrab = covab/Math.Sqrt(vara*varb);
|
---|
922 | }
|
---|
923 |
|
---|
924 |
|
---|
925 | /*************************************************************************
|
---|
926 | Obsolete subroutine, use LRBuild
|
---|
927 |
|
---|
928 | -- ALGLIB --
|
---|
929 | Copyright 02.08.2008 by Bochkanov Sergey
|
---|
930 | *************************************************************************/
|
---|
931 | public static void lrline(ref double[,] xy,
|
---|
932 | int n,
|
---|
933 | ref int info,
|
---|
934 | ref double a,
|
---|
935 | ref double b)
|
---|
936 | {
|
---|
937 | double[] s = new double[0];
|
---|
938 | int i = 0;
|
---|
939 | double vara = 0;
|
---|
940 | double varb = 0;
|
---|
941 | double covab = 0;
|
---|
942 | double corrab = 0;
|
---|
943 | double p = 0;
|
---|
944 |
|
---|
945 | if( n<2 )
|
---|
946 | {
|
---|
947 | info = -1;
|
---|
948 | return;
|
---|
949 | }
|
---|
950 | s = new double[n-1+1];
|
---|
951 | for(i=0; i<=n-1; i++)
|
---|
952 | {
|
---|
953 | s[i] = 1;
|
---|
954 | }
|
---|
955 | lrlines(ref xy, ref s, n, ref info, ref a, ref b, ref vara, ref varb, ref covab, ref corrab, ref p);
|
---|
956 | }
|
---|
957 |
|
---|
958 |
|
---|
959 | /*************************************************************************
|
---|
960 | Internal linear regression subroutine
|
---|
961 | *************************************************************************/
|
---|
962 | private static void lrinternal(ref double[,] xy,
|
---|
963 | ref double[] s,
|
---|
964 | int npoints,
|
---|
965 | int nvars,
|
---|
966 | ref int info,
|
---|
967 | ref linearmodel lm,
|
---|
968 | ref lrreport ar)
|
---|
969 | {
|
---|
970 | double[,] a = new double[0,0];
|
---|
971 | double[,] u = new double[0,0];
|
---|
972 | double[,] vt = new double[0,0];
|
---|
973 | double[,] vm = new double[0,0];
|
---|
974 | double[,] xym = new double[0,0];
|
---|
975 | double[] b = new double[0];
|
---|
976 | double[] sv = new double[0];
|
---|
977 | double[] t = new double[0];
|
---|
978 | double[] svi = new double[0];
|
---|
979 | double[] work = new double[0];
|
---|
980 | int i = 0;
|
---|
981 | int j = 0;
|
---|
982 | int k = 0;
|
---|
983 | int ncv = 0;
|
---|
984 | int na = 0;
|
---|
985 | int nacv = 0;
|
---|
986 | double r = 0;
|
---|
987 | double p = 0;
|
---|
988 | double epstol = 0;
|
---|
989 | lrreport ar2 = new lrreport();
|
---|
990 | int offs = 0;
|
---|
991 | linearmodel tlm = new linearmodel();
|
---|
992 | int i_ = 0;
|
---|
993 | int i1_ = 0;
|
---|
994 |
|
---|
995 | epstol = 1000;
|
---|
996 |
|
---|
997 | //
|
---|
998 | // Check for errors in data
|
---|
999 | //
|
---|
1000 | if( npoints<nvars | nvars<1 )
|
---|
1001 | {
|
---|
1002 | info = -1;
|
---|
1003 | return;
|
---|
1004 | }
|
---|
1005 | for(i=0; i<=npoints-1; i++)
|
---|
1006 | {
|
---|
1007 | if( s[i]<=0 )
|
---|
1008 | {
|
---|
1009 | info = -2;
|
---|
1010 | return;
|
---|
1011 | }
|
---|
1012 | }
|
---|
1013 | info = 1;
|
---|
1014 |
|
---|
1015 | //
|
---|
1016 | // Create design matrix
|
---|
1017 | //
|
---|
1018 | a = new double[npoints-1+1, nvars-1+1];
|
---|
1019 | b = new double[npoints-1+1];
|
---|
1020 | for(i=0; i<=npoints-1; i++)
|
---|
1021 | {
|
---|
1022 | r = 1/s[i];
|
---|
1023 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1024 | {
|
---|
1025 | a[i,i_] = r*xy[i,i_];
|
---|
1026 | }
|
---|
1027 | b[i] = xy[i,nvars]/s[i];
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | //
|
---|
1031 | // Allocate W:
|
---|
1032 | // W[0] array size
|
---|
1033 | // W[1] version number, 0
|
---|
1034 | // W[2] NVars (minus 1, to be compatible with external representation)
|
---|
1035 | // W[3] coefficients offset
|
---|
1036 | //
|
---|
1037 | lm.w = new double[4+nvars-1+1];
|
---|
1038 | offs = 4;
|
---|
1039 | lm.w[0] = 4+nvars;
|
---|
1040 | lm.w[1] = lrvnum;
|
---|
1041 | lm.w[2] = nvars-1;
|
---|
1042 | lm.w[3] = offs;
|
---|
1043 |
|
---|
1044 | //
|
---|
1045 | // Solve problem using SVD:
|
---|
1046 | //
|
---|
1047 | // 0. check for degeneracy (different types)
|
---|
1048 | // 1. A = U*diag(sv)*V'
|
---|
1049 | // 2. T = b'*U
|
---|
1050 | // 3. w = SUM((T[i]/sv[i])*V[..,i])
|
---|
1051 | // 4. cov(wi,wj) = SUM(Vji*Vjk/sv[i]^2,K=1..M)
|
---|
1052 | //
|
---|
1053 | // see $15.4 of "Numerical Recipes in C" for more information
|
---|
1054 | //
|
---|
1055 | t = new double[nvars-1+1];
|
---|
1056 | svi = new double[nvars-1+1];
|
---|
1057 | ar.c = new double[nvars-1+1, nvars-1+1];
|
---|
1058 | vm = new double[nvars-1+1, nvars-1+1];
|
---|
1059 | if( !svd.rmatrixsvd(a, npoints, nvars, 1, 1, 2, ref sv, ref u, ref vt) )
|
---|
1060 | {
|
---|
1061 | info = -4;
|
---|
1062 | return;
|
---|
1063 | }
|
---|
1064 | if( sv[0]<=0 )
|
---|
1065 | {
|
---|
1066 |
|
---|
1067 | //
|
---|
1068 | // Degenerate case: zero design matrix.
|
---|
1069 | //
|
---|
1070 | for(i=offs; i<=offs+nvars-1; i++)
|
---|
1071 | {
|
---|
1072 | lm.w[i] = 0;
|
---|
1073 | }
|
---|
1074 | ar.rmserror = lrrmserror(ref lm, ref xy, npoints);
|
---|
1075 | ar.avgerror = lravgerror(ref lm, ref xy, npoints);
|
---|
1076 | ar.avgrelerror = lravgrelerror(ref lm, ref xy, npoints);
|
---|
1077 | ar.cvrmserror = ar.rmserror;
|
---|
1078 | ar.cvavgerror = ar.avgerror;
|
---|
1079 | ar.cvavgrelerror = ar.avgrelerror;
|
---|
1080 | ar.ncvdefects = 0;
|
---|
1081 | ar.cvdefects = new int[nvars-1+1];
|
---|
1082 | ar.c = new double[nvars-1+1, nvars-1+1];
|
---|
1083 | for(i=0; i<=nvars-1; i++)
|
---|
1084 | {
|
---|
1085 | for(j=0; j<=nvars-1; j++)
|
---|
1086 | {
|
---|
1087 | ar.c[i,j] = 0;
|
---|
1088 | }
|
---|
1089 | }
|
---|
1090 | return;
|
---|
1091 | }
|
---|
1092 | if( sv[nvars-1]<=epstol*AP.Math.MachineEpsilon*sv[0] )
|
---|
1093 | {
|
---|
1094 |
|
---|
1095 | //
|
---|
1096 | // Degenerate case, non-zero design matrix.
|
---|
1097 | //
|
---|
1098 | // We can leave it and solve task in SVD least squares fashion.
|
---|
1099 | // Solution and covariance matrix will be obtained correctly,
|
---|
1100 | // but CV error estimates - will not. It is better to reduce
|
---|
1101 | // it to non-degenerate task and to obtain correct CV estimates.
|
---|
1102 | //
|
---|
1103 | for(k=nvars; k>=1; k--)
|
---|
1104 | {
|
---|
1105 | if( sv[k-1]>epstol*AP.Math.MachineEpsilon*sv[0] )
|
---|
1106 | {
|
---|
1107 |
|
---|
1108 | //
|
---|
1109 | // Reduce
|
---|
1110 | //
|
---|
1111 | xym = new double[npoints-1+1, k+1];
|
---|
1112 | for(i=0; i<=npoints-1; i++)
|
---|
1113 | {
|
---|
1114 | for(j=0; j<=k-1; j++)
|
---|
1115 | {
|
---|
1116 | r = 0.0;
|
---|
1117 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1118 | {
|
---|
1119 | r += xy[i,i_]*vt[j,i_];
|
---|
1120 | }
|
---|
1121 | xym[i,j] = r;
|
---|
1122 | }
|
---|
1123 | xym[i,k] = xy[i,nvars];
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 | //
|
---|
1127 | // Solve
|
---|
1128 | //
|
---|
1129 | lrinternal(ref xym, ref s, npoints, k, ref info, ref tlm, ref ar2);
|
---|
1130 | if( info!=1 )
|
---|
1131 | {
|
---|
1132 | return;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | //
|
---|
1136 | // Convert back to un-reduced format
|
---|
1137 | //
|
---|
1138 | for(j=0; j<=nvars-1; j++)
|
---|
1139 | {
|
---|
1140 | lm.w[offs+j] = 0;
|
---|
1141 | }
|
---|
1142 | for(j=0; j<=k-1; j++)
|
---|
1143 | {
|
---|
1144 | r = tlm.w[offs+j];
|
---|
1145 | i1_ = (0) - (offs);
|
---|
1146 | for(i_=offs; i_<=offs+nvars-1;i_++)
|
---|
1147 | {
|
---|
1148 | lm.w[i_] = lm.w[i_] + r*vt[j,i_+i1_];
|
---|
1149 | }
|
---|
1150 | }
|
---|
1151 | ar.rmserror = ar2.rmserror;
|
---|
1152 | ar.avgerror = ar2.avgerror;
|
---|
1153 | ar.avgrelerror = ar2.avgrelerror;
|
---|
1154 | ar.cvrmserror = ar2.cvrmserror;
|
---|
1155 | ar.cvavgerror = ar2.cvavgerror;
|
---|
1156 | ar.cvavgrelerror = ar2.cvavgrelerror;
|
---|
1157 | ar.ncvdefects = ar2.ncvdefects;
|
---|
1158 | ar.cvdefects = new int[nvars-1+1];
|
---|
1159 | for(j=0; j<=ar.ncvdefects-1; j++)
|
---|
1160 | {
|
---|
1161 | ar.cvdefects[j] = ar2.cvdefects[j];
|
---|
1162 | }
|
---|
1163 | ar.c = new double[nvars-1+1, nvars-1+1];
|
---|
1164 | work = new double[nvars+1];
|
---|
1165 | blas.matrixmatrixmultiply(ref ar2.c, 0, k-1, 0, k-1, false, ref vt, 0, k-1, 0, nvars-1, false, 1.0, ref vm, 0, k-1, 0, nvars-1, 0.0, ref work);
|
---|
1166 | blas.matrixmatrixmultiply(ref vt, 0, k-1, 0, nvars-1, true, ref vm, 0, k-1, 0, nvars-1, false, 1.0, ref ar.c, 0, nvars-1, 0, nvars-1, 0.0, ref work);
|
---|
1167 | return;
|
---|
1168 | }
|
---|
1169 | }
|
---|
1170 | info = -255;
|
---|
1171 | return;
|
---|
1172 | }
|
---|
1173 | for(i=0; i<=nvars-1; i++)
|
---|
1174 | {
|
---|
1175 | if( sv[i]>epstol*AP.Math.MachineEpsilon*sv[0] )
|
---|
1176 | {
|
---|
1177 | svi[i] = 1/sv[i];
|
---|
1178 | }
|
---|
1179 | else
|
---|
1180 | {
|
---|
1181 | svi[i] = 0;
|
---|
1182 | }
|
---|
1183 | }
|
---|
1184 | for(i=0; i<=nvars-1; i++)
|
---|
1185 | {
|
---|
1186 | t[i] = 0;
|
---|
1187 | }
|
---|
1188 | for(i=0; i<=npoints-1; i++)
|
---|
1189 | {
|
---|
1190 | r = b[i];
|
---|
1191 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1192 | {
|
---|
1193 | t[i_] = t[i_] + r*u[i,i_];
|
---|
1194 | }
|
---|
1195 | }
|
---|
1196 | for(i=0; i<=nvars-1; i++)
|
---|
1197 | {
|
---|
1198 | lm.w[offs+i] = 0;
|
---|
1199 | }
|
---|
1200 | for(i=0; i<=nvars-1; i++)
|
---|
1201 | {
|
---|
1202 | r = t[i]*svi[i];
|
---|
1203 | i1_ = (0) - (offs);
|
---|
1204 | for(i_=offs; i_<=offs+nvars-1;i_++)
|
---|
1205 | {
|
---|
1206 | lm.w[i_] = lm.w[i_] + r*vt[i,i_+i1_];
|
---|
1207 | }
|
---|
1208 | }
|
---|
1209 | for(j=0; j<=nvars-1; j++)
|
---|
1210 | {
|
---|
1211 | r = svi[j];
|
---|
1212 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1213 | {
|
---|
1214 | vm[i_,j] = r*vt[j,i_];
|
---|
1215 | }
|
---|
1216 | }
|
---|
1217 | for(i=0; i<=nvars-1; i++)
|
---|
1218 | {
|
---|
1219 | for(j=i; j<=nvars-1; j++)
|
---|
1220 | {
|
---|
1221 | r = 0.0;
|
---|
1222 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1223 | {
|
---|
1224 | r += vm[i,i_]*vm[j,i_];
|
---|
1225 | }
|
---|
1226 | ar.c[i,j] = r;
|
---|
1227 | ar.c[j,i] = r;
|
---|
1228 | }
|
---|
1229 | }
|
---|
1230 |
|
---|
1231 | //
|
---|
1232 | // Leave-1-out cross-validation error.
|
---|
1233 | //
|
---|
1234 | // NOTATIONS:
|
---|
1235 | // A design matrix
|
---|
1236 | // A*x = b original linear least squares task
|
---|
1237 | // U*S*V' SVD of A
|
---|
1238 | // ai i-th row of the A
|
---|
1239 | // bi i-th element of the b
|
---|
1240 | // xf solution of the original LLS task
|
---|
1241 | //
|
---|
1242 | // Cross-validation error of i-th element from a sample is
|
---|
1243 | // calculated using following formula:
|
---|
1244 | //
|
---|
1245 | // ERRi = ai*xf - (ai*xf-bi*(ui*ui'))/(1-ui*ui') (1)
|
---|
1246 | //
|
---|
1247 | // This formula can be derived from normal equations of the
|
---|
1248 | // original task
|
---|
1249 | //
|
---|
1250 | // (A'*A)x = A'*b (2)
|
---|
1251 | //
|
---|
1252 | // by applying modification (zeroing out i-th row of A) to (2):
|
---|
1253 | //
|
---|
1254 | // (A-ai)'*(A-ai) = (A-ai)'*b
|
---|
1255 | //
|
---|
1256 | // and using Sherman-Morrison formula for updating matrix inverse
|
---|
1257 | //
|
---|
1258 | // NOTE 1: b is not zeroed out since it is much simpler and
|
---|
1259 | // does not influence final result.
|
---|
1260 | //
|
---|
1261 | // NOTE 2: some design matrices A have such ui that 1-ui*ui'=0.
|
---|
1262 | // Formula (1) can't be applied for such cases and they are skipped
|
---|
1263 | // from CV calculation (which distorts resulting CV estimate).
|
---|
1264 | // But from the properties of U we can conclude that there can
|
---|
1265 | // be no more than NVars such vectors. Usually
|
---|
1266 | // NVars << NPoints, so in a normal case it only slightly
|
---|
1267 | // influences result.
|
---|
1268 | //
|
---|
1269 | ncv = 0;
|
---|
1270 | na = 0;
|
---|
1271 | nacv = 0;
|
---|
1272 | ar.rmserror = 0;
|
---|
1273 | ar.avgerror = 0;
|
---|
1274 | ar.avgrelerror = 0;
|
---|
1275 | ar.cvrmserror = 0;
|
---|
1276 | ar.cvavgerror = 0;
|
---|
1277 | ar.cvavgrelerror = 0;
|
---|
1278 | ar.ncvdefects = 0;
|
---|
1279 | ar.cvdefects = new int[nvars-1+1];
|
---|
1280 | for(i=0; i<=npoints-1; i++)
|
---|
1281 | {
|
---|
1282 |
|
---|
1283 | //
|
---|
1284 | // Error on a training set
|
---|
1285 | //
|
---|
1286 | i1_ = (offs)-(0);
|
---|
1287 | r = 0.0;
|
---|
1288 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1289 | {
|
---|
1290 | r += xy[i,i_]*lm.w[i_+i1_];
|
---|
1291 | }
|
---|
1292 | ar.rmserror = ar.rmserror+AP.Math.Sqr(r-xy[i,nvars]);
|
---|
1293 | ar.avgerror = ar.avgerror+Math.Abs(r-xy[i,nvars]);
|
---|
1294 | if( xy[i,nvars]!=0 )
|
---|
1295 | {
|
---|
1296 | ar.avgrelerror = ar.avgrelerror+Math.Abs((r-xy[i,nvars])/xy[i,nvars]);
|
---|
1297 | na = na+1;
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | //
|
---|
1301 | // Error using fast leave-one-out cross-validation
|
---|
1302 | //
|
---|
1303 | p = 0.0;
|
---|
1304 | for(i_=0; i_<=nvars-1;i_++)
|
---|
1305 | {
|
---|
1306 | p += u[i,i_]*u[i,i_];
|
---|
1307 | }
|
---|
1308 | if( p>1-epstol*AP.Math.MachineEpsilon )
|
---|
1309 | {
|
---|
1310 | ar.cvdefects[ar.ncvdefects] = i;
|
---|
1311 | ar.ncvdefects = ar.ncvdefects+1;
|
---|
1312 | continue;
|
---|
1313 | }
|
---|
1314 | r = s[i]*(r/s[i]-b[i]*p)/(1-p);
|
---|
1315 | ar.cvrmserror = ar.cvrmserror+AP.Math.Sqr(r-xy[i,nvars]);
|
---|
1316 | ar.cvavgerror = ar.cvavgerror+Math.Abs(r-xy[i,nvars]);
|
---|
1317 | if( xy[i,nvars]!=0 )
|
---|
1318 | {
|
---|
1319 | ar.cvavgrelerror = ar.cvavgrelerror+Math.Abs((r-xy[i,nvars])/xy[i,nvars]);
|
---|
1320 | nacv = nacv+1;
|
---|
1321 | }
|
---|
1322 | ncv = ncv+1;
|
---|
1323 | }
|
---|
1324 | if( ncv==0 )
|
---|
1325 | {
|
---|
1326 |
|
---|
1327 | //
|
---|
1328 | // Something strange: ALL ui are degenerate.
|
---|
1329 | // Unexpected...
|
---|
1330 | //
|
---|
1331 | info = -255;
|
---|
1332 | return;
|
---|
1333 | }
|
---|
1334 | ar.rmserror = Math.Sqrt(ar.rmserror/npoints);
|
---|
1335 | ar.avgerror = ar.avgerror/npoints;
|
---|
1336 | if( na!=0 )
|
---|
1337 | {
|
---|
1338 | ar.avgrelerror = ar.avgrelerror/na;
|
---|
1339 | }
|
---|
1340 | ar.cvrmserror = Math.Sqrt(ar.cvrmserror/ncv);
|
---|
1341 | ar.cvavgerror = ar.cvavgerror/ncv;
|
---|
1342 | if( nacv!=0 )
|
---|
1343 | {
|
---|
1344 | ar.cvavgrelerror = ar.cvavgrelerror/nacv;
|
---|
1345 | }
|
---|
1346 | }
|
---|
1347 | }
|
---|
1348 | }
|
---|