1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class hbisinv
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Subroutine for finding the eigenvalues (and eigenvectors) of a Hermitian
|
---|
29 | matrix in a given half-interval (A, B] by using a bisection and inverse
|
---|
30 | iteration
|
---|
31 |
|
---|
32 | Input parameters:
|
---|
33 | A - Hermitian matrix which is given by its upper or lower
|
---|
34 | triangular part. Array whose indexes range within
|
---|
35 | [0..N-1, 0..N-1].
|
---|
36 | N - size of matrix A.
|
---|
37 | ZNeeded - flag controlling whether the eigenvectors are needed or
|
---|
38 | not. If ZNeeded is equal to:
|
---|
39 | * 0, the eigenvectors are not returned;
|
---|
40 | * 1, the eigenvectors are returned.
|
---|
41 | IsUpperA - storage format of matrix A.
|
---|
42 | B1, B2 - half-interval (B1, B2] to search eigenvalues in.
|
---|
43 |
|
---|
44 | Output parameters:
|
---|
45 | M - number of eigenvalues found in a given half-interval, M>=0
|
---|
46 | W - array of the eigenvalues found.
|
---|
47 | Array whose index ranges within [0..M-1].
|
---|
48 | Z - if ZNeeded is equal to:
|
---|
49 | * 0, Z hasnt changed;
|
---|
50 | * 1, Z contains eigenvectors.
|
---|
51 | Array whose indexes range within [0..N-1, 0..M-1].
|
---|
52 | The eigenvectors are stored in the matrix columns.
|
---|
53 |
|
---|
54 | Result:
|
---|
55 | True, if successful. M contains the number of eigenvalues in the given
|
---|
56 | half-interval (could be equal to 0), W contains the eigenvalues,
|
---|
57 | Z contains the eigenvectors (if needed).
|
---|
58 |
|
---|
59 | False, if the bisection method subroutine wasn't able to find the
|
---|
60 | eigenvalues in the given interval or if the inverse iteration
|
---|
61 | subroutine wasn't able to find all the corresponding eigenvectors.
|
---|
62 | In that case, the eigenvalues and eigenvectors are not returned, M is
|
---|
63 | equal to 0.
|
---|
64 |
|
---|
65 | Note:
|
---|
66 | eigen vectors of Hermitian matrix are defined up to multiplication by
|
---|
67 | a complex number L, such as |L|=1.
|
---|
68 |
|
---|
69 | -- ALGLIB --
|
---|
70 | Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
|
---|
71 | *************************************************************************/
|
---|
72 | public static bool hmatrixevdr(AP.Complex[,] a,
|
---|
73 | int n,
|
---|
74 | int zneeded,
|
---|
75 | bool isupper,
|
---|
76 | double b1,
|
---|
77 | double b2,
|
---|
78 | ref int m,
|
---|
79 | ref double[] w,
|
---|
80 | ref AP.Complex[,] z)
|
---|
81 | {
|
---|
82 | bool result = new bool();
|
---|
83 | AP.Complex[,] q = new AP.Complex[0,0];
|
---|
84 | double[,] t = new double[0,0];
|
---|
85 | AP.Complex[] tau = new AP.Complex[0];
|
---|
86 | double[] e = new double[0];
|
---|
87 | double[] work = new double[0];
|
---|
88 | int i = 0;
|
---|
89 | int k = 0;
|
---|
90 | double v = 0;
|
---|
91 | int i_ = 0;
|
---|
92 |
|
---|
93 | a = (AP.Complex[,])a.Clone();
|
---|
94 |
|
---|
95 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "HermitianEigenValuesAndVectorsInInterval: incorrect ZNeeded");
|
---|
96 |
|
---|
97 | //
|
---|
98 | // Reduce to tridiagonal form
|
---|
99 | //
|
---|
100 | htridiagonal.hmatrixtd(ref a, n, isupper, ref tau, ref w, ref e);
|
---|
101 | if( zneeded==1 )
|
---|
102 | {
|
---|
103 | htridiagonal.hmatrixtdunpackq(ref a, n, isupper, ref tau, ref q);
|
---|
104 | zneeded = 2;
|
---|
105 | }
|
---|
106 |
|
---|
107 | //
|
---|
108 | // Bisection and inverse iteration
|
---|
109 | //
|
---|
110 | result = tdbisinv.smatrixtdevdr(ref w, ref e, n, zneeded, b1, b2, ref m, ref t);
|
---|
111 |
|
---|
112 | //
|
---|
113 | // Eigenvectors are needed
|
---|
114 | // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
|
---|
115 | //
|
---|
116 | if( result & zneeded!=0 & m!=0 )
|
---|
117 | {
|
---|
118 | work = new double[m-1+1];
|
---|
119 | z = new AP.Complex[n-1+1, m-1+1];
|
---|
120 | for(i=0; i<=n-1; i++)
|
---|
121 | {
|
---|
122 |
|
---|
123 | //
|
---|
124 | // Calculate real part
|
---|
125 | //
|
---|
126 | for(k=0; k<=m-1; k++)
|
---|
127 | {
|
---|
128 | work[k] = 0;
|
---|
129 | }
|
---|
130 | for(k=0; k<=n-1; k++)
|
---|
131 | {
|
---|
132 | v = q[i,k].x;
|
---|
133 | for(i_=0; i_<=m-1;i_++)
|
---|
134 | {
|
---|
135 | work[i_] = work[i_] + v*t[k,i_];
|
---|
136 | }
|
---|
137 | }
|
---|
138 | for(k=0; k<=m-1; k++)
|
---|
139 | {
|
---|
140 | z[i,k].x = work[k];
|
---|
141 | }
|
---|
142 |
|
---|
143 | //
|
---|
144 | // Calculate imaginary part
|
---|
145 | //
|
---|
146 | for(k=0; k<=m-1; k++)
|
---|
147 | {
|
---|
148 | work[k] = 0;
|
---|
149 | }
|
---|
150 | for(k=0; k<=n-1; k++)
|
---|
151 | {
|
---|
152 | v = q[i,k].y;
|
---|
153 | for(i_=0; i_<=m-1;i_++)
|
---|
154 | {
|
---|
155 | work[i_] = work[i_] + v*t[k,i_];
|
---|
156 | }
|
---|
157 | }
|
---|
158 | for(k=0; k<=m-1; k++)
|
---|
159 | {
|
---|
160 | z[i,k].y = work[k];
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|
164 | return result;
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | /*************************************************************************
|
---|
169 | Subroutine for finding the eigenvalues and eigenvectors of a Hermitian
|
---|
170 | matrix with given indexes by using bisection and inverse iteration methods
|
---|
171 |
|
---|
172 | Input parameters:
|
---|
173 | A - Hermitian matrix which is given by its upper or lower
|
---|
174 | triangular part.
|
---|
175 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
176 | N - size of matrix A.
|
---|
177 | ZNeeded - flag controlling whether the eigenvectors are needed or
|
---|
178 | not. If ZNeeded is equal to:
|
---|
179 | * 0, the eigenvectors are not returned;
|
---|
180 | * 1, the eigenvectors are returned.
|
---|
181 | IsUpperA - storage format of matrix A.
|
---|
182 | I1, I2 - index interval for searching (from I1 to I2).
|
---|
183 | 0 <= I1 <= I2 <= N-1.
|
---|
184 |
|
---|
185 | Output parameters:
|
---|
186 | W - array of the eigenvalues found.
|
---|
187 | Array whose index ranges within [0..I2-I1].
|
---|
188 | Z - if ZNeeded is equal to:
|
---|
189 | * 0, Z hasnt changed;
|
---|
190 | * 1, Z contains eigenvectors.
|
---|
191 | Array whose indexes range within [0..N-1, 0..I2-I1].
|
---|
192 | In that case, the eigenvectors are stored in the matrix
|
---|
193 | columns.
|
---|
194 |
|
---|
195 | Result:
|
---|
196 | True, if successful. W contains the eigenvalues, Z contains the
|
---|
197 | eigenvectors (if needed).
|
---|
198 |
|
---|
199 | False, if the bisection method subroutine wasn't able to find the
|
---|
200 | eigenvalues in the given interval or if the inverse iteration
|
---|
201 | subroutine wasn't able to find all the corresponding eigenvectors.
|
---|
202 | In that case, the eigenvalues and eigenvectors are not returned.
|
---|
203 |
|
---|
204 | Note:
|
---|
205 | eigen vectors of Hermitian matrix are defined up to multiplication by
|
---|
206 | a complex number L, such as |L|=1.
|
---|
207 |
|
---|
208 | -- ALGLIB --
|
---|
209 | Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
|
---|
210 | *************************************************************************/
|
---|
211 | public static bool hmatrixevdi(AP.Complex[,] a,
|
---|
212 | int n,
|
---|
213 | int zneeded,
|
---|
214 | bool isupper,
|
---|
215 | int i1,
|
---|
216 | int i2,
|
---|
217 | ref double[] w,
|
---|
218 | ref AP.Complex[,] z)
|
---|
219 | {
|
---|
220 | bool result = new bool();
|
---|
221 | AP.Complex[,] q = new AP.Complex[0,0];
|
---|
222 | double[,] t = new double[0,0];
|
---|
223 | AP.Complex[] tau = new AP.Complex[0];
|
---|
224 | double[] e = new double[0];
|
---|
225 | double[] work = new double[0];
|
---|
226 | int i = 0;
|
---|
227 | int k = 0;
|
---|
228 | double v = 0;
|
---|
229 | int m = 0;
|
---|
230 | int i_ = 0;
|
---|
231 |
|
---|
232 | a = (AP.Complex[,])a.Clone();
|
---|
233 |
|
---|
234 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "HermitianEigenValuesAndVectorsByIndexes: incorrect ZNeeded");
|
---|
235 |
|
---|
236 | //
|
---|
237 | // Reduce to tridiagonal form
|
---|
238 | //
|
---|
239 | htridiagonal.hmatrixtd(ref a, n, isupper, ref tau, ref w, ref e);
|
---|
240 | if( zneeded==1 )
|
---|
241 | {
|
---|
242 | htridiagonal.hmatrixtdunpackq(ref a, n, isupper, ref tau, ref q);
|
---|
243 | zneeded = 2;
|
---|
244 | }
|
---|
245 |
|
---|
246 | //
|
---|
247 | // Bisection and inverse iteration
|
---|
248 | //
|
---|
249 | result = tdbisinv.smatrixtdevdi(ref w, ref e, n, zneeded, i1, i2, ref t);
|
---|
250 |
|
---|
251 | //
|
---|
252 | // Eigenvectors are needed
|
---|
253 | // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
|
---|
254 | //
|
---|
255 | m = i2-i1+1;
|
---|
256 | if( result & zneeded!=0 )
|
---|
257 | {
|
---|
258 | work = new double[m-1+1];
|
---|
259 | z = new AP.Complex[n-1+1, m-1+1];
|
---|
260 | for(i=0; i<=n-1; i++)
|
---|
261 | {
|
---|
262 |
|
---|
263 | //
|
---|
264 | // Calculate real part
|
---|
265 | //
|
---|
266 | for(k=0; k<=m-1; k++)
|
---|
267 | {
|
---|
268 | work[k] = 0;
|
---|
269 | }
|
---|
270 | for(k=0; k<=n-1; k++)
|
---|
271 | {
|
---|
272 | v = q[i,k].x;
|
---|
273 | for(i_=0; i_<=m-1;i_++)
|
---|
274 | {
|
---|
275 | work[i_] = work[i_] + v*t[k,i_];
|
---|
276 | }
|
---|
277 | }
|
---|
278 | for(k=0; k<=m-1; k++)
|
---|
279 | {
|
---|
280 | z[i,k].x = work[k];
|
---|
281 | }
|
---|
282 |
|
---|
283 | //
|
---|
284 | // Calculate imaginary part
|
---|
285 | //
|
---|
286 | for(k=0; k<=m-1; k++)
|
---|
287 | {
|
---|
288 | work[k] = 0;
|
---|
289 | }
|
---|
290 | for(k=0; k<=n-1; k++)
|
---|
291 | {
|
---|
292 | v = q[i,k].y;
|
---|
293 | for(i_=0; i_<=m-1;i_++)
|
---|
294 | {
|
---|
295 | work[i_] = work[i_] + v*t[k,i_];
|
---|
296 | }
|
---|
297 | }
|
---|
298 | for(k=0; k<=m-1; k++)
|
---|
299 | {
|
---|
300 | z[i,k].y = work[k];
|
---|
301 | }
|
---|
302 | }
|
---|
303 | }
|
---|
304 | return result;
|
---|
305 | }
|
---|
306 |
|
---|
307 |
|
---|
308 | public static bool hermitianeigenvaluesandvectorsininterval(AP.Complex[,] a,
|
---|
309 | int n,
|
---|
310 | int zneeded,
|
---|
311 | bool isupper,
|
---|
312 | double b1,
|
---|
313 | double b2,
|
---|
314 | ref int m,
|
---|
315 | ref double[] w,
|
---|
316 | ref AP.Complex[,] z)
|
---|
317 | {
|
---|
318 | bool result = new bool();
|
---|
319 | AP.Complex[,] q = new AP.Complex[0,0];
|
---|
320 | double[,] t = new double[0,0];
|
---|
321 | AP.Complex[] tau = new AP.Complex[0];
|
---|
322 | double[] e = new double[0];
|
---|
323 | double[] work = new double[0];
|
---|
324 | int i = 0;
|
---|
325 | int k = 0;
|
---|
326 | double v = 0;
|
---|
327 | int i_ = 0;
|
---|
328 |
|
---|
329 | a = (AP.Complex[,])a.Clone();
|
---|
330 |
|
---|
331 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "HermitianEigenValuesAndVectorsInInterval: incorrect ZNeeded");
|
---|
332 |
|
---|
333 | //
|
---|
334 | // Reduce to tridiagonal form
|
---|
335 | //
|
---|
336 | htridiagonal.hermitiantotridiagonal(ref a, n, isupper, ref tau, ref w, ref e);
|
---|
337 | if( zneeded==1 )
|
---|
338 | {
|
---|
339 | htridiagonal.unpackqfromhermitiantridiagonal(ref a, n, isupper, ref tau, ref q);
|
---|
340 | zneeded = 2;
|
---|
341 | }
|
---|
342 |
|
---|
343 | //
|
---|
344 | // Bisection and inverse iteration
|
---|
345 | //
|
---|
346 | result = tdbisinv.tridiagonaleigenvaluesandvectorsininterval(ref w, ref e, n, zneeded, b1, b2, ref m, ref t);
|
---|
347 |
|
---|
348 | //
|
---|
349 | // Eigenvectors are needed
|
---|
350 | // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
|
---|
351 | //
|
---|
352 | if( result & zneeded!=0 & m!=0 )
|
---|
353 | {
|
---|
354 | work = new double[m+1];
|
---|
355 | z = new AP.Complex[n+1, m+1];
|
---|
356 | for(i=1; i<=n; i++)
|
---|
357 | {
|
---|
358 |
|
---|
359 | //
|
---|
360 | // Calculate real part
|
---|
361 | //
|
---|
362 | for(k=1; k<=m; k++)
|
---|
363 | {
|
---|
364 | work[k] = 0;
|
---|
365 | }
|
---|
366 | for(k=1; k<=n; k++)
|
---|
367 | {
|
---|
368 | v = q[i,k].x;
|
---|
369 | for(i_=1; i_<=m;i_++)
|
---|
370 | {
|
---|
371 | work[i_] = work[i_] + v*t[k,i_];
|
---|
372 | }
|
---|
373 | }
|
---|
374 | for(k=1; k<=m; k++)
|
---|
375 | {
|
---|
376 | z[i,k].x = work[k];
|
---|
377 | }
|
---|
378 |
|
---|
379 | //
|
---|
380 | // Calculate imaginary part
|
---|
381 | //
|
---|
382 | for(k=1; k<=m; k++)
|
---|
383 | {
|
---|
384 | work[k] = 0;
|
---|
385 | }
|
---|
386 | for(k=1; k<=n; k++)
|
---|
387 | {
|
---|
388 | v = q[i,k].y;
|
---|
389 | for(i_=1; i_<=m;i_++)
|
---|
390 | {
|
---|
391 | work[i_] = work[i_] + v*t[k,i_];
|
---|
392 | }
|
---|
393 | }
|
---|
394 | for(k=1; k<=m; k++)
|
---|
395 | {
|
---|
396 | z[i,k].y = work[k];
|
---|
397 | }
|
---|
398 | }
|
---|
399 | }
|
---|
400 | return result;
|
---|
401 | }
|
---|
402 |
|
---|
403 |
|
---|
404 | public static bool hermitianeigenvaluesandvectorsbyindexes(AP.Complex[,] a,
|
---|
405 | int n,
|
---|
406 | int zneeded,
|
---|
407 | bool isupper,
|
---|
408 | int i1,
|
---|
409 | int i2,
|
---|
410 | ref double[] w,
|
---|
411 | ref AP.Complex[,] z)
|
---|
412 | {
|
---|
413 | bool result = new bool();
|
---|
414 | AP.Complex[,] q = new AP.Complex[0,0];
|
---|
415 | double[,] t = new double[0,0];
|
---|
416 | AP.Complex[] tau = new AP.Complex[0];
|
---|
417 | double[] e = new double[0];
|
---|
418 | double[] work = new double[0];
|
---|
419 | int i = 0;
|
---|
420 | int k = 0;
|
---|
421 | double v = 0;
|
---|
422 | int m = 0;
|
---|
423 | int i_ = 0;
|
---|
424 |
|
---|
425 | a = (AP.Complex[,])a.Clone();
|
---|
426 |
|
---|
427 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "HermitianEigenValuesAndVectorsByIndexes: incorrect ZNeeded");
|
---|
428 |
|
---|
429 | //
|
---|
430 | // Reduce to tridiagonal form
|
---|
431 | //
|
---|
432 | htridiagonal.hermitiantotridiagonal(ref a, n, isupper, ref tau, ref w, ref e);
|
---|
433 | if( zneeded==1 )
|
---|
434 | {
|
---|
435 | htridiagonal.unpackqfromhermitiantridiagonal(ref a, n, isupper, ref tau, ref q);
|
---|
436 | zneeded = 2;
|
---|
437 | }
|
---|
438 |
|
---|
439 | //
|
---|
440 | // Bisection and inverse iteration
|
---|
441 | //
|
---|
442 | result = tdbisinv.tridiagonaleigenvaluesandvectorsbyindexes(ref w, ref e, n, zneeded, i1, i2, ref t);
|
---|
443 |
|
---|
444 | //
|
---|
445 | // Eigenvectors are needed
|
---|
446 | // Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
|
---|
447 | //
|
---|
448 | m = i2-i1+1;
|
---|
449 | if( result & zneeded!=0 )
|
---|
450 | {
|
---|
451 | work = new double[m+1];
|
---|
452 | z = new AP.Complex[n+1, m+1];
|
---|
453 | for(i=1; i<=n; i++)
|
---|
454 | {
|
---|
455 |
|
---|
456 | //
|
---|
457 | // Calculate real part
|
---|
458 | //
|
---|
459 | for(k=1; k<=m; k++)
|
---|
460 | {
|
---|
461 | work[k] = 0;
|
---|
462 | }
|
---|
463 | for(k=1; k<=n; k++)
|
---|
464 | {
|
---|
465 | v = q[i,k].x;
|
---|
466 | for(i_=1; i_<=m;i_++)
|
---|
467 | {
|
---|
468 | work[i_] = work[i_] + v*t[k,i_];
|
---|
469 | }
|
---|
470 | }
|
---|
471 | for(k=1; k<=m; k++)
|
---|
472 | {
|
---|
473 | z[i,k].x = work[k];
|
---|
474 | }
|
---|
475 |
|
---|
476 | //
|
---|
477 | // Calculate imaginary part
|
---|
478 | //
|
---|
479 | for(k=1; k<=m; k++)
|
---|
480 | {
|
---|
481 | work[k] = 0;
|
---|
482 | }
|
---|
483 | for(k=1; k<=n; k++)
|
---|
484 | {
|
---|
485 | v = q[i,k].y;
|
---|
486 | for(i_=1; i_<=m;i_++)
|
---|
487 | {
|
---|
488 | work[i_] = work[i_] + v*t[k,i_];
|
---|
489 | }
|
---|
490 | }
|
---|
491 | for(k=1; k<=m; k++)
|
---|
492 | {
|
---|
493 | z[i,k].y = work[k];
|
---|
494 | }
|
---|
495 | }
|
---|
496 | }
|
---|
497 | return result;
|
---|
498 | }
|
---|
499 | }
|
---|
500 | }
|
---|