1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class hcholesky
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Cholesky decomposition
|
---|
35 |
|
---|
36 | The algorithm computes Cholesky decomposition of a Hermitian positive-
|
---|
37 | definite matrix.
|
---|
38 |
|
---|
39 | The result of an algorithm is a representation of matrix A as A = U'*U or
|
---|
40 | A = L*L' (here X' detones conj(X^T)).
|
---|
41 |
|
---|
42 | Input parameters:
|
---|
43 | A - upper or lower triangle of a factorized matrix.
|
---|
44 | array with elements [0..N-1, 0..N-1].
|
---|
45 | N - size of matrix A.
|
---|
46 | IsUpper - if IsUpper=True, then A contains an upper triangle of
|
---|
47 | a symmetric matrix, otherwise A contains a lower one.
|
---|
48 |
|
---|
49 | Output parameters:
|
---|
50 | A - the result of factorization. If IsUpper=True, then
|
---|
51 | the upper triangle contains matrix U, so that A = U'*U,
|
---|
52 | and the elements below the main diagonal are not modified.
|
---|
53 | Similarly, if IsUpper = False.
|
---|
54 |
|
---|
55 | Result:
|
---|
56 | If the matrix is positive-definite, the function returns True.
|
---|
57 | Otherwise, the function returns False. This means that the
|
---|
58 | factorization could not be carried out.
|
---|
59 |
|
---|
60 | -- LAPACK routine (version 3.0) --
|
---|
61 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
62 | Courant Institute, Argonne National Lab, and Rice University
|
---|
63 | February 29, 1992
|
---|
64 | *************************************************************************/
|
---|
65 | public static bool hmatrixcholesky(ref AP.Complex[,] a,
|
---|
66 | int n,
|
---|
67 | bool isupper)
|
---|
68 | {
|
---|
69 | bool result = new bool();
|
---|
70 | int j = 0;
|
---|
71 | double ajj = 0;
|
---|
72 | AP.Complex v = 0;
|
---|
73 | double r = 0;
|
---|
74 | AP.Complex[] t = new AP.Complex[0];
|
---|
75 | AP.Complex[] t2 = new AP.Complex[0];
|
---|
76 | AP.Complex[] t3 = new AP.Complex[0];
|
---|
77 | int i = 0;
|
---|
78 | AP.Complex[,] a1 = new AP.Complex[0,0];
|
---|
79 | int i_ = 0;
|
---|
80 |
|
---|
81 | if( !isupper )
|
---|
82 | {
|
---|
83 | a1 = new AP.Complex[n+1, n+1];
|
---|
84 | for(i=1; i<=n; i++)
|
---|
85 | {
|
---|
86 | for(j=1; j<=n; j++)
|
---|
87 | {
|
---|
88 | a1[i,j] = a[i-1,j-1];
|
---|
89 | }
|
---|
90 | }
|
---|
91 | result = hermitiancholeskydecomposition(ref a1, n, isupper);
|
---|
92 | for(i=1; i<=n; i++)
|
---|
93 | {
|
---|
94 | for(j=1; j<=n; j++)
|
---|
95 | {
|
---|
96 | a[i-1,j-1] = a1[i,j];
|
---|
97 | }
|
---|
98 | }
|
---|
99 | return result;
|
---|
100 | }
|
---|
101 | t = new AP.Complex[n-1+1];
|
---|
102 | t2 = new AP.Complex[n-1+1];
|
---|
103 | t3 = new AP.Complex[n-1+1];
|
---|
104 | result = true;
|
---|
105 | if( n<0 )
|
---|
106 | {
|
---|
107 | result = false;
|
---|
108 | return result;
|
---|
109 | }
|
---|
110 |
|
---|
111 | //
|
---|
112 | // Quick return if possible
|
---|
113 | //
|
---|
114 | if( n==0 )
|
---|
115 | {
|
---|
116 | return result;
|
---|
117 | }
|
---|
118 | if( isupper )
|
---|
119 | {
|
---|
120 |
|
---|
121 | //
|
---|
122 | // Compute the Cholesky factorization A = U'*U.
|
---|
123 | //
|
---|
124 | for(j=0; j<=n-1; j++)
|
---|
125 | {
|
---|
126 |
|
---|
127 | //
|
---|
128 | // Compute U(J,J) and test for non-positive-definiteness.
|
---|
129 | //
|
---|
130 | v = 0.0;
|
---|
131 | for(i_=0; i_<=j-1;i_++)
|
---|
132 | {
|
---|
133 | v += AP.Math.Conj(a[i_,j])*a[i_,j];
|
---|
134 | }
|
---|
135 | ajj = (a[j,j]-v).x;
|
---|
136 | if( (double)(ajj)<=(double)(0) )
|
---|
137 | {
|
---|
138 | a[j,j] = ajj;
|
---|
139 | result = false;
|
---|
140 | return result;
|
---|
141 | }
|
---|
142 | ajj = Math.Sqrt(ajj);
|
---|
143 | a[j,j] = ajj;
|
---|
144 |
|
---|
145 | //
|
---|
146 | // Compute elements J+1:N-1 of row J.
|
---|
147 | //
|
---|
148 | if( j<n-1 )
|
---|
149 | {
|
---|
150 | for(i_=0; i_<=j-1;i_++)
|
---|
151 | {
|
---|
152 | t2[i_] = AP.Math.Conj(a[i_,j]);
|
---|
153 | }
|
---|
154 | for(i_=j+1; i_<=n-1;i_++)
|
---|
155 | {
|
---|
156 | t3[i_] = a[j,i_];
|
---|
157 | }
|
---|
158 | cblas.complexmatrixvectormultiply(ref a, 0, j-1, j+1, n-1, true, false, ref t2, 0, j-1, -1.0, ref t3, j+1, n-1, 1.0, ref t);
|
---|
159 | for(i_=j+1; i_<=n-1;i_++)
|
---|
160 | {
|
---|
161 | a[j,i_] = t3[i_];
|
---|
162 | }
|
---|
163 | r = 1/ajj;
|
---|
164 | for(i_=j+1; i_<=n-1;i_++)
|
---|
165 | {
|
---|
166 | a[j,i_] = r*a[j,i_];
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|
170 | }
|
---|
171 | else
|
---|
172 | {
|
---|
173 |
|
---|
174 | //
|
---|
175 | // Compute the Cholesky factorization A = L*L'.
|
---|
176 | //
|
---|
177 | for(j=0; j<=n-1; j++)
|
---|
178 | {
|
---|
179 |
|
---|
180 | //
|
---|
181 | // Compute L(J+1,J+1) and test for non-positive-definiteness.
|
---|
182 | //
|
---|
183 | v = 0.0;
|
---|
184 | for(i_=0; i_<=j-1;i_++)
|
---|
185 | {
|
---|
186 | v += AP.Math.Conj(a[j,i_])*a[j,i_];
|
---|
187 | }
|
---|
188 | ajj = (a[j,j]-v).x;
|
---|
189 | if( (double)(ajj)<=(double)(0) )
|
---|
190 | {
|
---|
191 | a[j,j] = ajj;
|
---|
192 | result = false;
|
---|
193 | return result;
|
---|
194 | }
|
---|
195 | ajj = Math.Sqrt(ajj);
|
---|
196 | a[j,j] = ajj;
|
---|
197 |
|
---|
198 | //
|
---|
199 | // Compute elements J+1:N of column J.
|
---|
200 | //
|
---|
201 | if( j<n-1 )
|
---|
202 | {
|
---|
203 | for(i_=0; i_<=j-1;i_++)
|
---|
204 | {
|
---|
205 | t2[i_] = AP.Math.Conj(a[j,i_]);
|
---|
206 | }
|
---|
207 | for(i_=j+1; i_<=n-1;i_++)
|
---|
208 | {
|
---|
209 | t3[i_] = a[i_,j];
|
---|
210 | }
|
---|
211 | cblas.complexmatrixvectormultiply(ref a, j+1, n-1, 0, j-1, false, false, ref t2, 0, j-1, -1.0, ref t3, j+1, n-1, 1.0, ref t);
|
---|
212 | for(i_=j+1; i_<=n-1;i_++)
|
---|
213 | {
|
---|
214 | a[i_,j] = t3[i_];
|
---|
215 | }
|
---|
216 | r = 1/ajj;
|
---|
217 | for(i_=j+1; i_<=n-1;i_++)
|
---|
218 | {
|
---|
219 | a[i_,j] = r*a[i_,j];
|
---|
220 | }
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|
224 | return result;
|
---|
225 | }
|
---|
226 |
|
---|
227 |
|
---|
228 | public static bool hermitiancholeskydecomposition(ref AP.Complex[,] a,
|
---|
229 | int n,
|
---|
230 | bool isupper)
|
---|
231 | {
|
---|
232 | bool result = new bool();
|
---|
233 | int j = 0;
|
---|
234 | double ajj = 0;
|
---|
235 | AP.Complex v = 0;
|
---|
236 | double r = 0;
|
---|
237 | AP.Complex[] t = new AP.Complex[0];
|
---|
238 | AP.Complex[] t2 = new AP.Complex[0];
|
---|
239 | AP.Complex[] t3 = new AP.Complex[0];
|
---|
240 | int i_ = 0;
|
---|
241 |
|
---|
242 | t = new AP.Complex[n+1];
|
---|
243 | t2 = new AP.Complex[n+1];
|
---|
244 | t3 = new AP.Complex[n+1];
|
---|
245 | result = true;
|
---|
246 | if( n<0 )
|
---|
247 | {
|
---|
248 | result = false;
|
---|
249 | return result;
|
---|
250 | }
|
---|
251 |
|
---|
252 | //
|
---|
253 | // Quick return if possible
|
---|
254 | //
|
---|
255 | if( n==0 )
|
---|
256 | {
|
---|
257 | return result;
|
---|
258 | }
|
---|
259 | if( isupper )
|
---|
260 | {
|
---|
261 |
|
---|
262 | //
|
---|
263 | // Compute the Cholesky factorization A = U'*U.
|
---|
264 | //
|
---|
265 | for(j=1; j<=n; j++)
|
---|
266 | {
|
---|
267 |
|
---|
268 | //
|
---|
269 | // Compute U(J,J) and test for non-positive-definiteness.
|
---|
270 | //
|
---|
271 | v = 0.0;
|
---|
272 | for(i_=1; i_<=j-1;i_++)
|
---|
273 | {
|
---|
274 | v += AP.Math.Conj(a[i_,j])*a[i_,j];
|
---|
275 | }
|
---|
276 | ajj = (a[j,j]-v).x;
|
---|
277 | if( (double)(ajj)<=(double)(0) )
|
---|
278 | {
|
---|
279 | a[j,j] = ajj;
|
---|
280 | result = false;
|
---|
281 | return result;
|
---|
282 | }
|
---|
283 | ajj = Math.Sqrt(ajj);
|
---|
284 | a[j,j] = ajj;
|
---|
285 |
|
---|
286 | //
|
---|
287 | // Compute elements J+1:N of row J.
|
---|
288 | //
|
---|
289 | if( j<n )
|
---|
290 | {
|
---|
291 | for(i_=1; i_<=j-1;i_++)
|
---|
292 | {
|
---|
293 | a[i_,j] = AP.Math.Conj(a[i_,j]);
|
---|
294 | }
|
---|
295 | for(i_=1; i_<=j-1;i_++)
|
---|
296 | {
|
---|
297 | t2[i_] = a[i_,j];
|
---|
298 | }
|
---|
299 | for(i_=j+1; i_<=n;i_++)
|
---|
300 | {
|
---|
301 | t3[i_] = a[j,i_];
|
---|
302 | }
|
---|
303 | cblas.complexmatrixvectormultiply(ref a, 1, j-1, j+1, n, true, false, ref t2, 1, j-1, -1.0, ref t3, j+1, n, 1.0, ref t);
|
---|
304 | for(i_=j+1; i_<=n;i_++)
|
---|
305 | {
|
---|
306 | a[j,i_] = t3[i_];
|
---|
307 | }
|
---|
308 | for(i_=1; i_<=j-1;i_++)
|
---|
309 | {
|
---|
310 | a[i_,j] = AP.Math.Conj(a[i_,j]);
|
---|
311 | }
|
---|
312 | r = 1/ajj;
|
---|
313 | for(i_=j+1; i_<=n;i_++)
|
---|
314 | {
|
---|
315 | a[j,i_] = r*a[j,i_];
|
---|
316 | }
|
---|
317 | }
|
---|
318 | }
|
---|
319 | }
|
---|
320 | else
|
---|
321 | {
|
---|
322 |
|
---|
323 | //
|
---|
324 | // Compute the Cholesky factorization A = L*L'.
|
---|
325 | //
|
---|
326 | for(j=1; j<=n; j++)
|
---|
327 | {
|
---|
328 |
|
---|
329 | //
|
---|
330 | // Compute L(J,J) and test for non-positive-definiteness.
|
---|
331 | //
|
---|
332 | v = 0.0;
|
---|
333 | for(i_=1; i_<=j-1;i_++)
|
---|
334 | {
|
---|
335 | v += AP.Math.Conj(a[j,i_])*a[j,i_];
|
---|
336 | }
|
---|
337 | ajj = (a[j,j]-v).x;
|
---|
338 | if( (double)(ajj)<=(double)(0) )
|
---|
339 | {
|
---|
340 | a[j,j] = ajj;
|
---|
341 | result = false;
|
---|
342 | return result;
|
---|
343 | }
|
---|
344 | ajj = Math.Sqrt(ajj);
|
---|
345 | a[j,j] = ajj;
|
---|
346 |
|
---|
347 | //
|
---|
348 | // Compute elements J+1:N of column J.
|
---|
349 | //
|
---|
350 | if( j<n )
|
---|
351 | {
|
---|
352 | for(i_=1; i_<=j-1;i_++)
|
---|
353 | {
|
---|
354 | a[j,i_] = AP.Math.Conj(a[j,i_]);
|
---|
355 | }
|
---|
356 | for(i_=1; i_<=j-1;i_++)
|
---|
357 | {
|
---|
358 | t2[i_] = a[j,i_];
|
---|
359 | }
|
---|
360 | for(i_=j+1; i_<=n;i_++)
|
---|
361 | {
|
---|
362 | t3[i_] = a[i_,j];
|
---|
363 | }
|
---|
364 | cblas.complexmatrixvectormultiply(ref a, j+1, n, 1, j-1, false, false, ref t2, 1, j-1, -1.0, ref t3, j+1, n, 1.0, ref t);
|
---|
365 | for(i_=j+1; i_<=n;i_++)
|
---|
366 | {
|
---|
367 | a[i_,j] = t3[i_];
|
---|
368 | }
|
---|
369 | for(i_=1; i_<=j-1;i_++)
|
---|
370 | {
|
---|
371 | a[j,i_] = AP.Math.Conj(a[j,i_]);
|
---|
372 | }
|
---|
373 | r = 1/ajj;
|
---|
374 | for(i_=j+1; i_<=n;i_++)
|
---|
375 | {
|
---|
376 | a[i_,j] = r*a[i_,j];
|
---|
377 | }
|
---|
378 | }
|
---|
379 | }
|
---|
380 | }
|
---|
381 | return result;
|
---|
382 | }
|
---|
383 | }
|
---|
384 | }
|
---|