1 | /*************************************************************************
|
---|
2 | >>> SOURCE LICENSE >>>
|
---|
3 | This program is free software; you can redistribute it and/or modify
|
---|
4 | it under the terms of the GNU General Public License as published by
|
---|
5 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
6 | License, or (at your option) any later version.
|
---|
7 |
|
---|
8 | This program is distributed in the hope that it will be useful,
|
---|
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
11 | GNU General Public License for more details.
|
---|
12 |
|
---|
13 | A copy of the GNU General Public License is available at
|
---|
14 | http://www.fsf.org/licensing/licenses
|
---|
15 |
|
---|
16 | >>> END OF LICENSE >>>
|
---|
17 | *************************************************************************/
|
---|
18 |
|
---|
19 | using System;
|
---|
20 |
|
---|
21 | namespace alglib
|
---|
22 | {
|
---|
23 | public class laguerre
|
---|
24 | {
|
---|
25 | /*************************************************************************
|
---|
26 | Calculation of the value of the Laguerre polynomial.
|
---|
27 |
|
---|
28 | Parameters:
|
---|
29 | n - degree, n>=0
|
---|
30 | x - argument
|
---|
31 |
|
---|
32 | Result:
|
---|
33 | the value of the Laguerre polynomial Ln at x
|
---|
34 | *************************************************************************/
|
---|
35 | public static double laguerrecalculate(int n,
|
---|
36 | double x)
|
---|
37 | {
|
---|
38 | double result = 0;
|
---|
39 | double a = 0;
|
---|
40 | double b = 0;
|
---|
41 | double i = 0;
|
---|
42 |
|
---|
43 | result = 1;
|
---|
44 | a = 1;
|
---|
45 | b = 1-x;
|
---|
46 | if( n==1 )
|
---|
47 | {
|
---|
48 | result = b;
|
---|
49 | }
|
---|
50 | i = 2;
|
---|
51 | while( (double)(i)<=(double)(n) )
|
---|
52 | {
|
---|
53 | result = ((2*i-1-x)*b-(i-1)*a)/i;
|
---|
54 | a = b;
|
---|
55 | b = result;
|
---|
56 | i = i+1;
|
---|
57 | }
|
---|
58 | return result;
|
---|
59 | }
|
---|
60 |
|
---|
61 |
|
---|
62 | /*************************************************************************
|
---|
63 | Summation of Laguerre polynomials using Clenshaws recurrence formula.
|
---|
64 |
|
---|
65 | This routine calculates c[0]*L0(x) + c[1]*L1(x) + ... + c[N]*LN(x)
|
---|
66 |
|
---|
67 | Parameters:
|
---|
68 | n - degree, n>=0
|
---|
69 | x - argument
|
---|
70 |
|
---|
71 | Result:
|
---|
72 | the value of the Laguerre polynomial at x
|
---|
73 | *************************************************************************/
|
---|
74 | public static double laguerresum(ref double[] c,
|
---|
75 | int n,
|
---|
76 | double x)
|
---|
77 | {
|
---|
78 | double result = 0;
|
---|
79 | double b1 = 0;
|
---|
80 | double b2 = 0;
|
---|
81 | int i = 0;
|
---|
82 |
|
---|
83 | b1 = 0;
|
---|
84 | b2 = 0;
|
---|
85 | for(i=n; i>=0; i--)
|
---|
86 | {
|
---|
87 | result = (2*i+1-x)*b1/(i+1)-(i+1)*b2/(i+2)+c[i];
|
---|
88 | b2 = b1;
|
---|
89 | b1 = result;
|
---|
90 | }
|
---|
91 | return result;
|
---|
92 | }
|
---|
93 |
|
---|
94 |
|
---|
95 | /*************************************************************************
|
---|
96 | Representation of Ln as C[0] + C[1]*X + ... + C[N]*X^N
|
---|
97 |
|
---|
98 | Input parameters:
|
---|
99 | N - polynomial degree, n>=0
|
---|
100 |
|
---|
101 | Output parameters:
|
---|
102 | C - coefficients
|
---|
103 | *************************************************************************/
|
---|
104 | public static void laguerrecoefficients(int n,
|
---|
105 | ref double[] c)
|
---|
106 | {
|
---|
107 | int i = 0;
|
---|
108 |
|
---|
109 | c = new double[n+1];
|
---|
110 | c[0] = 1;
|
---|
111 | for(i=0; i<=n-1; i++)
|
---|
112 | {
|
---|
113 | c[i+1] = -(c[i]*(n-i)/(i+1)/(i+1));
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|