1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class hevd
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Finding the eigenvalues and eigenvectors of a Hermitian matrix
|
---|
29 |
|
---|
30 | The algorithm finds eigen pairs of a Hermitian matrix by reducing it to
|
---|
31 | real tridiagonal form and using the QL/QR algorithm.
|
---|
32 |
|
---|
33 | Input parameters:
|
---|
34 | A - Hermitian matrix which is given by its upper or lower
|
---|
35 | triangular part.
|
---|
36 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
37 | N - size of matrix A.
|
---|
38 | IsUpper - storage format.
|
---|
39 | ZNeeded - flag controlling whether the eigenvectors are needed or
|
---|
40 | not. If ZNeeded is equal to:
|
---|
41 | * 0, the eigenvectors are not returned;
|
---|
42 | * 1, the eigenvectors are returned.
|
---|
43 |
|
---|
44 | Output parameters:
|
---|
45 | D - eigenvalues in ascending order.
|
---|
46 | Array whose index ranges within [0..N-1].
|
---|
47 | Z - if ZNeeded is equal to:
|
---|
48 | * 0, Z hasnt changed;
|
---|
49 | * 1, Z contains the eigenvectors.
|
---|
50 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
51 | The eigenvectors are stored in the matrix columns.
|
---|
52 |
|
---|
53 | Result:
|
---|
54 | True, if the algorithm has converged.
|
---|
55 | False, if the algorithm hasn't converged (rare case).
|
---|
56 |
|
---|
57 | Note:
|
---|
58 | eigen vectors of Hermitian matrix are defined up to multiplication by
|
---|
59 | a complex number L, such as |L|=1.
|
---|
60 |
|
---|
61 | -- ALGLIB --
|
---|
62 | Copyright 2005, 23 March 2007 by Bochkanov Sergey
|
---|
63 | *************************************************************************/
|
---|
64 | public static bool hmatrixevd(AP.Complex[,] a,
|
---|
65 | int n,
|
---|
66 | int zneeded,
|
---|
67 | bool isupper,
|
---|
68 | ref double[] d,
|
---|
69 | ref AP.Complex[,] z)
|
---|
70 | {
|
---|
71 | bool result = new bool();
|
---|
72 | AP.Complex[] tau = new AP.Complex[0];
|
---|
73 | double[] e = new double[0];
|
---|
74 | double[] work = new double[0];
|
---|
75 | double[,] t = new double[0,0];
|
---|
76 | AP.Complex[,] q = new AP.Complex[0,0];
|
---|
77 | int i = 0;
|
---|
78 | int k = 0;
|
---|
79 | double v = 0;
|
---|
80 | int i_ = 0;
|
---|
81 |
|
---|
82 | a = (AP.Complex[,])a.Clone();
|
---|
83 |
|
---|
84 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "HermitianEVD: incorrect ZNeeded");
|
---|
85 |
|
---|
86 | //
|
---|
87 | // Reduce to tridiagonal form
|
---|
88 | //
|
---|
89 | htridiagonal.hmatrixtd(ref a, n, isupper, ref tau, ref d, ref e);
|
---|
90 | if( zneeded==1 )
|
---|
91 | {
|
---|
92 | htridiagonal.hmatrixtdunpackq(ref a, n, isupper, ref tau, ref q);
|
---|
93 | zneeded = 2;
|
---|
94 | }
|
---|
95 |
|
---|
96 | //
|
---|
97 | // TDEVD
|
---|
98 | //
|
---|
99 | result = tdevd.smatrixtdevd(ref d, e, n, zneeded, ref t);
|
---|
100 |
|
---|
101 | //
|
---|
102 | // Eigenvectors are needed
|
---|
103 | // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
|
---|
104 | //
|
---|
105 | if( result & zneeded!=0 )
|
---|
106 | {
|
---|
107 | work = new double[n-1+1];
|
---|
108 | z = new AP.Complex[n-1+1, n-1+1];
|
---|
109 | for(i=0; i<=n-1; i++)
|
---|
110 | {
|
---|
111 |
|
---|
112 | //
|
---|
113 | // Calculate real part
|
---|
114 | //
|
---|
115 | for(k=0; k<=n-1; k++)
|
---|
116 | {
|
---|
117 | work[k] = 0;
|
---|
118 | }
|
---|
119 | for(k=0; k<=n-1; k++)
|
---|
120 | {
|
---|
121 | v = q[i,k].x;
|
---|
122 | for(i_=0; i_<=n-1;i_++)
|
---|
123 | {
|
---|
124 | work[i_] = work[i_] + v*t[k,i_];
|
---|
125 | }
|
---|
126 | }
|
---|
127 | for(k=0; k<=n-1; k++)
|
---|
128 | {
|
---|
129 | z[i,k].x = work[k];
|
---|
130 | }
|
---|
131 |
|
---|
132 | //
|
---|
133 | // Calculate imaginary part
|
---|
134 | //
|
---|
135 | for(k=0; k<=n-1; k++)
|
---|
136 | {
|
---|
137 | work[k] = 0;
|
---|
138 | }
|
---|
139 | for(k=0; k<=n-1; k++)
|
---|
140 | {
|
---|
141 | v = q[i,k].y;
|
---|
142 | for(i_=0; i_<=n-1;i_++)
|
---|
143 | {
|
---|
144 | work[i_] = work[i_] + v*t[k,i_];
|
---|
145 | }
|
---|
146 | }
|
---|
147 | for(k=0; k<=n-1; k++)
|
---|
148 | {
|
---|
149 | z[i,k].y = work[k];
|
---|
150 | }
|
---|
151 | }
|
---|
152 | }
|
---|
153 | return result;
|
---|
154 | }
|
---|
155 |
|
---|
156 |
|
---|
157 | /*************************************************************************
|
---|
158 |
|
---|
159 | -- ALGLIB --
|
---|
160 | Copyright 2005, 23 March 2007 by Bochkanov Sergey
|
---|
161 | *************************************************************************/
|
---|
162 | public static bool hermitianevd(AP.Complex[,] a,
|
---|
163 | int n,
|
---|
164 | int zneeded,
|
---|
165 | bool isupper,
|
---|
166 | ref double[] d,
|
---|
167 | ref AP.Complex[,] z)
|
---|
168 | {
|
---|
169 | bool result = new bool();
|
---|
170 | AP.Complex[] tau = new AP.Complex[0];
|
---|
171 | double[] e = new double[0];
|
---|
172 | double[] work = new double[0];
|
---|
173 | double[,] t = new double[0,0];
|
---|
174 | AP.Complex[,] q = new AP.Complex[0,0];
|
---|
175 | int i = 0;
|
---|
176 | int k = 0;
|
---|
177 | double v = 0;
|
---|
178 | int i_ = 0;
|
---|
179 |
|
---|
180 | a = (AP.Complex[,])a.Clone();
|
---|
181 |
|
---|
182 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "HermitianEVD: incorrect ZNeeded");
|
---|
183 |
|
---|
184 | //
|
---|
185 | // Reduce to tridiagonal form
|
---|
186 | //
|
---|
187 | htridiagonal.hermitiantotridiagonal(ref a, n, isupper, ref tau, ref d, ref e);
|
---|
188 | if( zneeded==1 )
|
---|
189 | {
|
---|
190 | htridiagonal.unpackqfromhermitiantridiagonal(ref a, n, isupper, ref tau, ref q);
|
---|
191 | zneeded = 2;
|
---|
192 | }
|
---|
193 |
|
---|
194 | //
|
---|
195 | // TDEVD
|
---|
196 | //
|
---|
197 | result = tdevd.tridiagonalevd(ref d, e, n, zneeded, ref t);
|
---|
198 |
|
---|
199 | //
|
---|
200 | // Eigenvectors are needed
|
---|
201 | // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
|
---|
202 | //
|
---|
203 | if( result & zneeded!=0 )
|
---|
204 | {
|
---|
205 | work = new double[n+1];
|
---|
206 | z = new AP.Complex[n+1, n+1];
|
---|
207 | for(i=1; i<=n; i++)
|
---|
208 | {
|
---|
209 |
|
---|
210 | //
|
---|
211 | // Calculate real part
|
---|
212 | //
|
---|
213 | for(k=1; k<=n; k++)
|
---|
214 | {
|
---|
215 | work[k] = 0;
|
---|
216 | }
|
---|
217 | for(k=1; k<=n; k++)
|
---|
218 | {
|
---|
219 | v = q[i,k].x;
|
---|
220 | for(i_=1; i_<=n;i_++)
|
---|
221 | {
|
---|
222 | work[i_] = work[i_] + v*t[k,i_];
|
---|
223 | }
|
---|
224 | }
|
---|
225 | for(k=1; k<=n; k++)
|
---|
226 | {
|
---|
227 | z[i,k].x = work[k];
|
---|
228 | }
|
---|
229 |
|
---|
230 | //
|
---|
231 | // Calculate imaginary part
|
---|
232 | //
|
---|
233 | for(k=1; k<=n; k++)
|
---|
234 | {
|
---|
235 | work[k] = 0;
|
---|
236 | }
|
---|
237 | for(k=1; k<=n; k++)
|
---|
238 | {
|
---|
239 | v = q[i,k].y;
|
---|
240 | for(i_=1; i_<=n;i_++)
|
---|
241 | {
|
---|
242 | work[i_] = work[i_] + v*t[k,i_];
|
---|
243 | }
|
---|
244 | }
|
---|
245 | for(k=1; k<=n; k++)
|
---|
246 | {
|
---|
247 | z[i,k].y = work[k];
|
---|
248 | }
|
---|
249 | }
|
---|
250 | }
|
---|
251 | return result;
|
---|
252 | }
|
---|
253 | }
|
---|
254 | }
|
---|