1 | /*************************************************************************
|
---|
2 | Cephes Math Library Release 2.8: June, 2000
|
---|
3 | Copyright by Stephen L. Moshier
|
---|
4 |
|
---|
5 | Contributors:
|
---|
6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
7 | pseudocode.
|
---|
8 |
|
---|
9 | See subroutines comments for additional copyrights.
|
---|
10 |
|
---|
11 | >>> SOURCE LICENSE >>>
|
---|
12 | This program is free software; you can redistribute it and/or modify
|
---|
13 | it under the terms of the GNU General Public License as published by
|
---|
14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
15 | License, or (at your option) any later version.
|
---|
16 |
|
---|
17 | This program is distributed in the hope that it will be useful,
|
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | GNU General Public License for more details.
|
---|
21 |
|
---|
22 | A copy of the GNU General Public License is available at
|
---|
23 | http://www.fsf.org/licensing/licenses
|
---|
24 |
|
---|
25 | >>> END OF LICENSE >>>
|
---|
26 | *************************************************************************/
|
---|
27 |
|
---|
28 | using System;
|
---|
29 |
|
---|
30 | namespace alglib
|
---|
31 | {
|
---|
32 | public class ibetaf
|
---|
33 | {
|
---|
34 | /*************************************************************************
|
---|
35 | Incomplete beta integral
|
---|
36 |
|
---|
37 | Returns incomplete beta integral of the arguments, evaluated
|
---|
38 | from zero to x. The function is defined as
|
---|
39 |
|
---|
40 | x
|
---|
41 | - -
|
---|
42 | | (a+b) | | a-1 b-1
|
---|
43 | ----------- | t (1-t) dt.
|
---|
44 | - - | |
|
---|
45 | | (a) | (b) -
|
---|
46 | 0
|
---|
47 |
|
---|
48 | The domain of definition is 0 <= x <= 1. In this
|
---|
49 | implementation a and b are restricted to positive values.
|
---|
50 | The integral from x to 1 may be obtained by the symmetry
|
---|
51 | relation
|
---|
52 |
|
---|
53 | 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
|
---|
54 |
|
---|
55 | The integral is evaluated by a continued fraction expansion
|
---|
56 | or, when b*x is small, by a power series.
|
---|
57 |
|
---|
58 | ACCURACY:
|
---|
59 |
|
---|
60 | Tested at uniformly distributed random points (a,b,x) with a and b
|
---|
61 | in "domain" and x between 0 and 1.
|
---|
62 | Relative error
|
---|
63 | arithmetic domain # trials peak rms
|
---|
64 | IEEE 0,5 10000 6.9e-15 4.5e-16
|
---|
65 | IEEE 0,85 250000 2.2e-13 1.7e-14
|
---|
66 | IEEE 0,1000 30000 5.3e-12 6.3e-13
|
---|
67 | IEEE 0,10000 250000 9.3e-11 7.1e-12
|
---|
68 | IEEE 0,100000 10000 8.7e-10 4.8e-11
|
---|
69 | Outputs smaller than the IEEE gradual underflow threshold
|
---|
70 | were excluded from these statistics.
|
---|
71 |
|
---|
72 | Cephes Math Library, Release 2.8: June, 2000
|
---|
73 | Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
---|
74 | *************************************************************************/
|
---|
75 | public static double incompletebeta(double a,
|
---|
76 | double b,
|
---|
77 | double x)
|
---|
78 | {
|
---|
79 | double result = 0;
|
---|
80 | double t = 0;
|
---|
81 | double xc = 0;
|
---|
82 | double w = 0;
|
---|
83 | double y = 0;
|
---|
84 | int flag = 0;
|
---|
85 | double sg = 0;
|
---|
86 | double big = 0;
|
---|
87 | double biginv = 0;
|
---|
88 | double maxgam = 0;
|
---|
89 | double minlog = 0;
|
---|
90 | double maxlog = 0;
|
---|
91 |
|
---|
92 | big = 4.503599627370496e15;
|
---|
93 | biginv = 2.22044604925031308085e-16;
|
---|
94 | maxgam = 171.624376956302725;
|
---|
95 | minlog = Math.Log(AP.Math.MinRealNumber);
|
---|
96 | maxlog = Math.Log(AP.Math.MaxRealNumber);
|
---|
97 | System.Diagnostics.Debug.Assert((double)(a)>(double)(0) & (double)(b)>(double)(0), "Domain error in IncompleteBeta");
|
---|
98 | System.Diagnostics.Debug.Assert((double)(x)>=(double)(0) & (double)(x)<=(double)(1), "Domain error in IncompleteBeta");
|
---|
99 | if( (double)(x)==(double)(0) )
|
---|
100 | {
|
---|
101 | result = 0;
|
---|
102 | return result;
|
---|
103 | }
|
---|
104 | if( (double)(x)==(double)(1) )
|
---|
105 | {
|
---|
106 | result = 1;
|
---|
107 | return result;
|
---|
108 | }
|
---|
109 | flag = 0;
|
---|
110 | if( (double)(b*x)<=(double)(1.0) & (double)(x)<=(double)(0.95) )
|
---|
111 | {
|
---|
112 | result = incompletebetaps(a, b, x, maxgam);
|
---|
113 | return result;
|
---|
114 | }
|
---|
115 | w = 1.0-x;
|
---|
116 | if( (double)(x)>(double)(a/(a+b)) )
|
---|
117 | {
|
---|
118 | flag = 1;
|
---|
119 | t = a;
|
---|
120 | a = b;
|
---|
121 | b = t;
|
---|
122 | xc = x;
|
---|
123 | x = w;
|
---|
124 | }
|
---|
125 | else
|
---|
126 | {
|
---|
127 | xc = w;
|
---|
128 | }
|
---|
129 | if( flag==1 & (double)(b*x)<=(double)(1.0) & (double)(x)<=(double)(0.95) )
|
---|
130 | {
|
---|
131 | t = incompletebetaps(a, b, x, maxgam);
|
---|
132 | if( (double)(t)<=(double)(AP.Math.MachineEpsilon) )
|
---|
133 | {
|
---|
134 | result = 1.0-AP.Math.MachineEpsilon;
|
---|
135 | }
|
---|
136 | else
|
---|
137 | {
|
---|
138 | result = 1.0-t;
|
---|
139 | }
|
---|
140 | return result;
|
---|
141 | }
|
---|
142 | y = x*(a+b-2.0)-(a-1.0);
|
---|
143 | if( (double)(y)<(double)(0.0) )
|
---|
144 | {
|
---|
145 | w = incompletebetafe(a, b, x, big, biginv);
|
---|
146 | }
|
---|
147 | else
|
---|
148 | {
|
---|
149 | w = incompletebetafe2(a, b, x, big, biginv)/xc;
|
---|
150 | }
|
---|
151 | y = a*Math.Log(x);
|
---|
152 | t = b*Math.Log(xc);
|
---|
153 | if( (double)(a+b)<(double)(maxgam) & (double)(Math.Abs(y))<(double)(maxlog) & (double)(Math.Abs(t))<(double)(maxlog) )
|
---|
154 | {
|
---|
155 | t = Math.Pow(xc, b);
|
---|
156 | t = t*Math.Pow(x, a);
|
---|
157 | t = t/a;
|
---|
158 | t = t*w;
|
---|
159 | t = t*(gammafunc.gamma(a+b)/(gammafunc.gamma(a)*gammafunc.gamma(b)));
|
---|
160 | if( flag==1 )
|
---|
161 | {
|
---|
162 | if( (double)(t)<=(double)(AP.Math.MachineEpsilon) )
|
---|
163 | {
|
---|
164 | result = 1.0-AP.Math.MachineEpsilon;
|
---|
165 | }
|
---|
166 | else
|
---|
167 | {
|
---|
168 | result = 1.0-t;
|
---|
169 | }
|
---|
170 | }
|
---|
171 | else
|
---|
172 | {
|
---|
173 | result = t;
|
---|
174 | }
|
---|
175 | return result;
|
---|
176 | }
|
---|
177 | y = y+t+gammafunc.lngamma(a+b, ref sg)-gammafunc.lngamma(a, ref sg)-gammafunc.lngamma(b, ref sg);
|
---|
178 | y = y+Math.Log(w/a);
|
---|
179 | if( (double)(y)<(double)(minlog) )
|
---|
180 | {
|
---|
181 | t = 0.0;
|
---|
182 | }
|
---|
183 | else
|
---|
184 | {
|
---|
185 | t = Math.Exp(y);
|
---|
186 | }
|
---|
187 | if( flag==1 )
|
---|
188 | {
|
---|
189 | if( (double)(t)<=(double)(AP.Math.MachineEpsilon) )
|
---|
190 | {
|
---|
191 | t = 1.0-AP.Math.MachineEpsilon;
|
---|
192 | }
|
---|
193 | else
|
---|
194 | {
|
---|
195 | t = 1.0-t;
|
---|
196 | }
|
---|
197 | }
|
---|
198 | result = t;
|
---|
199 | return result;
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | /*************************************************************************
|
---|
204 | Inverse of imcomplete beta integral
|
---|
205 |
|
---|
206 | Given y, the function finds x such that
|
---|
207 |
|
---|
208 | incbet( a, b, x ) = y .
|
---|
209 |
|
---|
210 | The routine performs interval halving or Newton iterations to find the
|
---|
211 | root of incbet(a,b,x) - y = 0.
|
---|
212 |
|
---|
213 |
|
---|
214 | ACCURACY:
|
---|
215 |
|
---|
216 | Relative error:
|
---|
217 | x a,b
|
---|
218 | arithmetic domain domain # trials peak rms
|
---|
219 | IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13
|
---|
220 | IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15
|
---|
221 | IEEE 0,1 0,5 50000 1.1e-12 5.5e-15
|
---|
222 | With a and b constrained to half-integer or integer values:
|
---|
223 | IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13
|
---|
224 | IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16
|
---|
225 | With a = .5, b constrained to half-integer or integer values:
|
---|
226 | IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11
|
---|
227 |
|
---|
228 | Cephes Math Library Release 2.8: June, 2000
|
---|
229 | Copyright 1984, 1996, 2000 by Stephen L. Moshier
|
---|
230 | *************************************************************************/
|
---|
231 | public static double invincompletebeta(double a,
|
---|
232 | double b,
|
---|
233 | double y)
|
---|
234 | {
|
---|
235 | double result = 0;
|
---|
236 | double aaa = 0;
|
---|
237 | double bbb = 0;
|
---|
238 | double y0 = 0;
|
---|
239 | double d = 0;
|
---|
240 | double yyy = 0;
|
---|
241 | double x = 0;
|
---|
242 | double x0 = 0;
|
---|
243 | double x1 = 0;
|
---|
244 | double lgm = 0;
|
---|
245 | double yp = 0;
|
---|
246 | double di = 0;
|
---|
247 | double dithresh = 0;
|
---|
248 | double yl = 0;
|
---|
249 | double yh = 0;
|
---|
250 | double xt = 0;
|
---|
251 | int i = 0;
|
---|
252 | int rflg = 0;
|
---|
253 | int dir = 0;
|
---|
254 | int nflg = 0;
|
---|
255 | double s = 0;
|
---|
256 | int mainlooppos = 0;
|
---|
257 | int ihalve = 0;
|
---|
258 | int ihalvecycle = 0;
|
---|
259 | int newt = 0;
|
---|
260 | int newtcycle = 0;
|
---|
261 | int breaknewtcycle = 0;
|
---|
262 | int breakihalvecycle = 0;
|
---|
263 |
|
---|
264 | i = 0;
|
---|
265 | System.Diagnostics.Debug.Assert((double)(y)>=(double)(0) & (double)(y)<=(double)(1), "Domain error in InvIncompleteBeta");
|
---|
266 | if( (double)(y)==(double)(0) )
|
---|
267 | {
|
---|
268 | result = 0;
|
---|
269 | return result;
|
---|
270 | }
|
---|
271 | if( (double)(y)==(double)(1.0) )
|
---|
272 | {
|
---|
273 | result = 1;
|
---|
274 | return result;
|
---|
275 | }
|
---|
276 | x0 = 0.0;
|
---|
277 | yl = 0.0;
|
---|
278 | x1 = 1.0;
|
---|
279 | yh = 1.0;
|
---|
280 | nflg = 0;
|
---|
281 | mainlooppos = 0;
|
---|
282 | ihalve = 1;
|
---|
283 | ihalvecycle = 2;
|
---|
284 | newt = 3;
|
---|
285 | newtcycle = 4;
|
---|
286 | breaknewtcycle = 5;
|
---|
287 | breakihalvecycle = 6;
|
---|
288 | while( true )
|
---|
289 | {
|
---|
290 |
|
---|
291 | //
|
---|
292 | // start
|
---|
293 | //
|
---|
294 | if( mainlooppos==0 )
|
---|
295 | {
|
---|
296 | if( (double)(a)<=(double)(1.0) | (double)(b)<=(double)(1.0) )
|
---|
297 | {
|
---|
298 | dithresh = 1.0e-6;
|
---|
299 | rflg = 0;
|
---|
300 | aaa = a;
|
---|
301 | bbb = b;
|
---|
302 | y0 = y;
|
---|
303 | x = aaa/(aaa+bbb);
|
---|
304 | yyy = incompletebeta(aaa, bbb, x);
|
---|
305 | mainlooppos = ihalve;
|
---|
306 | continue;
|
---|
307 | }
|
---|
308 | else
|
---|
309 | {
|
---|
310 | dithresh = 1.0e-4;
|
---|
311 | }
|
---|
312 | yp = -normaldistr.invnormaldistribution(y);
|
---|
313 | if( (double)(y)>(double)(0.5) )
|
---|
314 | {
|
---|
315 | rflg = 1;
|
---|
316 | aaa = b;
|
---|
317 | bbb = a;
|
---|
318 | y0 = 1.0-y;
|
---|
319 | yp = -yp;
|
---|
320 | }
|
---|
321 | else
|
---|
322 | {
|
---|
323 | rflg = 0;
|
---|
324 | aaa = a;
|
---|
325 | bbb = b;
|
---|
326 | y0 = y;
|
---|
327 | }
|
---|
328 | lgm = (yp*yp-3.0)/6.0;
|
---|
329 | x = 2.0/(1.0/(2.0*aaa-1.0)+1.0/(2.0*bbb-1.0));
|
---|
330 | d = yp*Math.Sqrt(x+lgm)/x-(1.0/(2.0*bbb-1.0)-1.0/(2.0*aaa-1.0))*(lgm+5.0/6.0-2.0/(3.0*x));
|
---|
331 | d = 2.0*d;
|
---|
332 | if( (double)(d)<(double)(Math.Log(AP.Math.MinRealNumber)) )
|
---|
333 | {
|
---|
334 | x = 0;
|
---|
335 | break;
|
---|
336 | }
|
---|
337 | x = aaa/(aaa+bbb*Math.Exp(d));
|
---|
338 | yyy = incompletebeta(aaa, bbb, x);
|
---|
339 | yp = (yyy-y0)/y0;
|
---|
340 | if( (double)(Math.Abs(yp))<(double)(0.2) )
|
---|
341 | {
|
---|
342 | mainlooppos = newt;
|
---|
343 | continue;
|
---|
344 | }
|
---|
345 | mainlooppos = ihalve;
|
---|
346 | continue;
|
---|
347 | }
|
---|
348 |
|
---|
349 | //
|
---|
350 | // ihalve
|
---|
351 | //
|
---|
352 | if( mainlooppos==ihalve )
|
---|
353 | {
|
---|
354 | dir = 0;
|
---|
355 | di = 0.5;
|
---|
356 | i = 0;
|
---|
357 | mainlooppos = ihalvecycle;
|
---|
358 | continue;
|
---|
359 | }
|
---|
360 |
|
---|
361 | //
|
---|
362 | // ihalvecycle
|
---|
363 | //
|
---|
364 | if( mainlooppos==ihalvecycle )
|
---|
365 | {
|
---|
366 | if( i<=99 )
|
---|
367 | {
|
---|
368 | if( i!=0 )
|
---|
369 | {
|
---|
370 | x = x0+di*(x1-x0);
|
---|
371 | if( (double)(x)==(double)(1.0) )
|
---|
372 | {
|
---|
373 | x = 1.0-AP.Math.MachineEpsilon;
|
---|
374 | }
|
---|
375 | if( (double)(x)==(double)(0.0) )
|
---|
376 | {
|
---|
377 | di = 0.5;
|
---|
378 | x = x0+di*(x1-x0);
|
---|
379 | if( (double)(x)==(double)(0.0) )
|
---|
380 | {
|
---|
381 | break;
|
---|
382 | }
|
---|
383 | }
|
---|
384 | yyy = incompletebeta(aaa, bbb, x);
|
---|
385 | yp = (x1-x0)/(x1+x0);
|
---|
386 | if( (double)(Math.Abs(yp))<(double)(dithresh) )
|
---|
387 | {
|
---|
388 | mainlooppos = newt;
|
---|
389 | continue;
|
---|
390 | }
|
---|
391 | yp = (yyy-y0)/y0;
|
---|
392 | if( (double)(Math.Abs(yp))<(double)(dithresh) )
|
---|
393 | {
|
---|
394 | mainlooppos = newt;
|
---|
395 | continue;
|
---|
396 | }
|
---|
397 | }
|
---|
398 | if( (double)(yyy)<(double)(y0) )
|
---|
399 | {
|
---|
400 | x0 = x;
|
---|
401 | yl = yyy;
|
---|
402 | if( dir<0 )
|
---|
403 | {
|
---|
404 | dir = 0;
|
---|
405 | di = 0.5;
|
---|
406 | }
|
---|
407 | else
|
---|
408 | {
|
---|
409 | if( dir>3 )
|
---|
410 | {
|
---|
411 | di = 1.0-(1.0-di)*(1.0-di);
|
---|
412 | }
|
---|
413 | else
|
---|
414 | {
|
---|
415 | if( dir>1 )
|
---|
416 | {
|
---|
417 | di = 0.5*di+0.5;
|
---|
418 | }
|
---|
419 | else
|
---|
420 | {
|
---|
421 | di = (y0-yyy)/(yh-yl);
|
---|
422 | }
|
---|
423 | }
|
---|
424 | }
|
---|
425 | dir = dir+1;
|
---|
426 | if( (double)(x0)>(double)(0.75) )
|
---|
427 | {
|
---|
428 | if( rflg==1 )
|
---|
429 | {
|
---|
430 | rflg = 0;
|
---|
431 | aaa = a;
|
---|
432 | bbb = b;
|
---|
433 | y0 = y;
|
---|
434 | }
|
---|
435 | else
|
---|
436 | {
|
---|
437 | rflg = 1;
|
---|
438 | aaa = b;
|
---|
439 | bbb = a;
|
---|
440 | y0 = 1.0-y;
|
---|
441 | }
|
---|
442 | x = 1.0-x;
|
---|
443 | yyy = incompletebeta(aaa, bbb, x);
|
---|
444 | x0 = 0.0;
|
---|
445 | yl = 0.0;
|
---|
446 | x1 = 1.0;
|
---|
447 | yh = 1.0;
|
---|
448 | mainlooppos = ihalve;
|
---|
449 | continue;
|
---|
450 | }
|
---|
451 | }
|
---|
452 | else
|
---|
453 | {
|
---|
454 | x1 = x;
|
---|
455 | if( rflg==1 & (double)(x1)<(double)(AP.Math.MachineEpsilon) )
|
---|
456 | {
|
---|
457 | x = 0.0;
|
---|
458 | break;
|
---|
459 | }
|
---|
460 | yh = yyy;
|
---|
461 | if( dir>0 )
|
---|
462 | {
|
---|
463 | dir = 0;
|
---|
464 | di = 0.5;
|
---|
465 | }
|
---|
466 | else
|
---|
467 | {
|
---|
468 | if( dir<-3 )
|
---|
469 | {
|
---|
470 | di = di*di;
|
---|
471 | }
|
---|
472 | else
|
---|
473 | {
|
---|
474 | if( dir<-1 )
|
---|
475 | {
|
---|
476 | di = 0.5*di;
|
---|
477 | }
|
---|
478 | else
|
---|
479 | {
|
---|
480 | di = (yyy-y0)/(yh-yl);
|
---|
481 | }
|
---|
482 | }
|
---|
483 | }
|
---|
484 | dir = dir-1;
|
---|
485 | }
|
---|
486 | i = i+1;
|
---|
487 | mainlooppos = ihalvecycle;
|
---|
488 | continue;
|
---|
489 | }
|
---|
490 | else
|
---|
491 | {
|
---|
492 | mainlooppos = breakihalvecycle;
|
---|
493 | continue;
|
---|
494 | }
|
---|
495 | }
|
---|
496 |
|
---|
497 | //
|
---|
498 | // breakihalvecycle
|
---|
499 | //
|
---|
500 | if( mainlooppos==breakihalvecycle )
|
---|
501 | {
|
---|
502 | if( (double)(x0)>=(double)(1.0) )
|
---|
503 | {
|
---|
504 | x = 1.0-AP.Math.MachineEpsilon;
|
---|
505 | break;
|
---|
506 | }
|
---|
507 | if( (double)(x)<=(double)(0.0) )
|
---|
508 | {
|
---|
509 | x = 0.0;
|
---|
510 | break;
|
---|
511 | }
|
---|
512 | mainlooppos = newt;
|
---|
513 | continue;
|
---|
514 | }
|
---|
515 |
|
---|
516 | //
|
---|
517 | // newt
|
---|
518 | //
|
---|
519 | if( mainlooppos==newt )
|
---|
520 | {
|
---|
521 | if( nflg!=0 )
|
---|
522 | {
|
---|
523 | break;
|
---|
524 | }
|
---|
525 | nflg = 1;
|
---|
526 | lgm = gammafunc.lngamma(aaa+bbb, ref s)-gammafunc.lngamma(aaa, ref s)-gammafunc.lngamma(bbb, ref s);
|
---|
527 | i = 0;
|
---|
528 | mainlooppos = newtcycle;
|
---|
529 | continue;
|
---|
530 | }
|
---|
531 |
|
---|
532 | //
|
---|
533 | // newtcycle
|
---|
534 | //
|
---|
535 | if( mainlooppos==newtcycle )
|
---|
536 | {
|
---|
537 | if( i<=7 )
|
---|
538 | {
|
---|
539 | if( i!=0 )
|
---|
540 | {
|
---|
541 | yyy = incompletebeta(aaa, bbb, x);
|
---|
542 | }
|
---|
543 | if( (double)(yyy)<(double)(yl) )
|
---|
544 | {
|
---|
545 | x = x0;
|
---|
546 | yyy = yl;
|
---|
547 | }
|
---|
548 | else
|
---|
549 | {
|
---|
550 | if( (double)(yyy)>(double)(yh) )
|
---|
551 | {
|
---|
552 | x = x1;
|
---|
553 | yyy = yh;
|
---|
554 | }
|
---|
555 | else
|
---|
556 | {
|
---|
557 | if( (double)(yyy)<(double)(y0) )
|
---|
558 | {
|
---|
559 | x0 = x;
|
---|
560 | yl = yyy;
|
---|
561 | }
|
---|
562 | else
|
---|
563 | {
|
---|
564 | x1 = x;
|
---|
565 | yh = yyy;
|
---|
566 | }
|
---|
567 | }
|
---|
568 | }
|
---|
569 | if( (double)(x)==(double)(1.0) | (double)(x)==(double)(0.0) )
|
---|
570 | {
|
---|
571 | mainlooppos = breaknewtcycle;
|
---|
572 | continue;
|
---|
573 | }
|
---|
574 | d = (aaa-1.0)*Math.Log(x)+(bbb-1.0)*Math.Log(1.0-x)+lgm;
|
---|
575 | if( (double)(d)<(double)(Math.Log(AP.Math.MinRealNumber)) )
|
---|
576 | {
|
---|
577 | break;
|
---|
578 | }
|
---|
579 | if( (double)(d)>(double)(Math.Log(AP.Math.MaxRealNumber)) )
|
---|
580 | {
|
---|
581 | mainlooppos = breaknewtcycle;
|
---|
582 | continue;
|
---|
583 | }
|
---|
584 | d = Math.Exp(d);
|
---|
585 | d = (yyy-y0)/d;
|
---|
586 | xt = x-d;
|
---|
587 | if( (double)(xt)<=(double)(x0) )
|
---|
588 | {
|
---|
589 | yyy = (x-x0)/(x1-x0);
|
---|
590 | xt = x0+0.5*yyy*(x-x0);
|
---|
591 | if( (double)(xt)<=(double)(0.0) )
|
---|
592 | {
|
---|
593 | mainlooppos = breaknewtcycle;
|
---|
594 | continue;
|
---|
595 | }
|
---|
596 | }
|
---|
597 | if( (double)(xt)>=(double)(x1) )
|
---|
598 | {
|
---|
599 | yyy = (x1-x)/(x1-x0);
|
---|
600 | xt = x1-0.5*yyy*(x1-x);
|
---|
601 | if( (double)(xt)>=(double)(1.0) )
|
---|
602 | {
|
---|
603 | mainlooppos = breaknewtcycle;
|
---|
604 | continue;
|
---|
605 | }
|
---|
606 | }
|
---|
607 | x = xt;
|
---|
608 | if( (double)(Math.Abs(d/x))<(double)(128.0*AP.Math.MachineEpsilon) )
|
---|
609 | {
|
---|
610 | break;
|
---|
611 | }
|
---|
612 | i = i+1;
|
---|
613 | mainlooppos = newtcycle;
|
---|
614 | continue;
|
---|
615 | }
|
---|
616 | else
|
---|
617 | {
|
---|
618 | mainlooppos = breaknewtcycle;
|
---|
619 | continue;
|
---|
620 | }
|
---|
621 | }
|
---|
622 |
|
---|
623 | //
|
---|
624 | // breaknewtcycle
|
---|
625 | //
|
---|
626 | if( mainlooppos==breaknewtcycle )
|
---|
627 | {
|
---|
628 | dithresh = 256.0*AP.Math.MachineEpsilon;
|
---|
629 | mainlooppos = ihalve;
|
---|
630 | continue;
|
---|
631 | }
|
---|
632 | }
|
---|
633 |
|
---|
634 | //
|
---|
635 | // done
|
---|
636 | //
|
---|
637 | if( rflg!=0 )
|
---|
638 | {
|
---|
639 | if( (double)(x)<=(double)(AP.Math.MachineEpsilon) )
|
---|
640 | {
|
---|
641 | x = 1.0-AP.Math.MachineEpsilon;
|
---|
642 | }
|
---|
643 | else
|
---|
644 | {
|
---|
645 | x = 1.0-x;
|
---|
646 | }
|
---|
647 | }
|
---|
648 | result = x;
|
---|
649 | return result;
|
---|
650 | }
|
---|
651 |
|
---|
652 |
|
---|
653 | /*************************************************************************
|
---|
654 | Continued fraction expansion #1 for incomplete beta integral
|
---|
655 |
|
---|
656 | Cephes Math Library, Release 2.8: June, 2000
|
---|
657 | Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
---|
658 | *************************************************************************/
|
---|
659 | private static double incompletebetafe(double a,
|
---|
660 | double b,
|
---|
661 | double x,
|
---|
662 | double big,
|
---|
663 | double biginv)
|
---|
664 | {
|
---|
665 | double result = 0;
|
---|
666 | double xk = 0;
|
---|
667 | double pk = 0;
|
---|
668 | double pkm1 = 0;
|
---|
669 | double pkm2 = 0;
|
---|
670 | double qk = 0;
|
---|
671 | double qkm1 = 0;
|
---|
672 | double qkm2 = 0;
|
---|
673 | double k1 = 0;
|
---|
674 | double k2 = 0;
|
---|
675 | double k3 = 0;
|
---|
676 | double k4 = 0;
|
---|
677 | double k5 = 0;
|
---|
678 | double k6 = 0;
|
---|
679 | double k7 = 0;
|
---|
680 | double k8 = 0;
|
---|
681 | double r = 0;
|
---|
682 | double t = 0;
|
---|
683 | double ans = 0;
|
---|
684 | double thresh = 0;
|
---|
685 | int n = 0;
|
---|
686 |
|
---|
687 | k1 = a;
|
---|
688 | k2 = a+b;
|
---|
689 | k3 = a;
|
---|
690 | k4 = a+1.0;
|
---|
691 | k5 = 1.0;
|
---|
692 | k6 = b-1.0;
|
---|
693 | k7 = k4;
|
---|
694 | k8 = a+2.0;
|
---|
695 | pkm2 = 0.0;
|
---|
696 | qkm2 = 1.0;
|
---|
697 | pkm1 = 1.0;
|
---|
698 | qkm1 = 1.0;
|
---|
699 | ans = 1.0;
|
---|
700 | r = 1.0;
|
---|
701 | n = 0;
|
---|
702 | thresh = 3.0*AP.Math.MachineEpsilon;
|
---|
703 | do
|
---|
704 | {
|
---|
705 | xk = -(x*k1*k2/(k3*k4));
|
---|
706 | pk = pkm1+pkm2*xk;
|
---|
707 | qk = qkm1+qkm2*xk;
|
---|
708 | pkm2 = pkm1;
|
---|
709 | pkm1 = pk;
|
---|
710 | qkm2 = qkm1;
|
---|
711 | qkm1 = qk;
|
---|
712 | xk = x*k5*k6/(k7*k8);
|
---|
713 | pk = pkm1+pkm2*xk;
|
---|
714 | qk = qkm1+qkm2*xk;
|
---|
715 | pkm2 = pkm1;
|
---|
716 | pkm1 = pk;
|
---|
717 | qkm2 = qkm1;
|
---|
718 | qkm1 = qk;
|
---|
719 | if( (double)(qk)!=(double)(0) )
|
---|
720 | {
|
---|
721 | r = pk/qk;
|
---|
722 | }
|
---|
723 | if( (double)(r)!=(double)(0) )
|
---|
724 | {
|
---|
725 | t = Math.Abs((ans-r)/r);
|
---|
726 | ans = r;
|
---|
727 | }
|
---|
728 | else
|
---|
729 | {
|
---|
730 | t = 1.0;
|
---|
731 | }
|
---|
732 | if( (double)(t)<(double)(thresh) )
|
---|
733 | {
|
---|
734 | break;
|
---|
735 | }
|
---|
736 | k1 = k1+1.0;
|
---|
737 | k2 = k2+1.0;
|
---|
738 | k3 = k3+2.0;
|
---|
739 | k4 = k4+2.0;
|
---|
740 | k5 = k5+1.0;
|
---|
741 | k6 = k6-1.0;
|
---|
742 | k7 = k7+2.0;
|
---|
743 | k8 = k8+2.0;
|
---|
744 | if( (double)(Math.Abs(qk)+Math.Abs(pk))>(double)(big) )
|
---|
745 | {
|
---|
746 | pkm2 = pkm2*biginv;
|
---|
747 | pkm1 = pkm1*biginv;
|
---|
748 | qkm2 = qkm2*biginv;
|
---|
749 | qkm1 = qkm1*biginv;
|
---|
750 | }
|
---|
751 | if( (double)(Math.Abs(qk))<(double)(biginv) | (double)(Math.Abs(pk))<(double)(biginv) )
|
---|
752 | {
|
---|
753 | pkm2 = pkm2*big;
|
---|
754 | pkm1 = pkm1*big;
|
---|
755 | qkm2 = qkm2*big;
|
---|
756 | qkm1 = qkm1*big;
|
---|
757 | }
|
---|
758 | n = n+1;
|
---|
759 | }
|
---|
760 | while( n!=300 );
|
---|
761 | result = ans;
|
---|
762 | return result;
|
---|
763 | }
|
---|
764 |
|
---|
765 |
|
---|
766 | /*************************************************************************
|
---|
767 | Continued fraction expansion #2
|
---|
768 | for incomplete beta integral
|
---|
769 |
|
---|
770 | Cephes Math Library, Release 2.8: June, 2000
|
---|
771 | Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
---|
772 | *************************************************************************/
|
---|
773 | private static double incompletebetafe2(double a,
|
---|
774 | double b,
|
---|
775 | double x,
|
---|
776 | double big,
|
---|
777 | double biginv)
|
---|
778 | {
|
---|
779 | double result = 0;
|
---|
780 | double xk = 0;
|
---|
781 | double pk = 0;
|
---|
782 | double pkm1 = 0;
|
---|
783 | double pkm2 = 0;
|
---|
784 | double qk = 0;
|
---|
785 | double qkm1 = 0;
|
---|
786 | double qkm2 = 0;
|
---|
787 | double k1 = 0;
|
---|
788 | double k2 = 0;
|
---|
789 | double k3 = 0;
|
---|
790 | double k4 = 0;
|
---|
791 | double k5 = 0;
|
---|
792 | double k6 = 0;
|
---|
793 | double k7 = 0;
|
---|
794 | double k8 = 0;
|
---|
795 | double r = 0;
|
---|
796 | double t = 0;
|
---|
797 | double ans = 0;
|
---|
798 | double z = 0;
|
---|
799 | double thresh = 0;
|
---|
800 | int n = 0;
|
---|
801 |
|
---|
802 | k1 = a;
|
---|
803 | k2 = b-1.0;
|
---|
804 | k3 = a;
|
---|
805 | k4 = a+1.0;
|
---|
806 | k5 = 1.0;
|
---|
807 | k6 = a+b;
|
---|
808 | k7 = a+1.0;
|
---|
809 | k8 = a+2.0;
|
---|
810 | pkm2 = 0.0;
|
---|
811 | qkm2 = 1.0;
|
---|
812 | pkm1 = 1.0;
|
---|
813 | qkm1 = 1.0;
|
---|
814 | z = x/(1.0-x);
|
---|
815 | ans = 1.0;
|
---|
816 | r = 1.0;
|
---|
817 | n = 0;
|
---|
818 | thresh = 3.0*AP.Math.MachineEpsilon;
|
---|
819 | do
|
---|
820 | {
|
---|
821 | xk = -(z*k1*k2/(k3*k4));
|
---|
822 | pk = pkm1+pkm2*xk;
|
---|
823 | qk = qkm1+qkm2*xk;
|
---|
824 | pkm2 = pkm1;
|
---|
825 | pkm1 = pk;
|
---|
826 | qkm2 = qkm1;
|
---|
827 | qkm1 = qk;
|
---|
828 | xk = z*k5*k6/(k7*k8);
|
---|
829 | pk = pkm1+pkm2*xk;
|
---|
830 | qk = qkm1+qkm2*xk;
|
---|
831 | pkm2 = pkm1;
|
---|
832 | pkm1 = pk;
|
---|
833 | qkm2 = qkm1;
|
---|
834 | qkm1 = qk;
|
---|
835 | if( (double)(qk)!=(double)(0) )
|
---|
836 | {
|
---|
837 | r = pk/qk;
|
---|
838 | }
|
---|
839 | if( (double)(r)!=(double)(0) )
|
---|
840 | {
|
---|
841 | t = Math.Abs((ans-r)/r);
|
---|
842 | ans = r;
|
---|
843 | }
|
---|
844 | else
|
---|
845 | {
|
---|
846 | t = 1.0;
|
---|
847 | }
|
---|
848 | if( (double)(t)<(double)(thresh) )
|
---|
849 | {
|
---|
850 | break;
|
---|
851 | }
|
---|
852 | k1 = k1+1.0;
|
---|
853 | k2 = k2-1.0;
|
---|
854 | k3 = k3+2.0;
|
---|
855 | k4 = k4+2.0;
|
---|
856 | k5 = k5+1.0;
|
---|
857 | k6 = k6+1.0;
|
---|
858 | k7 = k7+2.0;
|
---|
859 | k8 = k8+2.0;
|
---|
860 | if( (double)(Math.Abs(qk)+Math.Abs(pk))>(double)(big) )
|
---|
861 | {
|
---|
862 | pkm2 = pkm2*biginv;
|
---|
863 | pkm1 = pkm1*biginv;
|
---|
864 | qkm2 = qkm2*biginv;
|
---|
865 | qkm1 = qkm1*biginv;
|
---|
866 | }
|
---|
867 | if( (double)(Math.Abs(qk))<(double)(biginv) | (double)(Math.Abs(pk))<(double)(biginv) )
|
---|
868 | {
|
---|
869 | pkm2 = pkm2*big;
|
---|
870 | pkm1 = pkm1*big;
|
---|
871 | qkm2 = qkm2*big;
|
---|
872 | qkm1 = qkm1*big;
|
---|
873 | }
|
---|
874 | n = n+1;
|
---|
875 | }
|
---|
876 | while( n!=300 );
|
---|
877 | result = ans;
|
---|
878 | return result;
|
---|
879 | }
|
---|
880 |
|
---|
881 |
|
---|
882 | /*************************************************************************
|
---|
883 | Power series for incomplete beta integral.
|
---|
884 | Use when b*x is small and x not too close to 1.
|
---|
885 |
|
---|
886 | Cephes Math Library, Release 2.8: June, 2000
|
---|
887 | Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
---|
888 | *************************************************************************/
|
---|
889 | private static double incompletebetaps(double a,
|
---|
890 | double b,
|
---|
891 | double x,
|
---|
892 | double maxgam)
|
---|
893 | {
|
---|
894 | double result = 0;
|
---|
895 | double s = 0;
|
---|
896 | double t = 0;
|
---|
897 | double u = 0;
|
---|
898 | double v = 0;
|
---|
899 | double n = 0;
|
---|
900 | double t1 = 0;
|
---|
901 | double z = 0;
|
---|
902 | double ai = 0;
|
---|
903 | double sg = 0;
|
---|
904 |
|
---|
905 | ai = 1.0/a;
|
---|
906 | u = (1.0-b)*x;
|
---|
907 | v = u/(a+1.0);
|
---|
908 | t1 = v;
|
---|
909 | t = u;
|
---|
910 | n = 2.0;
|
---|
911 | s = 0.0;
|
---|
912 | z = AP.Math.MachineEpsilon*ai;
|
---|
913 | while( (double)(Math.Abs(v))>(double)(z) )
|
---|
914 | {
|
---|
915 | u = (n-b)*x/n;
|
---|
916 | t = t*u;
|
---|
917 | v = t/(a+n);
|
---|
918 | s = s+v;
|
---|
919 | n = n+1.0;
|
---|
920 | }
|
---|
921 | s = s+t1;
|
---|
922 | s = s+ai;
|
---|
923 | u = a*Math.Log(x);
|
---|
924 | if( (double)(a+b)<(double)(maxgam) & (double)(Math.Abs(u))<(double)(Math.Log(AP.Math.MaxRealNumber)) )
|
---|
925 | {
|
---|
926 | t = gammafunc.gamma(a+b)/(gammafunc.gamma(a)*gammafunc.gamma(b));
|
---|
927 | s = s*t*Math.Pow(x, a);
|
---|
928 | }
|
---|
929 | else
|
---|
930 | {
|
---|
931 | t = gammafunc.lngamma(a+b, ref sg)-gammafunc.lngamma(a, ref sg)-gammafunc.lngamma(b, ref sg)+u+Math.Log(s);
|
---|
932 | if( (double)(t)<(double)(Math.Log(AP.Math.MinRealNumber)) )
|
---|
933 | {
|
---|
934 | s = 0.0;
|
---|
935 | }
|
---|
936 | else
|
---|
937 | {
|
---|
938 | s = Math.Exp(t);
|
---|
939 | }
|
---|
940 | }
|
---|
941 | result = s;
|
---|
942 | return result;
|
---|
943 | }
|
---|
944 | }
|
---|
945 | }
|
---|