1 | /*************************************************************************
|
---|
2 | >>> SOURCE LICENSE >>>
|
---|
3 | This program is free software; you can redistribute it and/or modify
|
---|
4 | it under the terms of the GNU General Public License as published by
|
---|
5 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
6 | License, or (at your option) any later version.
|
---|
7 |
|
---|
8 | This program is distributed in the hope that it will be useful,
|
---|
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
11 | GNU General Public License for more details.
|
---|
12 |
|
---|
13 | A copy of the GNU General Public License is available at
|
---|
14 | http://www.fsf.org/licensing/licenses
|
---|
15 |
|
---|
16 | >>> END OF LICENSE >>>
|
---|
17 | *************************************************************************/
|
---|
18 |
|
---|
19 | using System;
|
---|
20 |
|
---|
21 | namespace alglib
|
---|
22 | {
|
---|
23 | public class legendre
|
---|
24 | {
|
---|
25 | /*************************************************************************
|
---|
26 | Calculation of the value of the Legendre polynomial Pn.
|
---|
27 |
|
---|
28 | Parameters:
|
---|
29 | n - degree, n>=0
|
---|
30 | x - argument
|
---|
31 |
|
---|
32 | Result:
|
---|
33 | the value of the Legendre polynomial Pn at x
|
---|
34 | *************************************************************************/
|
---|
35 | public static double legendrecalculate(int n,
|
---|
36 | double x)
|
---|
37 | {
|
---|
38 | double result = 0;
|
---|
39 | double a = 0;
|
---|
40 | double b = 0;
|
---|
41 | int i = 0;
|
---|
42 |
|
---|
43 | result = 1;
|
---|
44 | a = 1;
|
---|
45 | b = x;
|
---|
46 | if( n==0 )
|
---|
47 | {
|
---|
48 | result = a;
|
---|
49 | return result;
|
---|
50 | }
|
---|
51 | if( n==1 )
|
---|
52 | {
|
---|
53 | result = b;
|
---|
54 | return result;
|
---|
55 | }
|
---|
56 | for(i=2; i<=n; i++)
|
---|
57 | {
|
---|
58 | result = ((2*i-1)*x*b-(i-1)*a)/i;
|
---|
59 | a = b;
|
---|
60 | b = result;
|
---|
61 | }
|
---|
62 | return result;
|
---|
63 | }
|
---|
64 |
|
---|
65 |
|
---|
66 | /*************************************************************************
|
---|
67 | Summation of Legendre polynomials using Clenshaws recurrence formula.
|
---|
68 |
|
---|
69 | This routine calculates
|
---|
70 | c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x)
|
---|
71 |
|
---|
72 | Parameters:
|
---|
73 | n - degree, n>=0
|
---|
74 | x - argument
|
---|
75 |
|
---|
76 | Result:
|
---|
77 | the value of the Legendre polynomial at x
|
---|
78 | *************************************************************************/
|
---|
79 | public static double legendresum(ref double[] c,
|
---|
80 | int n,
|
---|
81 | double x)
|
---|
82 | {
|
---|
83 | double result = 0;
|
---|
84 | double b1 = 0;
|
---|
85 | double b2 = 0;
|
---|
86 | int i = 0;
|
---|
87 |
|
---|
88 | b1 = 0;
|
---|
89 | b2 = 0;
|
---|
90 | for(i=n; i>=0; i--)
|
---|
91 | {
|
---|
92 | result = (2*i+1)*x*b1/(i+1)-(i+1)*b2/(i+2)+c[i];
|
---|
93 | b2 = b1;
|
---|
94 | b1 = result;
|
---|
95 | }
|
---|
96 | return result;
|
---|
97 | }
|
---|
98 |
|
---|
99 |
|
---|
100 | /*************************************************************************
|
---|
101 | Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N
|
---|
102 |
|
---|
103 | Input parameters:
|
---|
104 | N - polynomial degree, n>=0
|
---|
105 |
|
---|
106 | Output parameters:
|
---|
107 | C - coefficients
|
---|
108 | *************************************************************************/
|
---|
109 | public static void legendrecoefficients(int n,
|
---|
110 | ref double[] c)
|
---|
111 | {
|
---|
112 | int i = 0;
|
---|
113 |
|
---|
114 | c = new double[n+1];
|
---|
115 | for(i=0; i<=n; i++)
|
---|
116 | {
|
---|
117 | c[i] = 0;
|
---|
118 | }
|
---|
119 | c[n] = 1;
|
---|
120 | for(i=1; i<=n; i++)
|
---|
121 | {
|
---|
122 | c[n] = c[n]*(n+i)/2/i;
|
---|
123 | }
|
---|
124 | for(i=0; i<=n/2-1; i++)
|
---|
125 | {
|
---|
126 | c[n-2*(i+1)] = -(c[n-2*i]*(n-2*i)*(n-2*i-1)/2/(i+1)/(2*(n-i)-1));
|
---|
127 | }
|
---|
128 | }
|
---|
129 | }
|
---|
130 | }
|
---|