1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class htridiagonal
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Reduction of a Hermitian matrix which is given by its higher or lower
|
---|
35 | triangular part to a real tridiagonal matrix using unitary similarity
|
---|
36 | transformation: Q'*A*Q = T.
|
---|
37 |
|
---|
38 | Input parameters:
|
---|
39 | A - matrix to be transformed
|
---|
40 | array with elements [0..N-1, 0..N-1].
|
---|
41 | N - size of matrix A.
|
---|
42 | IsUpper - storage format. If IsUpper = True, then matrix A is given
|
---|
43 | by its upper triangle, and the lower triangle is not used
|
---|
44 | and not modified by the algorithm, and vice versa
|
---|
45 | if IsUpper = False.
|
---|
46 |
|
---|
47 | Output parameters:
|
---|
48 | A - matrices T and Q in compact form (see lower)
|
---|
49 | Tau - array of factors which are forming matrices H(i)
|
---|
50 | array with elements [0..N-2].
|
---|
51 | D - main diagonal of real symmetric matrix T.
|
---|
52 | array with elements [0..N-1].
|
---|
53 | E - secondary diagonal of real symmetric matrix T.
|
---|
54 | array with elements [0..N-2].
|
---|
55 |
|
---|
56 |
|
---|
57 | If IsUpper=True, the matrix Q is represented as a product of elementary
|
---|
58 | reflectors
|
---|
59 |
|
---|
60 | Q = H(n-2) . . . H(2) H(0).
|
---|
61 |
|
---|
62 | Each H(i) has the form
|
---|
63 |
|
---|
64 | H(i) = I - tau * v * v'
|
---|
65 |
|
---|
66 | where tau is a complex scalar, and v is a complex vector with
|
---|
67 | v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
|
---|
68 | A(0:i-1,i+1), and tau in TAU(i).
|
---|
69 |
|
---|
70 | If IsUpper=False, the matrix Q is represented as a product of elementary
|
---|
71 | reflectors
|
---|
72 |
|
---|
73 | Q = H(0) H(2) . . . H(n-2).
|
---|
74 |
|
---|
75 | Each H(i) has the form
|
---|
76 |
|
---|
77 | H(i) = I - tau * v * v'
|
---|
78 |
|
---|
79 | where tau is a complex scalar, and v is a complex vector with
|
---|
80 | v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
|
---|
81 | and tau in TAU(i).
|
---|
82 |
|
---|
83 | The contents of A on exit are illustrated by the following examples
|
---|
84 | with n = 5:
|
---|
85 |
|
---|
86 | if UPLO = 'U': if UPLO = 'L':
|
---|
87 |
|
---|
88 | ( d e v1 v2 v3 ) ( d )
|
---|
89 | ( d e v2 v3 ) ( e d )
|
---|
90 | ( d e v3 ) ( v0 e d )
|
---|
91 | ( d e ) ( v0 v1 e d )
|
---|
92 | ( d ) ( v0 v1 v2 e d )
|
---|
93 |
|
---|
94 | where d and e denote diagonal and off-diagonal elements of T, and vi
|
---|
95 | denotes an element of the vector defining H(i).
|
---|
96 |
|
---|
97 | -- LAPACK routine (version 3.0) --
|
---|
98 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
99 | Courant Institute, Argonne National Lab, and Rice University
|
---|
100 | October 31, 1992
|
---|
101 | *************************************************************************/
|
---|
102 | public static void hmatrixtd(ref AP.Complex[,] a,
|
---|
103 | int n,
|
---|
104 | bool isupper,
|
---|
105 | ref AP.Complex[] tau,
|
---|
106 | ref double[] d,
|
---|
107 | ref double[] e)
|
---|
108 | {
|
---|
109 | int i = 0;
|
---|
110 | AP.Complex alpha = 0;
|
---|
111 | AP.Complex taui = 0;
|
---|
112 | AP.Complex v = 0;
|
---|
113 | AP.Complex[] t = new AP.Complex[0];
|
---|
114 | AP.Complex[] t2 = new AP.Complex[0];
|
---|
115 | AP.Complex[] t3 = new AP.Complex[0];
|
---|
116 | int i_ = 0;
|
---|
117 | int i1_ = 0;
|
---|
118 |
|
---|
119 | if( n<=0 )
|
---|
120 | {
|
---|
121 | return;
|
---|
122 | }
|
---|
123 | for(i=0; i<=n-1; i++)
|
---|
124 | {
|
---|
125 | System.Diagnostics.Debug.Assert((double)(a[i,i].y)==(double)(0));
|
---|
126 | }
|
---|
127 | if( n>1 )
|
---|
128 | {
|
---|
129 | tau = new AP.Complex[n-2+1];
|
---|
130 | e = new double[n-2+1];
|
---|
131 | }
|
---|
132 | d = new double[n-1+1];
|
---|
133 | t = new AP.Complex[n-1+1];
|
---|
134 | t2 = new AP.Complex[n-1+1];
|
---|
135 | t3 = new AP.Complex[n-1+1];
|
---|
136 | if( isupper )
|
---|
137 | {
|
---|
138 |
|
---|
139 | //
|
---|
140 | // Reduce the upper triangle of A
|
---|
141 | //
|
---|
142 | a[n-1,n-1] = a[n-1,n-1].x;
|
---|
143 | for(i=n-2; i>=0; i--)
|
---|
144 | {
|
---|
145 |
|
---|
146 | //
|
---|
147 | // Generate elementary reflector H = I+1 - tau * v * v'
|
---|
148 | //
|
---|
149 | alpha = a[i,i+1];
|
---|
150 | t[1] = alpha;
|
---|
151 | if( i>=1 )
|
---|
152 | {
|
---|
153 | i1_ = (0) - (2);
|
---|
154 | for(i_=2; i_<=i+1;i_++)
|
---|
155 | {
|
---|
156 | t[i_] = a[i_+i1_,i+1];
|
---|
157 | }
|
---|
158 | }
|
---|
159 | creflections.complexgeneratereflection(ref t, i+1, ref taui);
|
---|
160 | if( i>=1 )
|
---|
161 | {
|
---|
162 | i1_ = (2) - (0);
|
---|
163 | for(i_=0; i_<=i-1;i_++)
|
---|
164 | {
|
---|
165 | a[i_,i+1] = t[i_+i1_];
|
---|
166 | }
|
---|
167 | }
|
---|
168 | alpha = t[1];
|
---|
169 | e[i] = alpha.x;
|
---|
170 | if( taui!=0 )
|
---|
171 | {
|
---|
172 |
|
---|
173 | //
|
---|
174 | // Apply H(I+1) from both sides to A
|
---|
175 | //
|
---|
176 | a[i,i+1] = 1;
|
---|
177 |
|
---|
178 | //
|
---|
179 | // Compute x := tau * A * v storing x in TAU
|
---|
180 | //
|
---|
181 | i1_ = (0) - (1);
|
---|
182 | for(i_=1; i_<=i+1;i_++)
|
---|
183 | {
|
---|
184 | t[i_] = a[i_+i1_,i+1];
|
---|
185 | }
|
---|
186 | hblas.hermitianmatrixvectormultiply(ref a, isupper, 0, i, ref t, taui, ref t2);
|
---|
187 | i1_ = (1) - (0);
|
---|
188 | for(i_=0; i_<=i;i_++)
|
---|
189 | {
|
---|
190 | tau[i_] = t2[i_+i1_];
|
---|
191 | }
|
---|
192 |
|
---|
193 | //
|
---|
194 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
195 | //
|
---|
196 | v = 0.0;
|
---|
197 | for(i_=0; i_<=i;i_++)
|
---|
198 | {
|
---|
199 | v += AP.Math.Conj(tau[i_])*a[i_,i+1];
|
---|
200 | }
|
---|
201 | alpha = -(0.5*taui*v);
|
---|
202 | for(i_=0; i_<=i;i_++)
|
---|
203 | {
|
---|
204 | tau[i_] = tau[i_] + alpha*a[i_,i+1];
|
---|
205 | }
|
---|
206 |
|
---|
207 | //
|
---|
208 | // Apply the transformation as a rank-2 update:
|
---|
209 | // A := A - v * w' - w * v'
|
---|
210 | //
|
---|
211 | i1_ = (0) - (1);
|
---|
212 | for(i_=1; i_<=i+1;i_++)
|
---|
213 | {
|
---|
214 | t[i_] = a[i_+i1_,i+1];
|
---|
215 | }
|
---|
216 | i1_ = (0) - (1);
|
---|
217 | for(i_=1; i_<=i+1;i_++)
|
---|
218 | {
|
---|
219 | t3[i_] = tau[i_+i1_];
|
---|
220 | }
|
---|
221 | hblas.hermitianrank2update(ref a, isupper, 0, i, ref t, ref t3, ref t2, -1);
|
---|
222 | }
|
---|
223 | else
|
---|
224 | {
|
---|
225 | a[i,i] = a[i,i].x;
|
---|
226 | }
|
---|
227 | a[i,i+1] = e[i];
|
---|
228 | d[i+1] = a[i+1,i+1].x;
|
---|
229 | tau[i] = taui;
|
---|
230 | }
|
---|
231 | d[0] = a[0,0].x;
|
---|
232 | }
|
---|
233 | else
|
---|
234 | {
|
---|
235 |
|
---|
236 | //
|
---|
237 | // Reduce the lower triangle of A
|
---|
238 | //
|
---|
239 | a[0,0] = a[0,0].x;
|
---|
240 | for(i=0; i<=n-2; i++)
|
---|
241 | {
|
---|
242 |
|
---|
243 | //
|
---|
244 | // Generate elementary reflector H = I - tau * v * v'
|
---|
245 | //
|
---|
246 | i1_ = (i+1) - (1);
|
---|
247 | for(i_=1; i_<=n-i-1;i_++)
|
---|
248 | {
|
---|
249 | t[i_] = a[i_+i1_,i];
|
---|
250 | }
|
---|
251 | creflections.complexgeneratereflection(ref t, n-i-1, ref taui);
|
---|
252 | i1_ = (1) - (i+1);
|
---|
253 | for(i_=i+1; i_<=n-1;i_++)
|
---|
254 | {
|
---|
255 | a[i_,i] = t[i_+i1_];
|
---|
256 | }
|
---|
257 | e[i] = a[i+1,i].x;
|
---|
258 | if( taui!=0 )
|
---|
259 | {
|
---|
260 |
|
---|
261 | //
|
---|
262 | // Apply H(i) from both sides to A(i+1:n,i+1:n)
|
---|
263 | //
|
---|
264 | a[i+1,i] = 1;
|
---|
265 |
|
---|
266 | //
|
---|
267 | // Compute x := tau * A * v storing y in TAU
|
---|
268 | //
|
---|
269 | i1_ = (i+1) - (1);
|
---|
270 | for(i_=1; i_<=n-i-1;i_++)
|
---|
271 | {
|
---|
272 | t[i_] = a[i_+i1_,i];
|
---|
273 | }
|
---|
274 | hblas.hermitianmatrixvectormultiply(ref a, isupper, i+1, n-1, ref t, taui, ref t2);
|
---|
275 | i1_ = (1) - (i);
|
---|
276 | for(i_=i; i_<=n-2;i_++)
|
---|
277 | {
|
---|
278 | tau[i_] = t2[i_+i1_];
|
---|
279 | }
|
---|
280 |
|
---|
281 | //
|
---|
282 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
283 | //
|
---|
284 | i1_ = (i+1)-(i);
|
---|
285 | v = 0.0;
|
---|
286 | for(i_=i; i_<=n-2;i_++)
|
---|
287 | {
|
---|
288 | v += AP.Math.Conj(tau[i_])*a[i_+i1_,i];
|
---|
289 | }
|
---|
290 | alpha = -(0.5*taui*v);
|
---|
291 | i1_ = (i+1) - (i);
|
---|
292 | for(i_=i; i_<=n-2;i_++)
|
---|
293 | {
|
---|
294 | tau[i_] = tau[i_] + alpha*a[i_+i1_,i];
|
---|
295 | }
|
---|
296 |
|
---|
297 | //
|
---|
298 | // Apply the transformation as a rank-2 update:
|
---|
299 | // A := A - v * w' - w * v'
|
---|
300 | //
|
---|
301 | i1_ = (i+1) - (1);
|
---|
302 | for(i_=1; i_<=n-i-1;i_++)
|
---|
303 | {
|
---|
304 | t[i_] = a[i_+i1_,i];
|
---|
305 | }
|
---|
306 | i1_ = (i) - (1);
|
---|
307 | for(i_=1; i_<=n-i-1;i_++)
|
---|
308 | {
|
---|
309 | t2[i_] = tau[i_+i1_];
|
---|
310 | }
|
---|
311 | hblas.hermitianrank2update(ref a, isupper, i+1, n-1, ref t, ref t2, ref t3, -1);
|
---|
312 | }
|
---|
313 | else
|
---|
314 | {
|
---|
315 | a[i+1,i+1] = a[i+1,i+1].x;
|
---|
316 | }
|
---|
317 | a[i+1,i] = e[i];
|
---|
318 | d[i] = a[i,i].x;
|
---|
319 | tau[i] = taui;
|
---|
320 | }
|
---|
321 | d[n-1] = a[n-1,n-1].x;
|
---|
322 | }
|
---|
323 | }
|
---|
324 |
|
---|
325 |
|
---|
326 | /*************************************************************************
|
---|
327 | Unpacking matrix Q which reduces a Hermitian matrix to a real tridiagonal
|
---|
328 | form.
|
---|
329 |
|
---|
330 | Input parameters:
|
---|
331 | A - the result of a HMatrixTD subroutine
|
---|
332 | N - size of matrix A.
|
---|
333 | IsUpper - storage format (a parameter of HMatrixTD subroutine)
|
---|
334 | Tau - the result of a HMatrixTD subroutine
|
---|
335 |
|
---|
336 | Output parameters:
|
---|
337 | Q - transformation matrix.
|
---|
338 | array with elements [0..N-1, 0..N-1].
|
---|
339 |
|
---|
340 | -- ALGLIB --
|
---|
341 | Copyright 2005, 2007, 2008 by Bochkanov Sergey
|
---|
342 | *************************************************************************/
|
---|
343 | public static void hmatrixtdunpackq(ref AP.Complex[,] a,
|
---|
344 | int n,
|
---|
345 | bool isupper,
|
---|
346 | ref AP.Complex[] tau,
|
---|
347 | ref AP.Complex[,] q)
|
---|
348 | {
|
---|
349 | int i = 0;
|
---|
350 | int j = 0;
|
---|
351 | AP.Complex[] v = new AP.Complex[0];
|
---|
352 | AP.Complex[] work = new AP.Complex[0];
|
---|
353 | int i_ = 0;
|
---|
354 | int i1_ = 0;
|
---|
355 |
|
---|
356 | if( n==0 )
|
---|
357 | {
|
---|
358 | return;
|
---|
359 | }
|
---|
360 |
|
---|
361 | //
|
---|
362 | // init
|
---|
363 | //
|
---|
364 | q = new AP.Complex[n-1+1, n-1+1];
|
---|
365 | v = new AP.Complex[n+1];
|
---|
366 | work = new AP.Complex[n-1+1];
|
---|
367 | for(i=0; i<=n-1; i++)
|
---|
368 | {
|
---|
369 | for(j=0; j<=n-1; j++)
|
---|
370 | {
|
---|
371 | if( i==j )
|
---|
372 | {
|
---|
373 | q[i,j] = 1;
|
---|
374 | }
|
---|
375 | else
|
---|
376 | {
|
---|
377 | q[i,j] = 0;
|
---|
378 | }
|
---|
379 | }
|
---|
380 | }
|
---|
381 |
|
---|
382 | //
|
---|
383 | // unpack Q
|
---|
384 | //
|
---|
385 | if( isupper )
|
---|
386 | {
|
---|
387 | for(i=0; i<=n-2; i++)
|
---|
388 | {
|
---|
389 |
|
---|
390 | //
|
---|
391 | // Apply H(i)
|
---|
392 | //
|
---|
393 | i1_ = (0) - (1);
|
---|
394 | for(i_=1; i_<=i+1;i_++)
|
---|
395 | {
|
---|
396 | v[i_] = a[i_+i1_,i+1];
|
---|
397 | }
|
---|
398 | v[i+1] = 1;
|
---|
399 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, 0, i, 0, n-1, ref work);
|
---|
400 | }
|
---|
401 | }
|
---|
402 | else
|
---|
403 | {
|
---|
404 | for(i=n-2; i>=0; i--)
|
---|
405 | {
|
---|
406 |
|
---|
407 | //
|
---|
408 | // Apply H(i)
|
---|
409 | //
|
---|
410 | i1_ = (i+1) - (1);
|
---|
411 | for(i_=1; i_<=n-i-1;i_++)
|
---|
412 | {
|
---|
413 | v[i_] = a[i_+i1_,i];
|
---|
414 | }
|
---|
415 | v[1] = 1;
|
---|
416 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, i+1, n-1, 0, n-1, ref work);
|
---|
417 | }
|
---|
418 | }
|
---|
419 | }
|
---|
420 |
|
---|
421 |
|
---|
422 | /*************************************************************************
|
---|
423 |
|
---|
424 | -- LAPACK routine (version 3.0) --
|
---|
425 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
426 | Courant Institute, Argonne National Lab, and Rice University
|
---|
427 | October 31, 1992
|
---|
428 | *************************************************************************/
|
---|
429 | public static void hermitiantotridiagonal(ref AP.Complex[,] a,
|
---|
430 | int n,
|
---|
431 | bool isupper,
|
---|
432 | ref AP.Complex[] tau,
|
---|
433 | ref double[] d,
|
---|
434 | ref double[] e)
|
---|
435 | {
|
---|
436 | int i = 0;
|
---|
437 | AP.Complex alpha = 0;
|
---|
438 | AP.Complex taui = 0;
|
---|
439 | AP.Complex v = 0;
|
---|
440 | AP.Complex[] t = new AP.Complex[0];
|
---|
441 | AP.Complex[] t2 = new AP.Complex[0];
|
---|
442 | AP.Complex[] t3 = new AP.Complex[0];
|
---|
443 | int i_ = 0;
|
---|
444 | int i1_ = 0;
|
---|
445 |
|
---|
446 | if( n<=0 )
|
---|
447 | {
|
---|
448 | return;
|
---|
449 | }
|
---|
450 | for(i=1; i<=n; i++)
|
---|
451 | {
|
---|
452 | System.Diagnostics.Debug.Assert((double)(a[i,i].y)==(double)(0));
|
---|
453 | }
|
---|
454 | tau = new AP.Complex[Math.Max(1, n-1)+1];
|
---|
455 | d = new double[n+1];
|
---|
456 | e = new double[Math.Max(1, n-1)+1];
|
---|
457 | t = new AP.Complex[n+1];
|
---|
458 | t2 = new AP.Complex[n+1];
|
---|
459 | t3 = new AP.Complex[n+1];
|
---|
460 | if( isupper )
|
---|
461 | {
|
---|
462 |
|
---|
463 | //
|
---|
464 | // Reduce the upper triangle of A
|
---|
465 | //
|
---|
466 | a[n,n] = a[n,n].x;
|
---|
467 | for(i=n-1; i>=1; i--)
|
---|
468 | {
|
---|
469 |
|
---|
470 | //
|
---|
471 | // Generate elementary reflector H(i) = I - tau * v * v'
|
---|
472 | // to annihilate A(1:i-1,i+1)
|
---|
473 | //
|
---|
474 | alpha = a[i,i+1];
|
---|
475 | t[1] = alpha;
|
---|
476 | if( i>=2 )
|
---|
477 | {
|
---|
478 | i1_ = (1) - (2);
|
---|
479 | for(i_=2; i_<=i;i_++)
|
---|
480 | {
|
---|
481 | t[i_] = a[i_+i1_,i+1];
|
---|
482 | }
|
---|
483 | }
|
---|
484 | creflections.complexgeneratereflection(ref t, i, ref taui);
|
---|
485 | if( i>=2 )
|
---|
486 | {
|
---|
487 | i1_ = (2) - (1);
|
---|
488 | for(i_=1; i_<=i-1;i_++)
|
---|
489 | {
|
---|
490 | a[i_,i+1] = t[i_+i1_];
|
---|
491 | }
|
---|
492 | }
|
---|
493 | alpha = t[1];
|
---|
494 | e[i] = alpha.x;
|
---|
495 | if( taui!=0 )
|
---|
496 | {
|
---|
497 |
|
---|
498 | //
|
---|
499 | // Apply H(i) from both sides to A(1:i,1:i)
|
---|
500 | //
|
---|
501 | a[i,i+1] = 1;
|
---|
502 |
|
---|
503 | //
|
---|
504 | // Compute x := tau * A * v storing x in TAU(1:i)
|
---|
505 | //
|
---|
506 | for(i_=1; i_<=i;i_++)
|
---|
507 | {
|
---|
508 | t[i_] = a[i_,i+1];
|
---|
509 | }
|
---|
510 | hblas.hermitianmatrixvectormultiply(ref a, isupper, 1, i, ref t, taui, ref tau);
|
---|
511 |
|
---|
512 | //
|
---|
513 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
514 | //
|
---|
515 | v = 0.0;
|
---|
516 | for(i_=1; i_<=i;i_++)
|
---|
517 | {
|
---|
518 | v += AP.Math.Conj(tau[i_])*a[i_,i+1];
|
---|
519 | }
|
---|
520 | alpha = -(0.5*taui*v);
|
---|
521 | for(i_=1; i_<=i;i_++)
|
---|
522 | {
|
---|
523 | tau[i_] = tau[i_] + alpha*a[i_,i+1];
|
---|
524 | }
|
---|
525 |
|
---|
526 | //
|
---|
527 | // Apply the transformation as a rank-2 update:
|
---|
528 | // A := A - v * w' - w * v'
|
---|
529 | //
|
---|
530 | for(i_=1; i_<=i;i_++)
|
---|
531 | {
|
---|
532 | t[i_] = a[i_,i+1];
|
---|
533 | }
|
---|
534 | hblas.hermitianrank2update(ref a, isupper, 1, i, ref t, ref tau, ref t2, -1);
|
---|
535 | }
|
---|
536 | else
|
---|
537 | {
|
---|
538 | a[i,i] = a[i,i].x;
|
---|
539 | }
|
---|
540 | a[i,i+1] = e[i];
|
---|
541 | d[i+1] = a[i+1,i+1].x;
|
---|
542 | tau[i] = taui;
|
---|
543 | }
|
---|
544 | d[1] = a[1,1].x;
|
---|
545 | }
|
---|
546 | else
|
---|
547 | {
|
---|
548 |
|
---|
549 | //
|
---|
550 | // Reduce the lower triangle of A
|
---|
551 | //
|
---|
552 | a[1,1] = a[1,1].x;
|
---|
553 | for(i=1; i<=n-1; i++)
|
---|
554 | {
|
---|
555 |
|
---|
556 | //
|
---|
557 | // Generate elementary reflector H(i) = I - tau * v * v'
|
---|
558 | // to annihilate A(i+2:n,i)
|
---|
559 | //
|
---|
560 | i1_ = (i+1) - (1);
|
---|
561 | for(i_=1; i_<=n-i;i_++)
|
---|
562 | {
|
---|
563 | t[i_] = a[i_+i1_,i];
|
---|
564 | }
|
---|
565 | creflections.complexgeneratereflection(ref t, n-i, ref taui);
|
---|
566 | i1_ = (1) - (i+1);
|
---|
567 | for(i_=i+1; i_<=n;i_++)
|
---|
568 | {
|
---|
569 | a[i_,i] = t[i_+i1_];
|
---|
570 | }
|
---|
571 | e[i] = a[i+1,i].x;
|
---|
572 | if( taui!=0 )
|
---|
573 | {
|
---|
574 |
|
---|
575 | //
|
---|
576 | // Apply H(i) from both sides to A(i+1:n,i+1:n)
|
---|
577 | //
|
---|
578 | a[i+1,i] = 1;
|
---|
579 |
|
---|
580 | //
|
---|
581 | // Compute x := tau * A * v storing y in TAU(i:n-1)
|
---|
582 | //
|
---|
583 | i1_ = (i+1) - (1);
|
---|
584 | for(i_=1; i_<=n-i;i_++)
|
---|
585 | {
|
---|
586 | t[i_] = a[i_+i1_,i];
|
---|
587 | }
|
---|
588 | hblas.hermitianmatrixvectormultiply(ref a, isupper, i+1, n, ref t, taui, ref t2);
|
---|
589 | i1_ = (1) - (i);
|
---|
590 | for(i_=i; i_<=n-1;i_++)
|
---|
591 | {
|
---|
592 | tau[i_] = t2[i_+i1_];
|
---|
593 | }
|
---|
594 |
|
---|
595 | //
|
---|
596 | // Compute w := x - 1/2 * tau * (x'*v) * v
|
---|
597 | //
|
---|
598 | i1_ = (i+1)-(i);
|
---|
599 | v = 0.0;
|
---|
600 | for(i_=i; i_<=n-1;i_++)
|
---|
601 | {
|
---|
602 | v += AP.Math.Conj(tau[i_])*a[i_+i1_,i];
|
---|
603 | }
|
---|
604 | alpha = -(0.5*taui*v);
|
---|
605 | i1_ = (i+1) - (i);
|
---|
606 | for(i_=i; i_<=n-1;i_++)
|
---|
607 | {
|
---|
608 | tau[i_] = tau[i_] + alpha*a[i_+i1_,i];
|
---|
609 | }
|
---|
610 |
|
---|
611 | //
|
---|
612 | // Apply the transformation as a rank-2 update:
|
---|
613 | // A := A - v * w' - w * v'
|
---|
614 | //
|
---|
615 | i1_ = (i+1) - (1);
|
---|
616 | for(i_=1; i_<=n-i;i_++)
|
---|
617 | {
|
---|
618 | t[i_] = a[i_+i1_,i];
|
---|
619 | }
|
---|
620 | i1_ = (i) - (1);
|
---|
621 | for(i_=1; i_<=n-i;i_++)
|
---|
622 | {
|
---|
623 | t2[i_] = tau[i_+i1_];
|
---|
624 | }
|
---|
625 | hblas.hermitianrank2update(ref a, isupper, i+1, n, ref t, ref t2, ref t3, -1);
|
---|
626 | }
|
---|
627 | else
|
---|
628 | {
|
---|
629 | a[i+1,i+1] = a[i+1,i+1].x;
|
---|
630 | }
|
---|
631 | a[i+1,i] = e[i];
|
---|
632 | d[i] = a[i,i].x;
|
---|
633 | tau[i] = taui;
|
---|
634 | }
|
---|
635 | d[n] = a[n,n].x;
|
---|
636 | }
|
---|
637 | }
|
---|
638 |
|
---|
639 |
|
---|
640 | /*************************************************************************
|
---|
641 |
|
---|
642 | -- ALGLIB --
|
---|
643 | Copyright 2005, 2007 by Bochkanov Sergey
|
---|
644 | *************************************************************************/
|
---|
645 | public static void unpackqfromhermitiantridiagonal(ref AP.Complex[,] a,
|
---|
646 | int n,
|
---|
647 | bool isupper,
|
---|
648 | ref AP.Complex[] tau,
|
---|
649 | ref AP.Complex[,] q)
|
---|
650 | {
|
---|
651 | int i = 0;
|
---|
652 | int j = 0;
|
---|
653 | AP.Complex[] v = new AP.Complex[0];
|
---|
654 | AP.Complex[] work = new AP.Complex[0];
|
---|
655 | int i_ = 0;
|
---|
656 | int i1_ = 0;
|
---|
657 |
|
---|
658 | if( n==0 )
|
---|
659 | {
|
---|
660 | return;
|
---|
661 | }
|
---|
662 |
|
---|
663 | //
|
---|
664 | // init
|
---|
665 | //
|
---|
666 | q = new AP.Complex[n+1, n+1];
|
---|
667 | v = new AP.Complex[n+1];
|
---|
668 | work = new AP.Complex[n+1];
|
---|
669 | for(i=1; i<=n; i++)
|
---|
670 | {
|
---|
671 | for(j=1; j<=n; j++)
|
---|
672 | {
|
---|
673 | if( i==j )
|
---|
674 | {
|
---|
675 | q[i,j] = 1;
|
---|
676 | }
|
---|
677 | else
|
---|
678 | {
|
---|
679 | q[i,j] = 0;
|
---|
680 | }
|
---|
681 | }
|
---|
682 | }
|
---|
683 |
|
---|
684 | //
|
---|
685 | // unpack Q
|
---|
686 | //
|
---|
687 | if( isupper )
|
---|
688 | {
|
---|
689 | for(i=1; i<=n-1; i++)
|
---|
690 | {
|
---|
691 |
|
---|
692 | //
|
---|
693 | // Apply H(i)
|
---|
694 | //
|
---|
695 | for(i_=1; i_<=i;i_++)
|
---|
696 | {
|
---|
697 | v[i_] = a[i_,i+1];
|
---|
698 | }
|
---|
699 | v[i] = 1;
|
---|
700 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, 1, i, 1, n, ref work);
|
---|
701 | }
|
---|
702 | }
|
---|
703 | else
|
---|
704 | {
|
---|
705 | for(i=n-1; i>=1; i--)
|
---|
706 | {
|
---|
707 |
|
---|
708 | //
|
---|
709 | // Apply H(i)
|
---|
710 | //
|
---|
711 | i1_ = (i+1) - (1);
|
---|
712 | for(i_=1; i_<=n-i;i_++)
|
---|
713 | {
|
---|
714 | v[i_] = a[i_+i1_,i];
|
---|
715 | }
|
---|
716 | v[1] = 1;
|
---|
717 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, i+1, n, 1, n, ref work);
|
---|
718 | }
|
---|
719 | }
|
---|
720 | }
|
---|
721 | }
|
---|
722 | }
|
---|