1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class estnorm
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Matrix norm estimation
|
---|
35 |
|
---|
36 | The algorithm estimates the 1-norm of square matrix A on the assumption
|
---|
37 | that the multiplication of matrix A by the vector is available (the
|
---|
38 | iterative method is used). It is recommended to use this algorithm if it
|
---|
39 | is hard to calculate matrix elements explicitly (for example, when
|
---|
40 | estimating the inverse matrix norm).
|
---|
41 |
|
---|
42 | The algorithm uses back communication for multiplying the vector by the
|
---|
43 | matrix. If KASE=0 after returning from a subroutine, its execution was
|
---|
44 | completed successfully, otherwise it is required to multiply the returned
|
---|
45 | vector by matrix A and call the subroutine again.
|
---|
46 |
|
---|
47 | The DemoIterativeEstimateNorm subroutine shows a simple example.
|
---|
48 |
|
---|
49 | Parameters:
|
---|
50 | N - size of matrix A.
|
---|
51 | V - vector. It is initialized by the subroutine on the first
|
---|
52 | call. It is then passed into it on repeated calls.
|
---|
53 | X - if KASE<>0, it contains the vector to be replaced by:
|
---|
54 | A * X, if KASE=1
|
---|
55 | A^T * X, if KASE=2
|
---|
56 | Array whose index ranges within [1..N].
|
---|
57 | ISGN - vector. It is initialized by the subroutine on the first
|
---|
58 | call. It is then passed into it on repeated calls.
|
---|
59 | EST - if KASE=0, it contains the lower boundary of the matrix
|
---|
60 | norm estimate.
|
---|
61 | KASE - on the first call, it should be equal to 0. After the last
|
---|
62 | return, it is equal to 0 (EST contains the matrix norm),
|
---|
63 | on intermediate returns it can be equal to 1 or 2 depending
|
---|
64 | on the operation to be performed on vector X.
|
---|
65 |
|
---|
66 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
67 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
68 | Courant Institute, Argonne National Lab, and Rice University
|
---|
69 | February 29, 1992
|
---|
70 | *************************************************************************/
|
---|
71 | public static void iterativeestimate1norm(int n,
|
---|
72 | ref double[] v,
|
---|
73 | ref double[] x,
|
---|
74 | ref int[] isgn,
|
---|
75 | ref double est,
|
---|
76 | ref int kase)
|
---|
77 | {
|
---|
78 | int itmax = 0;
|
---|
79 | int i = 0;
|
---|
80 | double t = 0;
|
---|
81 | bool flg = new bool();
|
---|
82 | int positer = 0;
|
---|
83 | int posj = 0;
|
---|
84 | int posjlast = 0;
|
---|
85 | int posjump = 0;
|
---|
86 | int posaltsgn = 0;
|
---|
87 | int posestold = 0;
|
---|
88 | int postemp = 0;
|
---|
89 | int i_ = 0;
|
---|
90 |
|
---|
91 | itmax = 5;
|
---|
92 | posaltsgn = n+1;
|
---|
93 | posestold = n+2;
|
---|
94 | postemp = n+3;
|
---|
95 | positer = n+1;
|
---|
96 | posj = n+2;
|
---|
97 | posjlast = n+3;
|
---|
98 | posjump = n+4;
|
---|
99 | if( kase==0 )
|
---|
100 | {
|
---|
101 | v = new double[n+3+1];
|
---|
102 | x = new double[n+1];
|
---|
103 | isgn = new int[n+4+1];
|
---|
104 | t = (double)(1)/(double)(n);
|
---|
105 | for(i=1; i<=n; i++)
|
---|
106 | {
|
---|
107 | x[i] = t;
|
---|
108 | }
|
---|
109 | kase = 1;
|
---|
110 | isgn[posjump] = 1;
|
---|
111 | return;
|
---|
112 | }
|
---|
113 |
|
---|
114 | //
|
---|
115 | // ................ ENTRY (JUMP = 1)
|
---|
116 | // FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
|
---|
117 | //
|
---|
118 | if( isgn[posjump]==1 )
|
---|
119 | {
|
---|
120 | if( n==1 )
|
---|
121 | {
|
---|
122 | v[1] = x[1];
|
---|
123 | est = Math.Abs(v[1]);
|
---|
124 | kase = 0;
|
---|
125 | return;
|
---|
126 | }
|
---|
127 | est = 0;
|
---|
128 | for(i=1; i<=n; i++)
|
---|
129 | {
|
---|
130 | est = est+Math.Abs(x[i]);
|
---|
131 | }
|
---|
132 | for(i=1; i<=n; i++)
|
---|
133 | {
|
---|
134 | if( (double)(x[i])>=(double)(0) )
|
---|
135 | {
|
---|
136 | x[i] = 1;
|
---|
137 | }
|
---|
138 | else
|
---|
139 | {
|
---|
140 | x[i] = -1;
|
---|
141 | }
|
---|
142 | isgn[i] = Math.Sign(x[i]);
|
---|
143 | }
|
---|
144 | kase = 2;
|
---|
145 | isgn[posjump] = 2;
|
---|
146 | return;
|
---|
147 | }
|
---|
148 |
|
---|
149 | //
|
---|
150 | // ................ ENTRY (JUMP = 2)
|
---|
151 | // FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X.
|
---|
152 | //
|
---|
153 | if( isgn[posjump]==2 )
|
---|
154 | {
|
---|
155 | isgn[posj] = 1;
|
---|
156 | for(i=2; i<=n; i++)
|
---|
157 | {
|
---|
158 | if( (double)(Math.Abs(x[i]))>(double)(Math.Abs(x[isgn[posj]])) )
|
---|
159 | {
|
---|
160 | isgn[posj] = i;
|
---|
161 | }
|
---|
162 | }
|
---|
163 | isgn[positer] = 2;
|
---|
164 |
|
---|
165 | //
|
---|
166 | // MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
|
---|
167 | //
|
---|
168 | for(i=1; i<=n; i++)
|
---|
169 | {
|
---|
170 | x[i] = 0;
|
---|
171 | }
|
---|
172 | x[isgn[posj]] = 1;
|
---|
173 | kase = 1;
|
---|
174 | isgn[posjump] = 3;
|
---|
175 | return;
|
---|
176 | }
|
---|
177 |
|
---|
178 | //
|
---|
179 | // ................ ENTRY (JUMP = 3)
|
---|
180 | // X HAS BEEN OVERWRITTEN BY A*X.
|
---|
181 | //
|
---|
182 | if( isgn[posjump]==3 )
|
---|
183 | {
|
---|
184 | for(i_=1; i_<=n;i_++)
|
---|
185 | {
|
---|
186 | v[i_] = x[i_];
|
---|
187 | }
|
---|
188 | v[posestold] = est;
|
---|
189 | est = 0;
|
---|
190 | for(i=1; i<=n; i++)
|
---|
191 | {
|
---|
192 | est = est+Math.Abs(v[i]);
|
---|
193 | }
|
---|
194 | flg = false;
|
---|
195 | for(i=1; i<=n; i++)
|
---|
196 | {
|
---|
197 | if( (double)(x[i])>=(double)(0) & isgn[i]<0 | (double)(x[i])<(double)(0) & isgn[i]>=0 )
|
---|
198 | {
|
---|
199 | flg = true;
|
---|
200 | }
|
---|
201 | }
|
---|
202 |
|
---|
203 | //
|
---|
204 | // REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
|
---|
205 | // OR MAY BE CYCLING.
|
---|
206 | //
|
---|
207 | if( !flg | (double)(est)<=(double)(v[posestold]) )
|
---|
208 | {
|
---|
209 | v[posaltsgn] = 1;
|
---|
210 | for(i=1; i<=n; i++)
|
---|
211 | {
|
---|
212 | x[i] = v[posaltsgn]*(1+((double)(i-1))/((double)(n-1)));
|
---|
213 | v[posaltsgn] = -v[posaltsgn];
|
---|
214 | }
|
---|
215 | kase = 1;
|
---|
216 | isgn[posjump] = 5;
|
---|
217 | return;
|
---|
218 | }
|
---|
219 | for(i=1; i<=n; i++)
|
---|
220 | {
|
---|
221 | if( (double)(x[i])>=(double)(0) )
|
---|
222 | {
|
---|
223 | x[i] = 1;
|
---|
224 | isgn[i] = 1;
|
---|
225 | }
|
---|
226 | else
|
---|
227 | {
|
---|
228 | x[i] = -1;
|
---|
229 | isgn[i] = -1;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | kase = 2;
|
---|
233 | isgn[posjump] = 4;
|
---|
234 | return;
|
---|
235 | }
|
---|
236 |
|
---|
237 | //
|
---|
238 | // ................ ENTRY (JUMP = 4)
|
---|
239 | // X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X.
|
---|
240 | //
|
---|
241 | if( isgn[posjump]==4 )
|
---|
242 | {
|
---|
243 | isgn[posjlast] = isgn[posj];
|
---|
244 | isgn[posj] = 1;
|
---|
245 | for(i=2; i<=n; i++)
|
---|
246 | {
|
---|
247 | if( (double)(Math.Abs(x[i]))>(double)(Math.Abs(x[isgn[posj]])) )
|
---|
248 | {
|
---|
249 | isgn[posj] = i;
|
---|
250 | }
|
---|
251 | }
|
---|
252 | if( (double)(x[isgn[posjlast]])!=(double)(Math.Abs(x[isgn[posj]])) & isgn[positer]<itmax )
|
---|
253 | {
|
---|
254 | isgn[positer] = isgn[positer]+1;
|
---|
255 | for(i=1; i<=n; i++)
|
---|
256 | {
|
---|
257 | x[i] = 0;
|
---|
258 | }
|
---|
259 | x[isgn[posj]] = 1;
|
---|
260 | kase = 1;
|
---|
261 | isgn[posjump] = 3;
|
---|
262 | return;
|
---|
263 | }
|
---|
264 |
|
---|
265 | //
|
---|
266 | // ITERATION COMPLETE. FINAL STAGE.
|
---|
267 | //
|
---|
268 | v[posaltsgn] = 1;
|
---|
269 | for(i=1; i<=n; i++)
|
---|
270 | {
|
---|
271 | x[i] = v[posaltsgn]*(1+((double)(i-1))/((double)(n-1)));
|
---|
272 | v[posaltsgn] = -v[posaltsgn];
|
---|
273 | }
|
---|
274 | kase = 1;
|
---|
275 | isgn[posjump] = 5;
|
---|
276 | return;
|
---|
277 | }
|
---|
278 |
|
---|
279 | //
|
---|
280 | // ................ ENTRY (JUMP = 5)
|
---|
281 | // X HAS BEEN OVERWRITTEN BY A*X.
|
---|
282 | //
|
---|
283 | if( isgn[posjump]==5 )
|
---|
284 | {
|
---|
285 | v[postemp] = 0;
|
---|
286 | for(i=1; i<=n; i++)
|
---|
287 | {
|
---|
288 | v[postemp] = v[postemp]+Math.Abs(x[i]);
|
---|
289 | }
|
---|
290 | v[postemp] = 2*v[postemp]/(3*n);
|
---|
291 | if( (double)(v[postemp])>(double)(est) )
|
---|
292 | {
|
---|
293 | for(i_=1; i_<=n;i_++)
|
---|
294 | {
|
---|
295 | v[i_] = x[i_];
|
---|
296 | }
|
---|
297 | est = v[postemp];
|
---|
298 | }
|
---|
299 | kase = 0;
|
---|
300 | return;
|
---|
301 | }
|
---|
302 | }
|
---|
303 |
|
---|
304 |
|
---|
305 | /*************************************************************************
|
---|
306 | Example of usage of an IterativeEstimateNorm subroutine
|
---|
307 |
|
---|
308 | Input parameters:
|
---|
309 | A - matrix.
|
---|
310 | Array whose indexes range within [1..N, 1..N].
|
---|
311 |
|
---|
312 | Return:
|
---|
313 | Matrix norm estimated by the subroutine.
|
---|
314 |
|
---|
315 | -- ALGLIB --
|
---|
316 | Copyright 2005 by Bochkanov Sergey
|
---|
317 | *************************************************************************/
|
---|
318 | public static double demoiterativeestimate1norm(ref double[,] a,
|
---|
319 | int n)
|
---|
320 | {
|
---|
321 | double result = 0;
|
---|
322 | int i = 0;
|
---|
323 | double s = 0;
|
---|
324 | double[] x = new double[0];
|
---|
325 | double[] t = new double[0];
|
---|
326 | double[] v = new double[0];
|
---|
327 | int[] iv = new int[0];
|
---|
328 | int kase = 0;
|
---|
329 | int i_ = 0;
|
---|
330 |
|
---|
331 | kase = 0;
|
---|
332 | t = new double[n+1];
|
---|
333 | iterativeestimate1norm(n, ref v, ref x, ref iv, ref result, ref kase);
|
---|
334 | while( kase!=0 )
|
---|
335 | {
|
---|
336 | if( kase==1 )
|
---|
337 | {
|
---|
338 | for(i=1; i<=n; i++)
|
---|
339 | {
|
---|
340 | s = 0.0;
|
---|
341 | for(i_=1; i_<=n;i_++)
|
---|
342 | {
|
---|
343 | s += a[i,i_]*x[i_];
|
---|
344 | }
|
---|
345 | t[i] = s;
|
---|
346 | }
|
---|
347 | }
|
---|
348 | else
|
---|
349 | {
|
---|
350 | for(i=1; i<=n; i++)
|
---|
351 | {
|
---|
352 | s = 0.0;
|
---|
353 | for(i_=1; i_<=n;i_++)
|
---|
354 | {
|
---|
355 | s += a[i_,i]*x[i_];
|
---|
356 | }
|
---|
357 | t[i] = s;
|
---|
358 | }
|
---|
359 | }
|
---|
360 | for(i_=1; i_<=n;i_++)
|
---|
361 | {
|
---|
362 | x[i_] = t[i_];
|
---|
363 | }
|
---|
364 | iterativeestimate1norm(n, ref v, ref x, ref iv, ref result, ref kase);
|
---|
365 | }
|
---|
366 | return result;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|