[2445] | 1 | /*************************************************************************
|
---|
| 2 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 3 | Copyright by Stephen L. Moshier
|
---|
| 4 |
|
---|
| 5 | Contributors:
|
---|
| 6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
| 7 | pseudocode.
|
---|
| 8 |
|
---|
| 9 | See subroutines comments for additional copyrights.
|
---|
| 10 |
|
---|
| 11 | >>> SOURCE LICENSE >>>
|
---|
| 12 | This program is free software; you can redistribute it and/or modify
|
---|
| 13 | it under the terms of the GNU General Public License as published by
|
---|
| 14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 15 | License, or (at your option) any later version.
|
---|
| 16 |
|
---|
| 17 | This program is distributed in the hope that it will be useful,
|
---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | GNU General Public License for more details.
|
---|
| 21 |
|
---|
| 22 | A copy of the GNU General Public License is available at
|
---|
| 23 | http://www.fsf.org/licensing/licenses
|
---|
| 24 |
|
---|
| 25 | >>> END OF LICENSE >>>
|
---|
| 26 | *************************************************************************/
|
---|
| 27 |
|
---|
| 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace alglib
|
---|
| 31 | {
|
---|
| 32 | public class gammaf
|
---|
| 33 | {
|
---|
| 34 | /*************************************************************************
|
---|
| 35 | Gamma function
|
---|
| 36 |
|
---|
| 37 | Input parameters:
|
---|
| 38 | X - argument
|
---|
| 39 |
|
---|
| 40 | Domain:
|
---|
| 41 | 0 < X < 171.6
|
---|
| 42 | -170 < X < 0, X is not an integer.
|
---|
| 43 |
|
---|
| 44 | Relative error:
|
---|
| 45 | arithmetic domain # trials peak rms
|
---|
| 46 | IEEE -170,-33 20000 2.3e-15 3.3e-16
|
---|
| 47 | IEEE -33, 33 20000 9.4e-16 2.2e-16
|
---|
| 48 | IEEE 33, 171.6 20000 2.3e-15 3.2e-16
|
---|
| 49 |
|
---|
| 50 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 51 | Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
---|
| 52 | Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
---|
| 53 | *************************************************************************/
|
---|
| 54 | public static double gamma(double x)
|
---|
| 55 | {
|
---|
| 56 | double result = 0;
|
---|
| 57 | double p = 0;
|
---|
| 58 | double pp = 0;
|
---|
| 59 | double q = 0;
|
---|
| 60 | double qq = 0;
|
---|
| 61 | double z = 0;
|
---|
| 62 | int i = 0;
|
---|
| 63 | double sgngam = 0;
|
---|
| 64 |
|
---|
| 65 | sgngam = 1;
|
---|
| 66 | q = Math.Abs(x);
|
---|
| 67 | if( q>33.0 )
|
---|
| 68 | {
|
---|
| 69 | if( x<0.0 )
|
---|
| 70 | {
|
---|
| 71 | p = (int)Math.Floor(q);
|
---|
| 72 | i = (int)Math.Round(p);
|
---|
| 73 | if( i%2==0 )
|
---|
| 74 | {
|
---|
| 75 | sgngam = -1;
|
---|
| 76 | }
|
---|
| 77 | z = q-p;
|
---|
| 78 | if( z>0.5 )
|
---|
| 79 | {
|
---|
| 80 | p = p+1;
|
---|
| 81 | z = q-p;
|
---|
| 82 | }
|
---|
| 83 | z = q*Math.Sin(Math.PI*z);
|
---|
| 84 | z = Math.Abs(z);
|
---|
| 85 | z = Math.PI/(z*gammastirf(q));
|
---|
| 86 | }
|
---|
| 87 | else
|
---|
| 88 | {
|
---|
| 89 | z = gammastirf(x);
|
---|
| 90 | }
|
---|
| 91 | result = sgngam*z;
|
---|
| 92 | return result;
|
---|
| 93 | }
|
---|
| 94 | z = 1;
|
---|
| 95 | while( x>=3 )
|
---|
| 96 | {
|
---|
| 97 | x = x-1;
|
---|
| 98 | z = z*x;
|
---|
| 99 | }
|
---|
| 100 | while( x<0 )
|
---|
| 101 | {
|
---|
| 102 | if( x>-0.000000001 )
|
---|
| 103 | {
|
---|
| 104 | result = z/((1+0.5772156649015329*x)*x);
|
---|
| 105 | return result;
|
---|
| 106 | }
|
---|
| 107 | z = z/x;
|
---|
| 108 | x = x+1;
|
---|
| 109 | }
|
---|
| 110 | while( x<2 )
|
---|
| 111 | {
|
---|
| 112 | if( x<0.000000001 )
|
---|
| 113 | {
|
---|
| 114 | result = z/((1+0.5772156649015329*x)*x);
|
---|
| 115 | return result;
|
---|
| 116 | }
|
---|
| 117 | z = z/x;
|
---|
| 118 | x = x+1.0;
|
---|
| 119 | }
|
---|
| 120 | if( x==2 )
|
---|
| 121 | {
|
---|
| 122 | result = z;
|
---|
| 123 | return result;
|
---|
| 124 | }
|
---|
| 125 | x = x-2.0;
|
---|
| 126 | pp = 1.60119522476751861407E-4;
|
---|
| 127 | pp = 1.19135147006586384913E-3+x*pp;
|
---|
| 128 | pp = 1.04213797561761569935E-2+x*pp;
|
---|
| 129 | pp = 4.76367800457137231464E-2+x*pp;
|
---|
| 130 | pp = 2.07448227648435975150E-1+x*pp;
|
---|
| 131 | pp = 4.94214826801497100753E-1+x*pp;
|
---|
| 132 | pp = 9.99999999999999996796E-1+x*pp;
|
---|
| 133 | qq = -2.31581873324120129819E-5;
|
---|
| 134 | qq = 5.39605580493303397842E-4+x*qq;
|
---|
| 135 | qq = -4.45641913851797240494E-3+x*qq;
|
---|
| 136 | qq = 1.18139785222060435552E-2+x*qq;
|
---|
| 137 | qq = 3.58236398605498653373E-2+x*qq;
|
---|
| 138 | qq = -2.34591795718243348568E-1+x*qq;
|
---|
| 139 | qq = 7.14304917030273074085E-2+x*qq;
|
---|
| 140 | qq = 1.00000000000000000320+x*qq;
|
---|
| 141 | result = z*pp/qq;
|
---|
| 142 | return result;
|
---|
| 143 | return result;
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 |
|
---|
| 147 | /*************************************************************************
|
---|
| 148 | Natural logarithm of gamma function
|
---|
| 149 |
|
---|
| 150 | Input parameters:
|
---|
| 151 | X - argument
|
---|
| 152 |
|
---|
| 153 | Result:
|
---|
| 154 | logarithm of the absolute value of the Gamma(X).
|
---|
| 155 |
|
---|
| 156 | Output parameters:
|
---|
| 157 | SgnGam - sign(Gamma(X))
|
---|
| 158 |
|
---|
| 159 | Domain:
|
---|
| 160 | 0 < X < 2.55e305
|
---|
| 161 | -2.55e305 < X < 0, X is not an integer.
|
---|
| 162 |
|
---|
| 163 | ACCURACY:
|
---|
| 164 | arithmetic domain # trials peak rms
|
---|
| 165 | IEEE 0, 3 28000 5.4e-16 1.1e-16
|
---|
| 166 | IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
|
---|
| 167 | The error criterion was relative when the function magnitude
|
---|
| 168 | was greater than one but absolute when it was less than one.
|
---|
| 169 |
|
---|
| 170 | The following test used the relative error criterion, though
|
---|
| 171 | at certain points the relative error could be much higher than
|
---|
| 172 | indicated.
|
---|
| 173 | IEEE -200, -4 10000 4.8e-16 1.3e-16
|
---|
| 174 |
|
---|
| 175 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 176 | Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
---|
| 177 | Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
|
---|
| 178 | *************************************************************************/
|
---|
| 179 | public static double lngamma(double x,
|
---|
| 180 | ref double sgngam)
|
---|
| 181 | {
|
---|
| 182 | double result = 0;
|
---|
| 183 | double a = 0;
|
---|
| 184 | double b = 0;
|
---|
| 185 | double c = 0;
|
---|
| 186 | double p = 0;
|
---|
| 187 | double q = 0;
|
---|
| 188 | double u = 0;
|
---|
| 189 | double w = 0;
|
---|
| 190 | double z = 0;
|
---|
| 191 | int i = 0;
|
---|
| 192 | double logpi = 0;
|
---|
| 193 | double ls2pi = 0;
|
---|
| 194 | double tmp = 0;
|
---|
| 195 |
|
---|
| 196 | sgngam = 1;
|
---|
| 197 | logpi = 1.14472988584940017414;
|
---|
| 198 | ls2pi = 0.91893853320467274178;
|
---|
| 199 | if( x<-34.0 )
|
---|
| 200 | {
|
---|
| 201 | q = -x;
|
---|
| 202 | w = lngamma(q, ref tmp);
|
---|
| 203 | p = (int)Math.Floor(q);
|
---|
| 204 | i = (int)Math.Round(p);
|
---|
| 205 | if( i%2==0 )
|
---|
| 206 | {
|
---|
| 207 | sgngam = -1;
|
---|
| 208 | }
|
---|
| 209 | else
|
---|
| 210 | {
|
---|
| 211 | sgngam = 1;
|
---|
| 212 | }
|
---|
| 213 | z = q-p;
|
---|
| 214 | if( z>0.5 )
|
---|
| 215 | {
|
---|
| 216 | p = p+1;
|
---|
| 217 | z = p-q;
|
---|
| 218 | }
|
---|
| 219 | z = q*Math.Sin(Math.PI*z);
|
---|
| 220 | result = logpi-Math.Log(z)-w;
|
---|
| 221 | return result;
|
---|
| 222 | }
|
---|
| 223 | if( x<13 )
|
---|
| 224 | {
|
---|
| 225 | z = 1;
|
---|
| 226 | p = 0;
|
---|
| 227 | u = x;
|
---|
| 228 | while( u>=3 )
|
---|
| 229 | {
|
---|
| 230 | p = p-1;
|
---|
| 231 | u = x+p;
|
---|
| 232 | z = z*u;
|
---|
| 233 | }
|
---|
| 234 | while( u<2 )
|
---|
| 235 | {
|
---|
| 236 | z = z/u;
|
---|
| 237 | p = p+1;
|
---|
| 238 | u = x+p;
|
---|
| 239 | }
|
---|
| 240 | if( z<0 )
|
---|
| 241 | {
|
---|
| 242 | sgngam = -1;
|
---|
| 243 | z = -z;
|
---|
| 244 | }
|
---|
| 245 | else
|
---|
| 246 | {
|
---|
| 247 | sgngam = 1;
|
---|
| 248 | }
|
---|
| 249 | if( u==2 )
|
---|
| 250 | {
|
---|
| 251 | result = Math.Log(z);
|
---|
| 252 | return result;
|
---|
| 253 | }
|
---|
| 254 | p = p-2;
|
---|
| 255 | x = x+p;
|
---|
| 256 | b = -1378.25152569120859100;
|
---|
| 257 | b = -38801.6315134637840924+x*b;
|
---|
| 258 | b = -331612.992738871184744+x*b;
|
---|
| 259 | b = -1162370.97492762307383+x*b;
|
---|
| 260 | b = -1721737.00820839662146+x*b;
|
---|
| 261 | b = -853555.664245765465627+x*b;
|
---|
| 262 | c = 1;
|
---|
| 263 | c = -351.815701436523470549+x*c;
|
---|
| 264 | c = -17064.2106651881159223+x*c;
|
---|
| 265 | c = -220528.590553854454839+x*c;
|
---|
| 266 | c = -1139334.44367982507207+x*c;
|
---|
| 267 | c = -2532523.07177582951285+x*c;
|
---|
| 268 | c = -2018891.41433532773231+x*c;
|
---|
| 269 | p = x*b/c;
|
---|
| 270 | result = Math.Log(z)+p;
|
---|
| 271 | return result;
|
---|
| 272 | }
|
---|
| 273 | q = (x-0.5)*Math.Log(x)-x+ls2pi;
|
---|
| 274 | if( x>100000000 )
|
---|
| 275 | {
|
---|
| 276 | result = q;
|
---|
| 277 | return result;
|
---|
| 278 | }
|
---|
| 279 | p = 1/(x*x);
|
---|
| 280 | if( x>=1000.0 )
|
---|
| 281 | {
|
---|
| 282 | q = q+((7.9365079365079365079365*0.0001*p-2.7777777777777777777778*0.001)*p+0.0833333333333333333333)/x;
|
---|
| 283 | }
|
---|
| 284 | else
|
---|
| 285 | {
|
---|
| 286 | a = 8.11614167470508450300*0.0001;
|
---|
| 287 | a = -(5.95061904284301438324*0.0001)+p*a;
|
---|
| 288 | a = 7.93650340457716943945*0.0001+p*a;
|
---|
| 289 | a = -(2.77777777730099687205*0.001)+p*a;
|
---|
| 290 | a = 8.33333333333331927722*0.01+p*a;
|
---|
| 291 | q = q+a/x;
|
---|
| 292 | }
|
---|
| 293 | result = q;
|
---|
| 294 | return result;
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 |
|
---|
| 298 | private static double gammastirf(double x)
|
---|
| 299 | {
|
---|
| 300 | double result = 0;
|
---|
| 301 | double y = 0;
|
---|
| 302 | double w = 0;
|
---|
| 303 | double v = 0;
|
---|
| 304 | double stir = 0;
|
---|
| 305 |
|
---|
| 306 | w = 1/x;
|
---|
| 307 | stir = 7.87311395793093628397E-4;
|
---|
| 308 | stir = -2.29549961613378126380E-4+w*stir;
|
---|
| 309 | stir = -2.68132617805781232825E-3+w*stir;
|
---|
| 310 | stir = 3.47222221605458667310E-3+w*stir;
|
---|
| 311 | stir = 8.33333333333482257126E-2+w*stir;
|
---|
| 312 | w = 1+w*stir;
|
---|
| 313 | y = Math.Exp(x);
|
---|
| 314 | if( x>143.01608 )
|
---|
| 315 | {
|
---|
| 316 | v = Math.Pow(x, 0.5*x-0.25);
|
---|
| 317 | y = v*(v/y);
|
---|
| 318 | }
|
---|
| 319 | else
|
---|
| 320 | {
|
---|
| 321 | y = Math.Pow(x, x-0.5)/y;
|
---|
| 322 | }
|
---|
| 323 | result = 2.50662827463100050242*y*w;
|
---|
| 324 | return result;
|
---|
| 325 | }
|
---|
| 326 | }
|
---|
| 327 | }
|
---|