1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class hessenberg
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Reduction of a square matrix to upper Hessenberg form: Q'*A*Q = H,
|
---|
35 | where Q is an orthogonal matrix, H - Hessenberg matrix.
|
---|
36 |
|
---|
37 | Input parameters:
|
---|
38 | A - matrix A with elements [0..N-1, 0..N-1]
|
---|
39 | N - size of matrix A.
|
---|
40 |
|
---|
41 | Output parameters:
|
---|
42 | A - matrices Q and P in compact form (see below).
|
---|
43 | Tau - array of scalar factors which are used to form matrix Q.
|
---|
44 | Array whose index ranges within [0..N-2]
|
---|
45 |
|
---|
46 | Matrix H is located on the main diagonal, on the lower secondary diagonal
|
---|
47 | and above the main diagonal of matrix A. The elements which are used to
|
---|
48 | form matrix Q are situated in array Tau and below the lower secondary
|
---|
49 | diagonal of matrix A as follows:
|
---|
50 |
|
---|
51 | Matrix Q is represented as a product of elementary reflections
|
---|
52 |
|
---|
53 | Q = H(0)*H(2)*...*H(n-2),
|
---|
54 |
|
---|
55 | where each H(i) is given by
|
---|
56 |
|
---|
57 | H(i) = 1 - tau * v * (v^T)
|
---|
58 |
|
---|
59 | where tau is a scalar stored in Tau[I]; v - is a real vector,
|
---|
60 | so that v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) stored in A(i+2:n-1,i).
|
---|
61 |
|
---|
62 | -- LAPACK routine (version 3.0) --
|
---|
63 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
64 | Courant Institute, Argonne National Lab, and Rice University
|
---|
65 | October 31, 1992
|
---|
66 | *************************************************************************/
|
---|
67 | public static void rmatrixhessenberg(ref double[,] a,
|
---|
68 | int n,
|
---|
69 | ref double[] tau)
|
---|
70 | {
|
---|
71 | int i = 0;
|
---|
72 | double v = 0;
|
---|
73 | double[] t = new double[0];
|
---|
74 | double[] work = new double[0];
|
---|
75 | int i_ = 0;
|
---|
76 | int i1_ = 0;
|
---|
77 |
|
---|
78 | System.Diagnostics.Debug.Assert(n>=0, "RMatrixHessenberg: incorrect N!");
|
---|
79 |
|
---|
80 | //
|
---|
81 | // Quick return if possible
|
---|
82 | //
|
---|
83 | if( n<=1 )
|
---|
84 | {
|
---|
85 | return;
|
---|
86 | }
|
---|
87 | tau = new double[n-2+1];
|
---|
88 | t = new double[n+1];
|
---|
89 | work = new double[n-1+1];
|
---|
90 | for(i=0; i<=n-2; i++)
|
---|
91 | {
|
---|
92 |
|
---|
93 | //
|
---|
94 | // Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
|
---|
95 | //
|
---|
96 | i1_ = (i+1) - (1);
|
---|
97 | for(i_=1; i_<=n-i-1;i_++)
|
---|
98 | {
|
---|
99 | t[i_] = a[i_+i1_,i];
|
---|
100 | }
|
---|
101 | reflections.generatereflection(ref t, n-i-1, ref v);
|
---|
102 | i1_ = (1) - (i+1);
|
---|
103 | for(i_=i+1; i_<=n-1;i_++)
|
---|
104 | {
|
---|
105 | a[i_,i] = t[i_+i1_];
|
---|
106 | }
|
---|
107 | tau[i] = v;
|
---|
108 | t[1] = 1;
|
---|
109 |
|
---|
110 | //
|
---|
111 | // Apply H(i) to A(1:ihi,i+1:ihi) from the right
|
---|
112 | //
|
---|
113 | reflections.applyreflectionfromtheright(ref a, v, ref t, 0, n-1, i+1, n-1, ref work);
|
---|
114 |
|
---|
115 | //
|
---|
116 | // Apply H(i) to A(i+1:ihi,i+1:n) from the left
|
---|
117 | //
|
---|
118 | reflections.applyreflectionfromtheleft(ref a, v, ref t, i+1, n-1, i+1, n-1, ref work);
|
---|
119 | }
|
---|
120 | }
|
---|
121 |
|
---|
122 |
|
---|
123 | /*************************************************************************
|
---|
124 | Unpacking matrix Q which reduces matrix A to upper Hessenberg form
|
---|
125 |
|
---|
126 | Input parameters:
|
---|
127 | A - output of RMatrixHessenberg subroutine.
|
---|
128 | N - size of matrix A.
|
---|
129 | Tau - scalar factors which are used to form Q.
|
---|
130 | Output of RMatrixHessenberg subroutine.
|
---|
131 |
|
---|
132 | Output parameters:
|
---|
133 | Q - matrix Q.
|
---|
134 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
135 |
|
---|
136 | -- ALGLIB --
|
---|
137 | Copyright 2005 by Bochkanov Sergey
|
---|
138 | *************************************************************************/
|
---|
139 | public static void rmatrixhessenbergunpackq(ref double[,] a,
|
---|
140 | int n,
|
---|
141 | ref double[] tau,
|
---|
142 | ref double[,] q)
|
---|
143 | {
|
---|
144 | int i = 0;
|
---|
145 | int j = 0;
|
---|
146 | double[] v = new double[0];
|
---|
147 | double[] work = new double[0];
|
---|
148 | int i_ = 0;
|
---|
149 | int i1_ = 0;
|
---|
150 |
|
---|
151 | if( n==0 )
|
---|
152 | {
|
---|
153 | return;
|
---|
154 | }
|
---|
155 |
|
---|
156 | //
|
---|
157 | // init
|
---|
158 | //
|
---|
159 | q = new double[n-1+1, n-1+1];
|
---|
160 | v = new double[n-1+1];
|
---|
161 | work = new double[n-1+1];
|
---|
162 | for(i=0; i<=n-1; i++)
|
---|
163 | {
|
---|
164 | for(j=0; j<=n-1; j++)
|
---|
165 | {
|
---|
166 | if( i==j )
|
---|
167 | {
|
---|
168 | q[i,j] = 1;
|
---|
169 | }
|
---|
170 | else
|
---|
171 | {
|
---|
172 | q[i,j] = 0;
|
---|
173 | }
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | //
|
---|
178 | // unpack Q
|
---|
179 | //
|
---|
180 | for(i=0; i<=n-2; i++)
|
---|
181 | {
|
---|
182 |
|
---|
183 | //
|
---|
184 | // Apply H(i)
|
---|
185 | //
|
---|
186 | i1_ = (i+1) - (1);
|
---|
187 | for(i_=1; i_<=n-i-1;i_++)
|
---|
188 | {
|
---|
189 | v[i_] = a[i_+i1_,i];
|
---|
190 | }
|
---|
191 | v[1] = 1;
|
---|
192 | reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 0, n-1, i+1, n-1, ref work);
|
---|
193 | }
|
---|
194 | }
|
---|
195 |
|
---|
196 |
|
---|
197 | /*************************************************************************
|
---|
198 | Unpacking matrix H (the result of matrix A reduction to upper Hessenberg form)
|
---|
199 |
|
---|
200 | Input parameters:
|
---|
201 | A - output of RMatrixHessenberg subroutine.
|
---|
202 | N - size of matrix A.
|
---|
203 |
|
---|
204 | Output parameters:
|
---|
205 | H - matrix H. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
206 |
|
---|
207 | -- ALGLIB --
|
---|
208 | Copyright 2005 by Bochkanov Sergey
|
---|
209 | *************************************************************************/
|
---|
210 | public static void rmatrixhessenbergunpackh(ref double[,] a,
|
---|
211 | int n,
|
---|
212 | ref double[,] h)
|
---|
213 | {
|
---|
214 | int i = 0;
|
---|
215 | int j = 0;
|
---|
216 | double[] v = new double[0];
|
---|
217 | double[] work = new double[0];
|
---|
218 | int i_ = 0;
|
---|
219 |
|
---|
220 | if( n==0 )
|
---|
221 | {
|
---|
222 | return;
|
---|
223 | }
|
---|
224 | h = new double[n-1+1, n-1+1];
|
---|
225 | for(i=0; i<=n-1; i++)
|
---|
226 | {
|
---|
227 | for(j=0; j<=i-2; j++)
|
---|
228 | {
|
---|
229 | h[i,j] = 0;
|
---|
230 | }
|
---|
231 | j = Math.Max(0, i-1);
|
---|
232 | for(i_=j; i_<=n-1;i_++)
|
---|
233 | {
|
---|
234 | h[i,i_] = a[i,i_];
|
---|
235 | }
|
---|
236 | }
|
---|
237 | }
|
---|
238 |
|
---|
239 |
|
---|
240 | public static void toupperhessenberg(ref double[,] a,
|
---|
241 | int n,
|
---|
242 | ref double[] tau)
|
---|
243 | {
|
---|
244 | int i = 0;
|
---|
245 | int ip1 = 0;
|
---|
246 | int nmi = 0;
|
---|
247 | double v = 0;
|
---|
248 | double[] t = new double[0];
|
---|
249 | double[] work = new double[0];
|
---|
250 | int i_ = 0;
|
---|
251 | int i1_ = 0;
|
---|
252 |
|
---|
253 | System.Diagnostics.Debug.Assert(n>=0, "ToUpperHessenberg: incorrect N!");
|
---|
254 |
|
---|
255 | //
|
---|
256 | // Quick return if possible
|
---|
257 | //
|
---|
258 | if( n<=1 )
|
---|
259 | {
|
---|
260 | return;
|
---|
261 | }
|
---|
262 | tau = new double[n-1+1];
|
---|
263 | t = new double[n+1];
|
---|
264 | work = new double[n+1];
|
---|
265 | for(i=1; i<=n-1; i++)
|
---|
266 | {
|
---|
267 |
|
---|
268 | //
|
---|
269 | // Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
|
---|
270 | //
|
---|
271 | ip1 = i+1;
|
---|
272 | nmi = n-i;
|
---|
273 | i1_ = (ip1) - (1);
|
---|
274 | for(i_=1; i_<=nmi;i_++)
|
---|
275 | {
|
---|
276 | t[i_] = a[i_+i1_,i];
|
---|
277 | }
|
---|
278 | reflections.generatereflection(ref t, nmi, ref v);
|
---|
279 | i1_ = (1) - (ip1);
|
---|
280 | for(i_=ip1; i_<=n;i_++)
|
---|
281 | {
|
---|
282 | a[i_,i] = t[i_+i1_];
|
---|
283 | }
|
---|
284 | tau[i] = v;
|
---|
285 | t[1] = 1;
|
---|
286 |
|
---|
287 | //
|
---|
288 | // Apply H(i) to A(1:ihi,i+1:ihi) from the right
|
---|
289 | //
|
---|
290 | reflections.applyreflectionfromtheright(ref a, v, ref t, 1, n, i+1, n, ref work);
|
---|
291 |
|
---|
292 | //
|
---|
293 | // Apply H(i) to A(i+1:ihi,i+1:n) from the left
|
---|
294 | //
|
---|
295 | reflections.applyreflectionfromtheleft(ref a, v, ref t, i+1, n, i+1, n, ref work);
|
---|
296 | }
|
---|
297 | }
|
---|
298 |
|
---|
299 |
|
---|
300 | public static void unpackqfromupperhessenberg(ref double[,] a,
|
---|
301 | int n,
|
---|
302 | ref double[] tau,
|
---|
303 | ref double[,] q)
|
---|
304 | {
|
---|
305 | int i = 0;
|
---|
306 | int j = 0;
|
---|
307 | double[] v = new double[0];
|
---|
308 | double[] work = new double[0];
|
---|
309 | int ip1 = 0;
|
---|
310 | int nmi = 0;
|
---|
311 | int i_ = 0;
|
---|
312 | int i1_ = 0;
|
---|
313 |
|
---|
314 | if( n==0 )
|
---|
315 | {
|
---|
316 | return;
|
---|
317 | }
|
---|
318 |
|
---|
319 | //
|
---|
320 | // init
|
---|
321 | //
|
---|
322 | q = new double[n+1, n+1];
|
---|
323 | v = new double[n+1];
|
---|
324 | work = new double[n+1];
|
---|
325 | for(i=1; i<=n; i++)
|
---|
326 | {
|
---|
327 | for(j=1; j<=n; j++)
|
---|
328 | {
|
---|
329 | if( i==j )
|
---|
330 | {
|
---|
331 | q[i,j] = 1;
|
---|
332 | }
|
---|
333 | else
|
---|
334 | {
|
---|
335 | q[i,j] = 0;
|
---|
336 | }
|
---|
337 | }
|
---|
338 | }
|
---|
339 |
|
---|
340 | //
|
---|
341 | // unpack Q
|
---|
342 | //
|
---|
343 | for(i=1; i<=n-1; i++)
|
---|
344 | {
|
---|
345 |
|
---|
346 | //
|
---|
347 | // Apply H(i)
|
---|
348 | //
|
---|
349 | ip1 = i+1;
|
---|
350 | nmi = n-i;
|
---|
351 | i1_ = (ip1) - (1);
|
---|
352 | for(i_=1; i_<=nmi;i_++)
|
---|
353 | {
|
---|
354 | v[i_] = a[i_+i1_,i];
|
---|
355 | }
|
---|
356 | v[1] = 1;
|
---|
357 | reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 1, n, i+1, n, ref work);
|
---|
358 | }
|
---|
359 | }
|
---|
360 |
|
---|
361 |
|
---|
362 | public static void unpackhfromupperhessenberg(ref double[,] a,
|
---|
363 | int n,
|
---|
364 | ref double[] tau,
|
---|
365 | ref double[,] h)
|
---|
366 | {
|
---|
367 | int i = 0;
|
---|
368 | int j = 0;
|
---|
369 | double[] v = new double[0];
|
---|
370 | double[] work = new double[0];
|
---|
371 | int i_ = 0;
|
---|
372 |
|
---|
373 | if( n==0 )
|
---|
374 | {
|
---|
375 | return;
|
---|
376 | }
|
---|
377 | h = new double[n+1, n+1];
|
---|
378 | for(i=1; i<=n; i++)
|
---|
379 | {
|
---|
380 | for(j=1; j<=i-2; j++)
|
---|
381 | {
|
---|
382 | h[i,j] = 0;
|
---|
383 | }
|
---|
384 | j = Math.Max(1, i-1);
|
---|
385 | for(i_=j; i_<=n;i_++)
|
---|
386 | {
|
---|
387 | h[i,i_] = a[i,i_];
|
---|
388 | }
|
---|
389 | }
|
---|
390 | }
|
---|
391 | }
|
---|
392 | }
|
---|