1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class inv
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Inversion of a matrix given by its LU decomposition.
|
---|
35 |
|
---|
36 | Input parameters:
|
---|
37 | A - LU decomposition of the matrix (output of RMatrixLU subroutine).
|
---|
38 | Pivots - table of permutations which were made during the LU decomposition
|
---|
39 | (the output of RMatrixLU subroutine).
|
---|
40 | N - size of matrix A.
|
---|
41 |
|
---|
42 | Output parameters:
|
---|
43 | A - inverse of matrix A.
|
---|
44 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
45 |
|
---|
46 | Result:
|
---|
47 | True, if the matrix is not singular.
|
---|
48 | False, if the matrix is singular.
|
---|
49 |
|
---|
50 | -- LAPACK routine (version 3.0) --
|
---|
51 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
52 | Courant Institute, Argonne National Lab, and Rice University
|
---|
53 | February 29, 1992
|
---|
54 | *************************************************************************/
|
---|
55 | public static bool rmatrixluinverse(ref double[,] a,
|
---|
56 | ref int[] pivots,
|
---|
57 | int n)
|
---|
58 | {
|
---|
59 | bool result = new bool();
|
---|
60 | double[] work = new double[0];
|
---|
61 | int i = 0;
|
---|
62 | int iws = 0;
|
---|
63 | int j = 0;
|
---|
64 | int jb = 0;
|
---|
65 | int jj = 0;
|
---|
66 | int jp = 0;
|
---|
67 | double v = 0;
|
---|
68 | int i_ = 0;
|
---|
69 |
|
---|
70 | result = true;
|
---|
71 |
|
---|
72 | //
|
---|
73 | // Quick return if possible
|
---|
74 | //
|
---|
75 | if( n==0 )
|
---|
76 | {
|
---|
77 | return result;
|
---|
78 | }
|
---|
79 | work = new double[n-1+1];
|
---|
80 |
|
---|
81 | //
|
---|
82 | // Form inv(U)
|
---|
83 | //
|
---|
84 | if( !trinverse.rmatrixtrinverse(ref a, n, true, false) )
|
---|
85 | {
|
---|
86 | result = false;
|
---|
87 | return result;
|
---|
88 | }
|
---|
89 |
|
---|
90 | //
|
---|
91 | // Solve the equation inv(A)*L = inv(U) for inv(A).
|
---|
92 | //
|
---|
93 | for(j=n-1; j>=0; j--)
|
---|
94 | {
|
---|
95 |
|
---|
96 | //
|
---|
97 | // Copy current column of L to WORK and replace with zeros.
|
---|
98 | //
|
---|
99 | for(i=j+1; i<=n-1; i++)
|
---|
100 | {
|
---|
101 | work[i] = a[i,j];
|
---|
102 | a[i,j] = 0;
|
---|
103 | }
|
---|
104 |
|
---|
105 | //
|
---|
106 | // Compute current column of inv(A).
|
---|
107 | //
|
---|
108 | if( j<n-1 )
|
---|
109 | {
|
---|
110 | for(i=0; i<=n-1; i++)
|
---|
111 | {
|
---|
112 | v = 0.0;
|
---|
113 | for(i_=j+1; i_<=n-1;i_++)
|
---|
114 | {
|
---|
115 | v += a[i,i_]*work[i_];
|
---|
116 | }
|
---|
117 | a[i,j] = a[i,j]-v;
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|
121 |
|
---|
122 | //
|
---|
123 | // Apply column interchanges.
|
---|
124 | //
|
---|
125 | for(j=n-2; j>=0; j--)
|
---|
126 | {
|
---|
127 | jp = pivots[j];
|
---|
128 | if( jp!=j )
|
---|
129 | {
|
---|
130 | for(i_=0; i_<=n-1;i_++)
|
---|
131 | {
|
---|
132 | work[i_] = a[i_,j];
|
---|
133 | }
|
---|
134 | for(i_=0; i_<=n-1;i_++)
|
---|
135 | {
|
---|
136 | a[i_,j] = a[i_,jp];
|
---|
137 | }
|
---|
138 | for(i_=0; i_<=n-1;i_++)
|
---|
139 | {
|
---|
140 | a[i_,jp] = work[i_];
|
---|
141 | }
|
---|
142 | }
|
---|
143 | }
|
---|
144 | return result;
|
---|
145 | }
|
---|
146 |
|
---|
147 |
|
---|
148 | /*************************************************************************
|
---|
149 | Inversion of a general matrix.
|
---|
150 |
|
---|
151 | Input parameters:
|
---|
152 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
153 | N - size of matrix A.
|
---|
154 |
|
---|
155 | Output parameters:
|
---|
156 | A - inverse of matrix A.
|
---|
157 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
158 |
|
---|
159 | Result:
|
---|
160 | True, if the matrix is not singular.
|
---|
161 | False, if the matrix is singular.
|
---|
162 |
|
---|
163 | -- ALGLIB --
|
---|
164 | Copyright 2005 by Bochkanov Sergey
|
---|
165 | *************************************************************************/
|
---|
166 | public static bool rmatrixinverse(ref double[,] a,
|
---|
167 | int n)
|
---|
168 | {
|
---|
169 | bool result = new bool();
|
---|
170 | int[] pivots = new int[0];
|
---|
171 |
|
---|
172 | lu.rmatrixlu(ref a, n, n, ref pivots);
|
---|
173 | result = rmatrixluinverse(ref a, ref pivots, n);
|
---|
174 | return result;
|
---|
175 | }
|
---|
176 |
|
---|
177 |
|
---|
178 | public static bool inverselu(ref double[,] a,
|
---|
179 | ref int[] pivots,
|
---|
180 | int n)
|
---|
181 | {
|
---|
182 | bool result = new bool();
|
---|
183 | double[] work = new double[0];
|
---|
184 | int i = 0;
|
---|
185 | int iws = 0;
|
---|
186 | int j = 0;
|
---|
187 | int jb = 0;
|
---|
188 | int jj = 0;
|
---|
189 | int jp = 0;
|
---|
190 | int jp1 = 0;
|
---|
191 | double v = 0;
|
---|
192 | int i_ = 0;
|
---|
193 |
|
---|
194 | result = true;
|
---|
195 |
|
---|
196 | //
|
---|
197 | // Quick return if possible
|
---|
198 | //
|
---|
199 | if( n==0 )
|
---|
200 | {
|
---|
201 | return result;
|
---|
202 | }
|
---|
203 | work = new double[n+1];
|
---|
204 |
|
---|
205 | //
|
---|
206 | // Form inv(U)
|
---|
207 | //
|
---|
208 | if( !trinverse.invtriangular(ref a, n, true, false) )
|
---|
209 | {
|
---|
210 | result = false;
|
---|
211 | return result;
|
---|
212 | }
|
---|
213 |
|
---|
214 | //
|
---|
215 | // Solve the equation inv(A)*L = inv(U) for inv(A).
|
---|
216 | //
|
---|
217 | for(j=n; j>=1; j--)
|
---|
218 | {
|
---|
219 |
|
---|
220 | //
|
---|
221 | // Copy current column of L to WORK and replace with zeros.
|
---|
222 | //
|
---|
223 | for(i=j+1; i<=n; i++)
|
---|
224 | {
|
---|
225 | work[i] = a[i,j];
|
---|
226 | a[i,j] = 0;
|
---|
227 | }
|
---|
228 |
|
---|
229 | //
|
---|
230 | // Compute current column of inv(A).
|
---|
231 | //
|
---|
232 | if( j<n )
|
---|
233 | {
|
---|
234 | jp1 = j+1;
|
---|
235 | for(i=1; i<=n; i++)
|
---|
236 | {
|
---|
237 | v = 0.0;
|
---|
238 | for(i_=jp1; i_<=n;i_++)
|
---|
239 | {
|
---|
240 | v += a[i,i_]*work[i_];
|
---|
241 | }
|
---|
242 | a[i,j] = a[i,j]-v;
|
---|
243 | }
|
---|
244 | }
|
---|
245 | }
|
---|
246 |
|
---|
247 | //
|
---|
248 | // Apply column interchanges.
|
---|
249 | //
|
---|
250 | for(j=n-1; j>=1; j--)
|
---|
251 | {
|
---|
252 | jp = pivots[j];
|
---|
253 | if( jp!=j )
|
---|
254 | {
|
---|
255 | for(i_=1; i_<=n;i_++)
|
---|
256 | {
|
---|
257 | work[i_] = a[i_,j];
|
---|
258 | }
|
---|
259 | for(i_=1; i_<=n;i_++)
|
---|
260 | {
|
---|
261 | a[i_,j] = a[i_,jp];
|
---|
262 | }
|
---|
263 | for(i_=1; i_<=n;i_++)
|
---|
264 | {
|
---|
265 | a[i_,jp] = work[i_];
|
---|
266 | }
|
---|
267 | }
|
---|
268 | }
|
---|
269 | return result;
|
---|
270 | }
|
---|
271 |
|
---|
272 |
|
---|
273 | public static bool inverse(ref double[,] a,
|
---|
274 | int n)
|
---|
275 | {
|
---|
276 | bool result = new bool();
|
---|
277 | int[] pivots = new int[0];
|
---|
278 |
|
---|
279 | lu.ludecomposition(ref a, n, n, ref pivots);
|
---|
280 | result = inverselu(ref a, ref pivots, n);
|
---|
281 | return result;
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|