1 | /*************************************************************************
|
---|
2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class dforest
|
---|
26 | {
|
---|
27 | public struct decisionforest
|
---|
28 | {
|
---|
29 | public int nvars;
|
---|
30 | public int nclasses;
|
---|
31 | public int ntrees;
|
---|
32 | public int bufsize;
|
---|
33 | public double[] trees;
|
---|
34 | };
|
---|
35 |
|
---|
36 |
|
---|
37 | public struct dfreport
|
---|
38 | {
|
---|
39 | public double relclserror;
|
---|
40 | public double avgce;
|
---|
41 | public double rmserror;
|
---|
42 | public double avgerror;
|
---|
43 | public double avgrelerror;
|
---|
44 | public double oobrelclserror;
|
---|
45 | public double oobavgce;
|
---|
46 | public double oobrmserror;
|
---|
47 | public double oobavgerror;
|
---|
48 | public double oobavgrelerror;
|
---|
49 | };
|
---|
50 |
|
---|
51 |
|
---|
52 | public struct dfinternalbuffers
|
---|
53 | {
|
---|
54 | public double[] treebuf;
|
---|
55 | public int[] idxbuf;
|
---|
56 | public double[] tmpbufr;
|
---|
57 | public double[] tmpbufr2;
|
---|
58 | public int[] tmpbufi;
|
---|
59 | public int[] classibuf;
|
---|
60 | public int[] varpool;
|
---|
61 | public bool[] evsbin;
|
---|
62 | public double[] evssplits;
|
---|
63 | };
|
---|
64 |
|
---|
65 |
|
---|
66 |
|
---|
67 |
|
---|
68 | public const int dfvnum = 8;
|
---|
69 | public const int innernodewidth = 3;
|
---|
70 | public const int leafnodewidth = 2;
|
---|
71 | public const int dfusestrongsplits = 1;
|
---|
72 | public const int dfuseevs = 2;
|
---|
73 |
|
---|
74 |
|
---|
75 | /*************************************************************************
|
---|
76 | This subroutine builds random decision forest.
|
---|
77 |
|
---|
78 | INPUT PARAMETERS:
|
---|
79 | XY - training set
|
---|
80 | NPoints - training set size, NPoints>=1
|
---|
81 | NVars - number of independent variables, NVars>=1
|
---|
82 | NClasses - task type:
|
---|
83 | * NClasses=1 - regression task with one
|
---|
84 | dependent variable
|
---|
85 | * NClasses>1 - classification task with
|
---|
86 | NClasses classes.
|
---|
87 | NTrees - number of trees in a forest, NTrees>=1.
|
---|
88 | recommended values: 50-100.
|
---|
89 | R - percent of a training set used to build
|
---|
90 | individual trees. 0<R<=1.
|
---|
91 | recommended values: 0.1 <= R <= 0.66.
|
---|
92 |
|
---|
93 | OUTPUT PARAMETERS:
|
---|
94 | Info - return code:
|
---|
95 | * -2, if there is a point with class number
|
---|
96 | outside of [0..NClasses-1].
|
---|
97 | * -1, if incorrect parameters was passed
|
---|
98 | (NPoints<1, NVars<1, NClasses<1, NTrees<1, R<=0
|
---|
99 | or R>1).
|
---|
100 | * 1, if task has been solved
|
---|
101 | DF - model built
|
---|
102 | Rep - training report, contains error on a training set
|
---|
103 | and out-of-bag estimates of generalization error.
|
---|
104 |
|
---|
105 | -- ALGLIB --
|
---|
106 | Copyright 19.02.2009 by Bochkanov Sergey
|
---|
107 | *************************************************************************/
|
---|
108 | public static void dfbuildrandomdecisionforest(ref double[,] xy,
|
---|
109 | int npoints,
|
---|
110 | int nvars,
|
---|
111 | int nclasses,
|
---|
112 | int ntrees,
|
---|
113 | double r,
|
---|
114 | ref int info,
|
---|
115 | ref decisionforest df,
|
---|
116 | ref dfreport rep)
|
---|
117 | {
|
---|
118 | int samplesize = 0;
|
---|
119 |
|
---|
120 | if( (double)(r)<=(double)(0) | (double)(r)>(double)(1) )
|
---|
121 | {
|
---|
122 | info = -1;
|
---|
123 | return;
|
---|
124 | }
|
---|
125 | samplesize = Math.Max((int)Math.Round(r*npoints), 1);
|
---|
126 | dfbuildinternal(ref xy, npoints, nvars, nclasses, ntrees, samplesize, Math.Max(nvars/2, 1), dfusestrongsplits+dfuseevs, ref info, ref df, ref rep);
|
---|
127 | }
|
---|
128 |
|
---|
129 |
|
---|
130 | public static void dfbuildinternal(ref double[,] xy,
|
---|
131 | int npoints,
|
---|
132 | int nvars,
|
---|
133 | int nclasses,
|
---|
134 | int ntrees,
|
---|
135 | int samplesize,
|
---|
136 | int nfeatures,
|
---|
137 | int flags,
|
---|
138 | ref int info,
|
---|
139 | ref decisionforest df,
|
---|
140 | ref dfreport rep)
|
---|
141 | {
|
---|
142 | int i = 0;
|
---|
143 | int j = 0;
|
---|
144 | int k = 0;
|
---|
145 | int tmpi = 0;
|
---|
146 | int lasttreeoffs = 0;
|
---|
147 | int offs = 0;
|
---|
148 | int ooboffs = 0;
|
---|
149 | int treesize = 0;
|
---|
150 | int nvarsinpool = 0;
|
---|
151 | bool useevs = new bool();
|
---|
152 | dfinternalbuffers bufs = new dfinternalbuffers();
|
---|
153 | int[] permbuf = new int[0];
|
---|
154 | double[] oobbuf = new double[0];
|
---|
155 | int[] oobcntbuf = new int[0];
|
---|
156 | double[,] xys = new double[0,0];
|
---|
157 | double[] x = new double[0];
|
---|
158 | double[] y = new double[0];
|
---|
159 | int oobcnt = 0;
|
---|
160 | int oobrelcnt = 0;
|
---|
161 | double v = 0;
|
---|
162 | double vmin = 0;
|
---|
163 | double vmax = 0;
|
---|
164 | bool bflag = new bool();
|
---|
165 | int i_ = 0;
|
---|
166 | int i1_ = 0;
|
---|
167 |
|
---|
168 |
|
---|
169 | //
|
---|
170 | // Test for inputs
|
---|
171 | //
|
---|
172 | if( npoints<1 | samplesize<1 | samplesize>npoints | nvars<1 | nclasses<1 | ntrees<1 | nfeatures<1 )
|
---|
173 | {
|
---|
174 | info = -1;
|
---|
175 | return;
|
---|
176 | }
|
---|
177 | if( nclasses>1 )
|
---|
178 | {
|
---|
179 | for(i=0; i<=npoints-1; i++)
|
---|
180 | {
|
---|
181 | if( (int)Math.Round(xy[i,nvars])<0 | (int)Math.Round(xy[i,nvars])>=nclasses )
|
---|
182 | {
|
---|
183 | info = -2;
|
---|
184 | return;
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|
188 | info = 1;
|
---|
189 |
|
---|
190 | //
|
---|
191 | // Flags
|
---|
192 | //
|
---|
193 | useevs = flags/dfuseevs%2!=0;
|
---|
194 |
|
---|
195 | //
|
---|
196 | // Allocate data, prepare header
|
---|
197 | //
|
---|
198 | treesize = 1+innernodewidth*(samplesize-1)+leafnodewidth*samplesize;
|
---|
199 | permbuf = new int[npoints-1+1];
|
---|
200 | bufs.treebuf = new double[treesize-1+1];
|
---|
201 | bufs.idxbuf = new int[npoints-1+1];
|
---|
202 | bufs.tmpbufr = new double[npoints-1+1];
|
---|
203 | bufs.tmpbufr2 = new double[npoints-1+1];
|
---|
204 | bufs.tmpbufi = new int[npoints-1+1];
|
---|
205 | bufs.varpool = new int[nvars-1+1];
|
---|
206 | bufs.evsbin = new bool[nvars-1+1];
|
---|
207 | bufs.evssplits = new double[nvars-1+1];
|
---|
208 | bufs.classibuf = new int[2*nclasses-1+1];
|
---|
209 | oobbuf = new double[nclasses*npoints-1+1];
|
---|
210 | oobcntbuf = new int[npoints-1+1];
|
---|
211 | df.trees = new double[ntrees*treesize-1+1];
|
---|
212 | xys = new double[samplesize-1+1, nvars+1];
|
---|
213 | x = new double[nvars-1+1];
|
---|
214 | y = new double[nclasses-1+1];
|
---|
215 | for(i=0; i<=npoints-1; i++)
|
---|
216 | {
|
---|
217 | permbuf[i] = i;
|
---|
218 | }
|
---|
219 | for(i=0; i<=npoints*nclasses-1; i++)
|
---|
220 | {
|
---|
221 | oobbuf[i] = 0;
|
---|
222 | }
|
---|
223 | for(i=0; i<=npoints-1; i++)
|
---|
224 | {
|
---|
225 | oobcntbuf[i] = 0;
|
---|
226 | }
|
---|
227 |
|
---|
228 | //
|
---|
229 | // Prepare variable pool and EVS (extended variable selection/splitting) buffers
|
---|
230 | // (whether EVS is turned on or not):
|
---|
231 | // 1. detect binary variables and pre-calculate splits for them
|
---|
232 | // 2. detect variables with non-distinct values and exclude them from pool
|
---|
233 | //
|
---|
234 | for(i=0; i<=nvars-1; i++)
|
---|
235 | {
|
---|
236 | bufs.varpool[i] = i;
|
---|
237 | }
|
---|
238 | nvarsinpool = nvars;
|
---|
239 | if( useevs )
|
---|
240 | {
|
---|
241 | for(j=0; j<=nvars-1; j++)
|
---|
242 | {
|
---|
243 | vmin = xy[0,j];
|
---|
244 | vmax = vmin;
|
---|
245 | for(i=0; i<=npoints-1; i++)
|
---|
246 | {
|
---|
247 | v = xy[i,j];
|
---|
248 | vmin = Math.Min(vmin, v);
|
---|
249 | vmax = Math.Max(vmax, v);
|
---|
250 | }
|
---|
251 | if( (double)(vmin)==(double)(vmax) )
|
---|
252 | {
|
---|
253 |
|
---|
254 | //
|
---|
255 | // exclude variable from pool
|
---|
256 | //
|
---|
257 | bufs.varpool[j] = bufs.varpool[nvarsinpool-1];
|
---|
258 | bufs.varpool[nvarsinpool-1] = -1;
|
---|
259 | nvarsinpool = nvarsinpool-1;
|
---|
260 | continue;
|
---|
261 | }
|
---|
262 | bflag = false;
|
---|
263 | for(i=0; i<=npoints-1; i++)
|
---|
264 | {
|
---|
265 | v = xy[i,j];
|
---|
266 | if( (double)(v)!=(double)(vmin) & (double)(v)!=(double)(vmax) )
|
---|
267 | {
|
---|
268 | bflag = true;
|
---|
269 | break;
|
---|
270 | }
|
---|
271 | }
|
---|
272 | if( bflag )
|
---|
273 | {
|
---|
274 |
|
---|
275 | //
|
---|
276 | // non-binary variable
|
---|
277 | //
|
---|
278 | bufs.evsbin[j] = false;
|
---|
279 | }
|
---|
280 | else
|
---|
281 | {
|
---|
282 |
|
---|
283 | //
|
---|
284 | // Prepare
|
---|
285 | //
|
---|
286 | bufs.evsbin[j] = true;
|
---|
287 | bufs.evssplits[j] = 0.5*(vmin+vmax);
|
---|
288 | if( (double)(bufs.evssplits[j])<=(double)(vmin) )
|
---|
289 | {
|
---|
290 | bufs.evssplits[j] = vmax;
|
---|
291 | }
|
---|
292 | }
|
---|
293 | }
|
---|
294 | }
|
---|
295 |
|
---|
296 | //
|
---|
297 | // RANDOM FOREST FORMAT
|
---|
298 | // W[0] - size of array
|
---|
299 | // W[1] - version number
|
---|
300 | // W[2] - NVars
|
---|
301 | // W[3] - NClasses (1 for regression)
|
---|
302 | // W[4] - NTrees
|
---|
303 | // W[5] - trees offset
|
---|
304 | //
|
---|
305 | //
|
---|
306 | // TREE FORMAT
|
---|
307 | // W[Offs] - size of sub-array
|
---|
308 | // node info:
|
---|
309 | // W[K+0] - variable number (-1 for leaf mode)
|
---|
310 | // W[K+1] - threshold (class/value for leaf node)
|
---|
311 | // W[K+2] - ">=" branch index (absent for leaf node)
|
---|
312 | //
|
---|
313 | //
|
---|
314 | df.nvars = nvars;
|
---|
315 | df.nclasses = nclasses;
|
---|
316 | df.ntrees = ntrees;
|
---|
317 |
|
---|
318 | //
|
---|
319 | // Build forest
|
---|
320 | //
|
---|
321 | offs = 0;
|
---|
322 | for(i=0; i<=ntrees-1; i++)
|
---|
323 | {
|
---|
324 |
|
---|
325 | //
|
---|
326 | // Prepare sample
|
---|
327 | //
|
---|
328 | for(k=0; k<=samplesize-1; k++)
|
---|
329 | {
|
---|
330 | j = k+AP.Math.RandomInteger(npoints-k);
|
---|
331 | tmpi = permbuf[k];
|
---|
332 | permbuf[k] = permbuf[j];
|
---|
333 | permbuf[j] = tmpi;
|
---|
334 | j = permbuf[k];
|
---|
335 | for(i_=0; i_<=nvars;i_++)
|
---|
336 | {
|
---|
337 | xys[k,i_] = xy[j,i_];
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 | //
|
---|
342 | // build tree, copy
|
---|
343 | //
|
---|
344 | dfbuildtree(ref xys, samplesize, nvars, nclasses, nfeatures, nvarsinpool, flags, ref bufs);
|
---|
345 | j = (int)Math.Round(bufs.treebuf[0]);
|
---|
346 | i1_ = (0) - (offs);
|
---|
347 | for(i_=offs; i_<=offs+j-1;i_++)
|
---|
348 | {
|
---|
349 | df.trees[i_] = bufs.treebuf[i_+i1_];
|
---|
350 | }
|
---|
351 | lasttreeoffs = offs;
|
---|
352 | offs = offs+j;
|
---|
353 |
|
---|
354 | //
|
---|
355 | // OOB estimates
|
---|
356 | //
|
---|
357 | for(k=samplesize; k<=npoints-1; k++)
|
---|
358 | {
|
---|
359 | for(j=0; j<=nclasses-1; j++)
|
---|
360 | {
|
---|
361 | y[j] = 0;
|
---|
362 | }
|
---|
363 | j = permbuf[k];
|
---|
364 | for(i_=0; i_<=nvars-1;i_++)
|
---|
365 | {
|
---|
366 | x[i_] = xy[j,i_];
|
---|
367 | }
|
---|
368 | dfprocessinternal(ref df, lasttreeoffs, ref x, ref y);
|
---|
369 | i1_ = (0) - (j*nclasses);
|
---|
370 | for(i_=j*nclasses; i_<=(j+1)*nclasses-1;i_++)
|
---|
371 | {
|
---|
372 | oobbuf[i_] = oobbuf[i_] + y[i_+i1_];
|
---|
373 | }
|
---|
374 | oobcntbuf[j] = oobcntbuf[j]+1;
|
---|
375 | }
|
---|
376 | }
|
---|
377 | df.bufsize = offs;
|
---|
378 |
|
---|
379 | //
|
---|
380 | // Normalize OOB results
|
---|
381 | //
|
---|
382 | for(i=0; i<=npoints-1; i++)
|
---|
383 | {
|
---|
384 | if( oobcntbuf[i]!=0 )
|
---|
385 | {
|
---|
386 | v = (double)(1)/(double)(oobcntbuf[i]);
|
---|
387 | for(i_=i*nclasses; i_<=i*nclasses+nclasses-1;i_++)
|
---|
388 | {
|
---|
389 | oobbuf[i_] = v*oobbuf[i_];
|
---|
390 | }
|
---|
391 | }
|
---|
392 | }
|
---|
393 |
|
---|
394 | //
|
---|
395 | // Calculate training set estimates
|
---|
396 | //
|
---|
397 | rep.relclserror = dfrelclserror(ref df, ref xy, npoints);
|
---|
398 | rep.avgce = dfavgce(ref df, ref xy, npoints);
|
---|
399 | rep.rmserror = dfrmserror(ref df, ref xy, npoints);
|
---|
400 | rep.avgerror = dfavgerror(ref df, ref xy, npoints);
|
---|
401 | rep.avgrelerror = dfavgrelerror(ref df, ref xy, npoints);
|
---|
402 |
|
---|
403 | //
|
---|
404 | // Calculate OOB estimates.
|
---|
405 | //
|
---|
406 | rep.oobrelclserror = 0;
|
---|
407 | rep.oobavgce = 0;
|
---|
408 | rep.oobrmserror = 0;
|
---|
409 | rep.oobavgerror = 0;
|
---|
410 | rep.oobavgrelerror = 0;
|
---|
411 | oobcnt = 0;
|
---|
412 | oobrelcnt = 0;
|
---|
413 | for(i=0; i<=npoints-1; i++)
|
---|
414 | {
|
---|
415 | if( oobcntbuf[i]!=0 )
|
---|
416 | {
|
---|
417 | ooboffs = i*nclasses;
|
---|
418 | if( nclasses>1 )
|
---|
419 | {
|
---|
420 |
|
---|
421 | //
|
---|
422 | // classification-specific code
|
---|
423 | //
|
---|
424 | k = (int)Math.Round(xy[i,nvars]);
|
---|
425 | tmpi = 0;
|
---|
426 | for(j=1; j<=nclasses-1; j++)
|
---|
427 | {
|
---|
428 | if( (double)(oobbuf[ooboffs+j])>(double)(oobbuf[ooboffs+tmpi]) )
|
---|
429 | {
|
---|
430 | tmpi = j;
|
---|
431 | }
|
---|
432 | }
|
---|
433 | if( tmpi!=k )
|
---|
434 | {
|
---|
435 | rep.oobrelclserror = rep.oobrelclserror+1;
|
---|
436 | }
|
---|
437 | if( (double)(oobbuf[ooboffs+k])!=(double)(0) )
|
---|
438 | {
|
---|
439 | rep.oobavgce = rep.oobavgce-Math.Log(oobbuf[ooboffs+k]);
|
---|
440 | }
|
---|
441 | else
|
---|
442 | {
|
---|
443 | rep.oobavgce = rep.oobavgce-Math.Log(AP.Math.MinRealNumber);
|
---|
444 | }
|
---|
445 | for(j=0; j<=nclasses-1; j++)
|
---|
446 | {
|
---|
447 | if( j==k )
|
---|
448 | {
|
---|
449 | rep.oobrmserror = rep.oobrmserror+AP.Math.Sqr(oobbuf[ooboffs+j]-1);
|
---|
450 | rep.oobavgerror = rep.oobavgerror+Math.Abs(oobbuf[ooboffs+j]-1);
|
---|
451 | rep.oobavgrelerror = rep.oobavgrelerror+Math.Abs(oobbuf[ooboffs+j]-1);
|
---|
452 | oobrelcnt = oobrelcnt+1;
|
---|
453 | }
|
---|
454 | else
|
---|
455 | {
|
---|
456 | rep.oobrmserror = rep.oobrmserror+AP.Math.Sqr(oobbuf[ooboffs+j]);
|
---|
457 | rep.oobavgerror = rep.oobavgerror+Math.Abs(oobbuf[ooboffs+j]);
|
---|
458 | }
|
---|
459 | }
|
---|
460 | }
|
---|
461 | else
|
---|
462 | {
|
---|
463 |
|
---|
464 | //
|
---|
465 | // regression-specific code
|
---|
466 | //
|
---|
467 | rep.oobrmserror = rep.oobrmserror+AP.Math.Sqr(oobbuf[ooboffs]-xy[i,nvars]);
|
---|
468 | rep.oobavgerror = rep.oobavgerror+Math.Abs(oobbuf[ooboffs]-xy[i,nvars]);
|
---|
469 | if( (double)(xy[i,nvars])!=(double)(0) )
|
---|
470 | {
|
---|
471 | rep.oobavgrelerror = rep.oobavgrelerror+Math.Abs((oobbuf[ooboffs]-xy[i,nvars])/xy[i,nvars]);
|
---|
472 | oobrelcnt = oobrelcnt+1;
|
---|
473 | }
|
---|
474 | }
|
---|
475 |
|
---|
476 | //
|
---|
477 | // update OOB estimates count.
|
---|
478 | //
|
---|
479 | oobcnt = oobcnt+1;
|
---|
480 | }
|
---|
481 | }
|
---|
482 | if( oobcnt>0 )
|
---|
483 | {
|
---|
484 | rep.oobrelclserror = rep.oobrelclserror/oobcnt;
|
---|
485 | rep.oobavgce = rep.oobavgce/oobcnt;
|
---|
486 | rep.oobrmserror = Math.Sqrt(rep.oobrmserror/(oobcnt*nclasses));
|
---|
487 | rep.oobavgerror = rep.oobavgerror/(oobcnt*nclasses);
|
---|
488 | if( oobrelcnt>0 )
|
---|
489 | {
|
---|
490 | rep.oobavgrelerror = rep.oobavgrelerror/oobrelcnt;
|
---|
491 | }
|
---|
492 | }
|
---|
493 | }
|
---|
494 |
|
---|
495 |
|
---|
496 | /*************************************************************************
|
---|
497 | Procesing
|
---|
498 |
|
---|
499 | INPUT PARAMETERS:
|
---|
500 | DF - decision forest model
|
---|
501 | X - input vector, array[0..NVars-1].
|
---|
502 |
|
---|
503 | OUTPUT PARAMETERS:
|
---|
504 | Y - result. Regression estimate when solving regression task,
|
---|
505 | vector of posterior probabilities for classification task.
|
---|
506 | Subroutine does not allocate memory for this vector, it is
|
---|
507 | responsibility of a caller to allocate it. Array must be
|
---|
508 | at least [0..NClasses-1].
|
---|
509 |
|
---|
510 | -- ALGLIB --
|
---|
511 | Copyright 16.02.2009 by Bochkanov Sergey
|
---|
512 | *************************************************************************/
|
---|
513 | public static void dfprocess(ref decisionforest df,
|
---|
514 | ref double[] x,
|
---|
515 | ref double[] y)
|
---|
516 | {
|
---|
517 | int offs = 0;
|
---|
518 | int i = 0;
|
---|
519 | double v = 0;
|
---|
520 | int i_ = 0;
|
---|
521 |
|
---|
522 |
|
---|
523 | //
|
---|
524 | // Proceed
|
---|
525 | //
|
---|
526 | offs = 0;
|
---|
527 | for(i=0; i<=df.nclasses-1; i++)
|
---|
528 | {
|
---|
529 | y[i] = 0;
|
---|
530 | }
|
---|
531 | for(i=0; i<=df.ntrees-1; i++)
|
---|
532 | {
|
---|
533 |
|
---|
534 | //
|
---|
535 | // Process basic tree
|
---|
536 | //
|
---|
537 | dfprocessinternal(ref df, offs, ref x, ref y);
|
---|
538 |
|
---|
539 | //
|
---|
540 | // Next tree
|
---|
541 | //
|
---|
542 | offs = offs+(int)Math.Round(df.trees[offs]);
|
---|
543 | }
|
---|
544 | v = (double)(1)/(double)(df.ntrees);
|
---|
545 | for(i_=0; i_<=df.nclasses-1;i_++)
|
---|
546 | {
|
---|
547 | y[i_] = v*y[i_];
|
---|
548 | }
|
---|
549 | }
|
---|
550 |
|
---|
551 |
|
---|
552 | /*************************************************************************
|
---|
553 | Relative classification error on the test set
|
---|
554 |
|
---|
555 | INPUT PARAMETERS:
|
---|
556 | DF - decision forest model
|
---|
557 | XY - test set
|
---|
558 | NPoints - test set size
|
---|
559 |
|
---|
560 | RESULT:
|
---|
561 | percent of incorrectly classified cases.
|
---|
562 | Zero if model solves regression task.
|
---|
563 |
|
---|
564 | -- ALGLIB --
|
---|
565 | Copyright 16.02.2009 by Bochkanov Sergey
|
---|
566 | *************************************************************************/
|
---|
567 | public static double dfrelclserror(ref decisionforest df,
|
---|
568 | ref double[,] xy,
|
---|
569 | int npoints)
|
---|
570 | {
|
---|
571 | double result = 0;
|
---|
572 |
|
---|
573 | result = (double)(dfclserror(ref df, ref xy, npoints))/(double)(npoints);
|
---|
574 | return result;
|
---|
575 | }
|
---|
576 |
|
---|
577 |
|
---|
578 | /*************************************************************************
|
---|
579 | Average cross-entropy (in bits per element) on the test set
|
---|
580 |
|
---|
581 | INPUT PARAMETERS:
|
---|
582 | DF - decision forest model
|
---|
583 | XY - test set
|
---|
584 | NPoints - test set size
|
---|
585 |
|
---|
586 | RESULT:
|
---|
587 | CrossEntropy/(NPoints*LN(2)).
|
---|
588 | Zero if model solves regression task.
|
---|
589 |
|
---|
590 | -- ALGLIB --
|
---|
591 | Copyright 16.02.2009 by Bochkanov Sergey
|
---|
592 | *************************************************************************/
|
---|
593 | public static double dfavgce(ref decisionforest df,
|
---|
594 | ref double[,] xy,
|
---|
595 | int npoints)
|
---|
596 | {
|
---|
597 | double result = 0;
|
---|
598 | double[] x = new double[0];
|
---|
599 | double[] y = new double[0];
|
---|
600 | int i = 0;
|
---|
601 | int j = 0;
|
---|
602 | int k = 0;
|
---|
603 | int tmpi = 0;
|
---|
604 | int i_ = 0;
|
---|
605 |
|
---|
606 | x = new double[df.nvars-1+1];
|
---|
607 | y = new double[df.nclasses-1+1];
|
---|
608 | result = 0;
|
---|
609 | for(i=0; i<=npoints-1; i++)
|
---|
610 | {
|
---|
611 | for(i_=0; i_<=df.nvars-1;i_++)
|
---|
612 | {
|
---|
613 | x[i_] = xy[i,i_];
|
---|
614 | }
|
---|
615 | dfprocess(ref df, ref x, ref y);
|
---|
616 | if( df.nclasses>1 )
|
---|
617 | {
|
---|
618 |
|
---|
619 | //
|
---|
620 | // classification-specific code
|
---|
621 | //
|
---|
622 | k = (int)Math.Round(xy[i,df.nvars]);
|
---|
623 | tmpi = 0;
|
---|
624 | for(j=1; j<=df.nclasses-1; j++)
|
---|
625 | {
|
---|
626 | if( (double)(y[j])>(double)(y[tmpi]) )
|
---|
627 | {
|
---|
628 | tmpi = j;
|
---|
629 | }
|
---|
630 | }
|
---|
631 | if( (double)(y[k])!=(double)(0) )
|
---|
632 | {
|
---|
633 | result = result-Math.Log(y[k]);
|
---|
634 | }
|
---|
635 | else
|
---|
636 | {
|
---|
637 | result = result-Math.Log(AP.Math.MinRealNumber);
|
---|
638 | }
|
---|
639 | }
|
---|
640 | }
|
---|
641 | result = result/npoints;
|
---|
642 | return result;
|
---|
643 | }
|
---|
644 |
|
---|
645 |
|
---|
646 | /*************************************************************************
|
---|
647 | RMS error on the test set
|
---|
648 |
|
---|
649 | INPUT PARAMETERS:
|
---|
650 | DF - decision forest model
|
---|
651 | XY - test set
|
---|
652 | NPoints - test set size
|
---|
653 |
|
---|
654 | RESULT:
|
---|
655 | root mean square error.
|
---|
656 | Its meaning for regression task is obvious. As for
|
---|
657 | classification task, RMS error means error when estimating posterior
|
---|
658 | probabilities.
|
---|
659 |
|
---|
660 | -- ALGLIB --
|
---|
661 | Copyright 16.02.2009 by Bochkanov Sergey
|
---|
662 | *************************************************************************/
|
---|
663 | public static double dfrmserror(ref decisionforest df,
|
---|
664 | ref double[,] xy,
|
---|
665 | int npoints)
|
---|
666 | {
|
---|
667 | double result = 0;
|
---|
668 | double[] x = new double[0];
|
---|
669 | double[] y = new double[0];
|
---|
670 | int i = 0;
|
---|
671 | int j = 0;
|
---|
672 | int k = 0;
|
---|
673 | int tmpi = 0;
|
---|
674 | int i_ = 0;
|
---|
675 |
|
---|
676 | x = new double[df.nvars-1+1];
|
---|
677 | y = new double[df.nclasses-1+1];
|
---|
678 | result = 0;
|
---|
679 | for(i=0; i<=npoints-1; i++)
|
---|
680 | {
|
---|
681 | for(i_=0; i_<=df.nvars-1;i_++)
|
---|
682 | {
|
---|
683 | x[i_] = xy[i,i_];
|
---|
684 | }
|
---|
685 | dfprocess(ref df, ref x, ref y);
|
---|
686 | if( df.nclasses>1 )
|
---|
687 | {
|
---|
688 |
|
---|
689 | //
|
---|
690 | // classification-specific code
|
---|
691 | //
|
---|
692 | k = (int)Math.Round(xy[i,df.nvars]);
|
---|
693 | tmpi = 0;
|
---|
694 | for(j=1; j<=df.nclasses-1; j++)
|
---|
695 | {
|
---|
696 | if( (double)(y[j])>(double)(y[tmpi]) )
|
---|
697 | {
|
---|
698 | tmpi = j;
|
---|
699 | }
|
---|
700 | }
|
---|
701 | for(j=0; j<=df.nclasses-1; j++)
|
---|
702 | {
|
---|
703 | if( j==k )
|
---|
704 | {
|
---|
705 | result = result+AP.Math.Sqr(y[j]-1);
|
---|
706 | }
|
---|
707 | else
|
---|
708 | {
|
---|
709 | result = result+AP.Math.Sqr(y[j]);
|
---|
710 | }
|
---|
711 | }
|
---|
712 | }
|
---|
713 | else
|
---|
714 | {
|
---|
715 |
|
---|
716 | //
|
---|
717 | // regression-specific code
|
---|
718 | //
|
---|
719 | result = result+AP.Math.Sqr(y[0]-xy[i,df.nvars]);
|
---|
720 | }
|
---|
721 | }
|
---|
722 | result = Math.Sqrt(result/(npoints*df.nclasses));
|
---|
723 | return result;
|
---|
724 | }
|
---|
725 |
|
---|
726 |
|
---|
727 | /*************************************************************************
|
---|
728 | Average error on the test set
|
---|
729 |
|
---|
730 | INPUT PARAMETERS:
|
---|
731 | DF - decision forest model
|
---|
732 | XY - test set
|
---|
733 | NPoints - test set size
|
---|
734 |
|
---|
735 | RESULT:
|
---|
736 | Its meaning for regression task is obvious. As for
|
---|
737 | classification task, it means average error when estimating posterior
|
---|
738 | probabilities.
|
---|
739 |
|
---|
740 | -- ALGLIB --
|
---|
741 | Copyright 16.02.2009 by Bochkanov Sergey
|
---|
742 | *************************************************************************/
|
---|
743 | public static double dfavgerror(ref decisionforest df,
|
---|
744 | ref double[,] xy,
|
---|
745 | int npoints)
|
---|
746 | {
|
---|
747 | double result = 0;
|
---|
748 | double[] x = new double[0];
|
---|
749 | double[] y = new double[0];
|
---|
750 | int i = 0;
|
---|
751 | int j = 0;
|
---|
752 | int k = 0;
|
---|
753 | int i_ = 0;
|
---|
754 |
|
---|
755 | x = new double[df.nvars-1+1];
|
---|
756 | y = new double[df.nclasses-1+1];
|
---|
757 | result = 0;
|
---|
758 | for(i=0; i<=npoints-1; i++)
|
---|
759 | {
|
---|
760 | for(i_=0; i_<=df.nvars-1;i_++)
|
---|
761 | {
|
---|
762 | x[i_] = xy[i,i_];
|
---|
763 | }
|
---|
764 | dfprocess(ref df, ref x, ref y);
|
---|
765 | if( df.nclasses>1 )
|
---|
766 | {
|
---|
767 |
|
---|
768 | //
|
---|
769 | // classification-specific code
|
---|
770 | //
|
---|
771 | k = (int)Math.Round(xy[i,df.nvars]);
|
---|
772 | for(j=0; j<=df.nclasses-1; j++)
|
---|
773 | {
|
---|
774 | if( j==k )
|
---|
775 | {
|
---|
776 | result = result+Math.Abs(y[j]-1);
|
---|
777 | }
|
---|
778 | else
|
---|
779 | {
|
---|
780 | result = result+Math.Abs(y[j]);
|
---|
781 | }
|
---|
782 | }
|
---|
783 | }
|
---|
784 | else
|
---|
785 | {
|
---|
786 |
|
---|
787 | //
|
---|
788 | // regression-specific code
|
---|
789 | //
|
---|
790 | result = result+Math.Abs(y[0]-xy[i,df.nvars]);
|
---|
791 | }
|
---|
792 | }
|
---|
793 | result = result/(npoints*df.nclasses);
|
---|
794 | return result;
|
---|
795 | }
|
---|
796 |
|
---|
797 |
|
---|
798 | /*************************************************************************
|
---|
799 | Average relative error on the test set
|
---|
800 |
|
---|
801 | INPUT PARAMETERS:
|
---|
802 | DF - decision forest model
|
---|
803 | XY - test set
|
---|
804 | NPoints - test set size
|
---|
805 |
|
---|
806 | RESULT:
|
---|
807 | Its meaning for regression task is obvious. As for
|
---|
808 | classification task, it means average relative error when estimating
|
---|
809 | posterior probability of belonging to the correct class.
|
---|
810 |
|
---|
811 | -- ALGLIB --
|
---|
812 | Copyright 16.02.2009 by Bochkanov Sergey
|
---|
813 | *************************************************************************/
|
---|
814 | public static double dfavgrelerror(ref decisionforest df,
|
---|
815 | ref double[,] xy,
|
---|
816 | int npoints)
|
---|
817 | {
|
---|
818 | double result = 0;
|
---|
819 | double[] x = new double[0];
|
---|
820 | double[] y = new double[0];
|
---|
821 | int relcnt = 0;
|
---|
822 | int i = 0;
|
---|
823 | int j = 0;
|
---|
824 | int k = 0;
|
---|
825 | int i_ = 0;
|
---|
826 |
|
---|
827 | x = new double[df.nvars-1+1];
|
---|
828 | y = new double[df.nclasses-1+1];
|
---|
829 | result = 0;
|
---|
830 | relcnt = 0;
|
---|
831 | for(i=0; i<=npoints-1; i++)
|
---|
832 | {
|
---|
833 | for(i_=0; i_<=df.nvars-1;i_++)
|
---|
834 | {
|
---|
835 | x[i_] = xy[i,i_];
|
---|
836 | }
|
---|
837 | dfprocess(ref df, ref x, ref y);
|
---|
838 | if( df.nclasses>1 )
|
---|
839 | {
|
---|
840 |
|
---|
841 | //
|
---|
842 | // classification-specific code
|
---|
843 | //
|
---|
844 | k = (int)Math.Round(xy[i,df.nvars]);
|
---|
845 | for(j=0; j<=df.nclasses-1; j++)
|
---|
846 | {
|
---|
847 | if( j==k )
|
---|
848 | {
|
---|
849 | result = result+Math.Abs(y[j]-1);
|
---|
850 | relcnt = relcnt+1;
|
---|
851 | }
|
---|
852 | }
|
---|
853 | }
|
---|
854 | else
|
---|
855 | {
|
---|
856 |
|
---|
857 | //
|
---|
858 | // regression-specific code
|
---|
859 | //
|
---|
860 | if( (double)(xy[i,df.nvars])!=(double)(0) )
|
---|
861 | {
|
---|
862 | result = result+Math.Abs((y[0]-xy[i,df.nvars])/xy[i,df.nvars]);
|
---|
863 | relcnt = relcnt+1;
|
---|
864 | }
|
---|
865 | }
|
---|
866 | }
|
---|
867 | if( relcnt>0 )
|
---|
868 | {
|
---|
869 | result = result/relcnt;
|
---|
870 | }
|
---|
871 | return result;
|
---|
872 | }
|
---|
873 |
|
---|
874 |
|
---|
875 | /*************************************************************************
|
---|
876 | Copying of DecisionForest strucure
|
---|
877 |
|
---|
878 | INPUT PARAMETERS:
|
---|
879 | DF1 - original
|
---|
880 |
|
---|
881 | OUTPUT PARAMETERS:
|
---|
882 | DF2 - copy
|
---|
883 |
|
---|
884 | -- ALGLIB --
|
---|
885 | Copyright 13.02.2009 by Bochkanov Sergey
|
---|
886 | *************************************************************************/
|
---|
887 | public static void dfcopy(ref decisionforest df1,
|
---|
888 | ref decisionforest df2)
|
---|
889 | {
|
---|
890 | int i_ = 0;
|
---|
891 |
|
---|
892 | df2.nvars = df1.nvars;
|
---|
893 | df2.nclasses = df1.nclasses;
|
---|
894 | df2.ntrees = df1.ntrees;
|
---|
895 | df2.bufsize = df1.bufsize;
|
---|
896 | df2.trees = new double[df1.bufsize-1+1];
|
---|
897 | for(i_=0; i_<=df1.bufsize-1;i_++)
|
---|
898 | {
|
---|
899 | df2.trees[i_] = df1.trees[i_];
|
---|
900 | }
|
---|
901 | }
|
---|
902 |
|
---|
903 |
|
---|
904 | /*************************************************************************
|
---|
905 | Serialization of DecisionForest strucure
|
---|
906 |
|
---|
907 | INPUT PARAMETERS:
|
---|
908 | DF - original
|
---|
909 |
|
---|
910 | OUTPUT PARAMETERS:
|
---|
911 | RA - array of real numbers which stores decision forest,
|
---|
912 | array[0..RLen-1]
|
---|
913 | RLen - RA lenght
|
---|
914 |
|
---|
915 | -- ALGLIB --
|
---|
916 | Copyright 13.02.2009 by Bochkanov Sergey
|
---|
917 | *************************************************************************/
|
---|
918 | public static void dfserialize(ref decisionforest df,
|
---|
919 | ref double[] ra,
|
---|
920 | ref int rlen)
|
---|
921 | {
|
---|
922 | int i_ = 0;
|
---|
923 | int i1_ = 0;
|
---|
924 |
|
---|
925 | ra = new double[df.bufsize+5-1+1];
|
---|
926 | ra[0] = dfvnum;
|
---|
927 | ra[1] = df.nvars;
|
---|
928 | ra[2] = df.nclasses;
|
---|
929 | ra[3] = df.ntrees;
|
---|
930 | ra[4] = df.bufsize;
|
---|
931 | i1_ = (0) - (5);
|
---|
932 | for(i_=5; i_<=5+df.bufsize-1;i_++)
|
---|
933 | {
|
---|
934 | ra[i_] = df.trees[i_+i1_];
|
---|
935 | }
|
---|
936 | rlen = 5+df.bufsize;
|
---|
937 | }
|
---|
938 |
|
---|
939 |
|
---|
940 | /*************************************************************************
|
---|
941 | Unserialization of DecisionForest strucure
|
---|
942 |
|
---|
943 | INPUT PARAMETERS:
|
---|
944 | RA - real array which stores decision forest
|
---|
945 |
|
---|
946 | OUTPUT PARAMETERS:
|
---|
947 | DF - restored structure
|
---|
948 |
|
---|
949 | -- ALGLIB --
|
---|
950 | Copyright 13.02.2009 by Bochkanov Sergey
|
---|
951 | *************************************************************************/
|
---|
952 | public static void dfunserialize(ref double[] ra,
|
---|
953 | ref decisionforest df)
|
---|
954 | {
|
---|
955 | int i_ = 0;
|
---|
956 | int i1_ = 0;
|
---|
957 |
|
---|
958 | System.Diagnostics.Debug.Assert((int)Math.Round(ra[0])==dfvnum, "DFUnserialize: incorrect array!");
|
---|
959 | df.nvars = (int)Math.Round(ra[1]);
|
---|
960 | df.nclasses = (int)Math.Round(ra[2]);
|
---|
961 | df.ntrees = (int)Math.Round(ra[3]);
|
---|
962 | df.bufsize = (int)Math.Round(ra[4]);
|
---|
963 | df.trees = new double[df.bufsize-1+1];
|
---|
964 | i1_ = (5) - (0);
|
---|
965 | for(i_=0; i_<=df.bufsize-1;i_++)
|
---|
966 | {
|
---|
967 | df.trees[i_] = ra[i_+i1_];
|
---|
968 | }
|
---|
969 | }
|
---|
970 |
|
---|
971 |
|
---|
972 | /*************************************************************************
|
---|
973 | Classification error
|
---|
974 | *************************************************************************/
|
---|
975 | private static int dfclserror(ref decisionforest df,
|
---|
976 | ref double[,] xy,
|
---|
977 | int npoints)
|
---|
978 | {
|
---|
979 | int result = 0;
|
---|
980 | double[] x = new double[0];
|
---|
981 | double[] y = new double[0];
|
---|
982 | int i = 0;
|
---|
983 | int j = 0;
|
---|
984 | int k = 0;
|
---|
985 | int tmpi = 0;
|
---|
986 | int i_ = 0;
|
---|
987 |
|
---|
988 | if( df.nclasses<=1 )
|
---|
989 | {
|
---|
990 | result = 0;
|
---|
991 | return result;
|
---|
992 | }
|
---|
993 | x = new double[df.nvars-1+1];
|
---|
994 | y = new double[df.nclasses-1+1];
|
---|
995 | result = 0;
|
---|
996 | for(i=0; i<=npoints-1; i++)
|
---|
997 | {
|
---|
998 | for(i_=0; i_<=df.nvars-1;i_++)
|
---|
999 | {
|
---|
1000 | x[i_] = xy[i,i_];
|
---|
1001 | }
|
---|
1002 | dfprocess(ref df, ref x, ref y);
|
---|
1003 | k = (int)Math.Round(xy[i,df.nvars]);
|
---|
1004 | tmpi = 0;
|
---|
1005 | for(j=1; j<=df.nclasses-1; j++)
|
---|
1006 | {
|
---|
1007 | if( (double)(y[j])>(double)(y[tmpi]) )
|
---|
1008 | {
|
---|
1009 | tmpi = j;
|
---|
1010 | }
|
---|
1011 | }
|
---|
1012 | if( tmpi!=k )
|
---|
1013 | {
|
---|
1014 | result = result+1;
|
---|
1015 | }
|
---|
1016 | }
|
---|
1017 | return result;
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 |
|
---|
1021 | /*************************************************************************
|
---|
1022 | Internal subroutine for processing one decision tree starting at Offs
|
---|
1023 | *************************************************************************/
|
---|
1024 | private static void dfprocessinternal(ref decisionforest df,
|
---|
1025 | int offs,
|
---|
1026 | ref double[] x,
|
---|
1027 | ref double[] y)
|
---|
1028 | {
|
---|
1029 | int i = 0;
|
---|
1030 | int k = 0;
|
---|
1031 | int idx = 0;
|
---|
1032 |
|
---|
1033 |
|
---|
1034 | //
|
---|
1035 | // Set pointer to the root
|
---|
1036 | //
|
---|
1037 | k = offs+1;
|
---|
1038 |
|
---|
1039 | //
|
---|
1040 | // Navigate through the tree
|
---|
1041 | //
|
---|
1042 | while( true )
|
---|
1043 | {
|
---|
1044 | if( (double)(df.trees[k])==(double)(-1) )
|
---|
1045 | {
|
---|
1046 | if( df.nclasses==1 )
|
---|
1047 | {
|
---|
1048 | y[0] = y[0]+df.trees[k+1];
|
---|
1049 | }
|
---|
1050 | else
|
---|
1051 | {
|
---|
1052 | idx = (int)Math.Round(df.trees[k+1]);
|
---|
1053 | y[idx] = y[idx]+1;
|
---|
1054 | }
|
---|
1055 | break;
|
---|
1056 | }
|
---|
1057 | if( (double)(x[(int)Math.Round(df.trees[k])])<(double)(df.trees[k+1]) )
|
---|
1058 | {
|
---|
1059 | k = k+innernodewidth;
|
---|
1060 | }
|
---|
1061 | else
|
---|
1062 | {
|
---|
1063 | k = offs+(int)Math.Round(df.trees[k+2]);
|
---|
1064 | }
|
---|
1065 | }
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 |
|
---|
1069 | /*************************************************************************
|
---|
1070 | Builds one decision tree. Just a wrapper for the DFBuildTreeRec.
|
---|
1071 | *************************************************************************/
|
---|
1072 | private static void dfbuildtree(ref double[,] xy,
|
---|
1073 | int npoints,
|
---|
1074 | int nvars,
|
---|
1075 | int nclasses,
|
---|
1076 | int nfeatures,
|
---|
1077 | int nvarsinpool,
|
---|
1078 | int flags,
|
---|
1079 | ref dfinternalbuffers bufs)
|
---|
1080 | {
|
---|
1081 | int numprocessed = 0;
|
---|
1082 | int i = 0;
|
---|
1083 |
|
---|
1084 | System.Diagnostics.Debug.Assert(npoints>0);
|
---|
1085 |
|
---|
1086 | //
|
---|
1087 | // Prepare IdxBuf. It stores indices of the training set elements.
|
---|
1088 | // When training set is being split, contents of IdxBuf is
|
---|
1089 | // correspondingly reordered so we can know which elements belong
|
---|
1090 | // to which branch of decision tree.
|
---|
1091 | //
|
---|
1092 | for(i=0; i<=npoints-1; i++)
|
---|
1093 | {
|
---|
1094 | bufs.idxbuf[i] = i;
|
---|
1095 | }
|
---|
1096 |
|
---|
1097 | //
|
---|
1098 | // Recursive procedure
|
---|
1099 | //
|
---|
1100 | numprocessed = 1;
|
---|
1101 | dfbuildtreerec(ref xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, ref numprocessed, 0, npoints-1, ref bufs);
|
---|
1102 | bufs.treebuf[0] = numprocessed;
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 |
|
---|
1106 | /*************************************************************************
|
---|
1107 | Builds one decision tree (internal recursive subroutine)
|
---|
1108 |
|
---|
1109 | Parameters:
|
---|
1110 | TreeBuf - large enough array, at least TreeSize
|
---|
1111 | IdxBuf - at least NPoints elements
|
---|
1112 | TmpBufR - at least NPoints
|
---|
1113 | TmpBufR2 - at least NPoints
|
---|
1114 | TmpBufI - at least NPoints
|
---|
1115 | TmpBufI2 - at least NPoints+1
|
---|
1116 | *************************************************************************/
|
---|
1117 | private static void dfbuildtreerec(ref double[,] xy,
|
---|
1118 | int npoints,
|
---|
1119 | int nvars,
|
---|
1120 | int nclasses,
|
---|
1121 | int nfeatures,
|
---|
1122 | int nvarsinpool,
|
---|
1123 | int flags,
|
---|
1124 | ref int numprocessed,
|
---|
1125 | int idx1,
|
---|
1126 | int idx2,
|
---|
1127 | ref dfinternalbuffers bufs)
|
---|
1128 | {
|
---|
1129 | int i = 0;
|
---|
1130 | int j = 0;
|
---|
1131 | int k = 0;
|
---|
1132 | bool bflag = new bool();
|
---|
1133 | int offs = 0;
|
---|
1134 | int i1 = 0;
|
---|
1135 | int i2 = 0;
|
---|
1136 | int lsize = 0;
|
---|
1137 | int info = 0;
|
---|
1138 | double sl = 0;
|
---|
1139 | double sr = 0;
|
---|
1140 | double w = 0;
|
---|
1141 | int idxbest = 0;
|
---|
1142 | double ebest = 0;
|
---|
1143 | double tbest = 0;
|
---|
1144 | int varcur = 0;
|
---|
1145 | double s = 0;
|
---|
1146 | double v = 0;
|
---|
1147 | double v1 = 0;
|
---|
1148 | double v2 = 0;
|
---|
1149 | int nbuf = 0;
|
---|
1150 | double threshold = 0;
|
---|
1151 | int oldnp = 0;
|
---|
1152 | double e = 0;
|
---|
1153 | double currms = 0;
|
---|
1154 | double curcvrms = 0;
|
---|
1155 | bool useevs = new bool();
|
---|
1156 |
|
---|
1157 | System.Diagnostics.Debug.Assert(npoints>0);
|
---|
1158 | System.Diagnostics.Debug.Assert(idx2>=idx1);
|
---|
1159 | useevs = flags/dfuseevs%2!=0;
|
---|
1160 |
|
---|
1161 | //
|
---|
1162 | // Leaf node
|
---|
1163 | //
|
---|
1164 | if( idx2==idx1 )
|
---|
1165 | {
|
---|
1166 | bufs.treebuf[numprocessed] = -1;
|
---|
1167 | bufs.treebuf[numprocessed+1] = xy[bufs.idxbuf[idx1],nvars];
|
---|
1168 | numprocessed = numprocessed+leafnodewidth;
|
---|
1169 | return;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | //
|
---|
1173 | // Non-leaf node.
|
---|
1174 | // Select random variable, prepare split:
|
---|
1175 | // 1. prepare default solution - no splitting, class at random
|
---|
1176 | // 2. investigate possible splits, compare with default/best
|
---|
1177 | //
|
---|
1178 | idxbest = -1;
|
---|
1179 | if( nclasses>1 )
|
---|
1180 | {
|
---|
1181 |
|
---|
1182 | //
|
---|
1183 | // default solution for classification
|
---|
1184 | //
|
---|
1185 | for(i=0; i<=nclasses-1; i++)
|
---|
1186 | {
|
---|
1187 | bufs.classibuf[i] = 0;
|
---|
1188 | }
|
---|
1189 | s = idx2-idx1+1;
|
---|
1190 | for(i=idx1; i<=idx2; i++)
|
---|
1191 | {
|
---|
1192 | j = (int)Math.Round(xy[bufs.idxbuf[i],nvars]);
|
---|
1193 | bufs.classibuf[j] = bufs.classibuf[j]+1;
|
---|
1194 | }
|
---|
1195 | ebest = 0;
|
---|
1196 | for(i=0; i<=nclasses-1; i++)
|
---|
1197 | {
|
---|
1198 | ebest = ebest+bufs.classibuf[i]*AP.Math.Sqr(1-bufs.classibuf[i]/s)+(s-bufs.classibuf[i])*AP.Math.Sqr(bufs.classibuf[i]/s);
|
---|
1199 | }
|
---|
1200 | ebest = Math.Sqrt(ebest/(nclasses*(idx2-idx1+1)));
|
---|
1201 | }
|
---|
1202 | else
|
---|
1203 | {
|
---|
1204 |
|
---|
1205 | //
|
---|
1206 | // default solution for regression
|
---|
1207 | //
|
---|
1208 | v = 0;
|
---|
1209 | for(i=idx1; i<=idx2; i++)
|
---|
1210 | {
|
---|
1211 | v = v+xy[bufs.idxbuf[i],nvars];
|
---|
1212 | }
|
---|
1213 | v = v/(idx2-idx1+1);
|
---|
1214 | ebest = 0;
|
---|
1215 | for(i=idx1; i<=idx2; i++)
|
---|
1216 | {
|
---|
1217 | ebest = ebest+AP.Math.Sqr(xy[bufs.idxbuf[i],nvars]-v);
|
---|
1218 | }
|
---|
1219 | ebest = Math.Sqrt(ebest/(idx2-idx1+1));
|
---|
1220 | }
|
---|
1221 | i = 0;
|
---|
1222 | while( i<=Math.Min(nfeatures, nvarsinpool)-1 )
|
---|
1223 | {
|
---|
1224 |
|
---|
1225 | //
|
---|
1226 | // select variables from pool
|
---|
1227 | //
|
---|
1228 | j = i+AP.Math.RandomInteger(nvarsinpool-i);
|
---|
1229 | k = bufs.varpool[i];
|
---|
1230 | bufs.varpool[i] = bufs.varpool[j];
|
---|
1231 | bufs.varpool[j] = k;
|
---|
1232 | varcur = bufs.varpool[i];
|
---|
1233 |
|
---|
1234 | //
|
---|
1235 | // load variable values to working array
|
---|
1236 | //
|
---|
1237 | // apply EVS preprocessing: if all variable values are same,
|
---|
1238 | // variable is excluded from pool.
|
---|
1239 | //
|
---|
1240 | // This is necessary for binary pre-splits (see later) to work.
|
---|
1241 | //
|
---|
1242 | for(j=idx1; j<=idx2; j++)
|
---|
1243 | {
|
---|
1244 | bufs.tmpbufr[j-idx1] = xy[bufs.idxbuf[j],varcur];
|
---|
1245 | }
|
---|
1246 | if( useevs )
|
---|
1247 | {
|
---|
1248 | bflag = false;
|
---|
1249 | v = bufs.tmpbufr[0];
|
---|
1250 | for(j=0; j<=idx2-idx1; j++)
|
---|
1251 | {
|
---|
1252 | if( (double)(bufs.tmpbufr[j])!=(double)(v) )
|
---|
1253 | {
|
---|
1254 | bflag = true;
|
---|
1255 | break;
|
---|
1256 | }
|
---|
1257 | }
|
---|
1258 | if( !bflag )
|
---|
1259 | {
|
---|
1260 |
|
---|
1261 | //
|
---|
1262 | // exclude variable from pool,
|
---|
1263 | // go to the next iteration.
|
---|
1264 | // I is not increased.
|
---|
1265 | //
|
---|
1266 | k = bufs.varpool[i];
|
---|
1267 | bufs.varpool[i] = bufs.varpool[nvarsinpool-1];
|
---|
1268 | bufs.varpool[nvarsinpool-1] = k;
|
---|
1269 | nvarsinpool = nvarsinpool-1;
|
---|
1270 | continue;
|
---|
1271 | }
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 | //
|
---|
1275 | // load labels to working array
|
---|
1276 | //
|
---|
1277 | if( nclasses>1 )
|
---|
1278 | {
|
---|
1279 | for(j=idx1; j<=idx2; j++)
|
---|
1280 | {
|
---|
1281 | bufs.tmpbufi[j-idx1] = (int)Math.Round(xy[bufs.idxbuf[j],nvars]);
|
---|
1282 | }
|
---|
1283 | }
|
---|
1284 | else
|
---|
1285 | {
|
---|
1286 | for(j=idx1; j<=idx2; j++)
|
---|
1287 | {
|
---|
1288 | bufs.tmpbufr2[j-idx1] = xy[bufs.idxbuf[j],nvars];
|
---|
1289 | }
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 | //
|
---|
1293 | // calculate split
|
---|
1294 | //
|
---|
1295 | if( useevs & bufs.evsbin[varcur] )
|
---|
1296 | {
|
---|
1297 |
|
---|
1298 | //
|
---|
1299 | // Pre-calculated splits for binary variables.
|
---|
1300 | // Threshold is already known, just calculate RMS error
|
---|
1301 | //
|
---|
1302 | threshold = bufs.evssplits[varcur];
|
---|
1303 | if( nclasses>1 )
|
---|
1304 | {
|
---|
1305 |
|
---|
1306 | //
|
---|
1307 | // classification-specific code
|
---|
1308 | //
|
---|
1309 | for(j=0; j<=2*nclasses-1; j++)
|
---|
1310 | {
|
---|
1311 | bufs.classibuf[j] = 0;
|
---|
1312 | }
|
---|
1313 | sl = 0;
|
---|
1314 | sr = 0;
|
---|
1315 | for(j=0; j<=idx2-idx1; j++)
|
---|
1316 | {
|
---|
1317 | k = bufs.tmpbufi[j];
|
---|
1318 | if( (double)(bufs.tmpbufr[j])<(double)(threshold) )
|
---|
1319 | {
|
---|
1320 | bufs.classibuf[k] = bufs.classibuf[k]+1;
|
---|
1321 | sl = sl+1;
|
---|
1322 | }
|
---|
1323 | else
|
---|
1324 | {
|
---|
1325 | bufs.classibuf[k+nclasses] = bufs.classibuf[k+nclasses]+1;
|
---|
1326 | sr = sr+1;
|
---|
1327 | }
|
---|
1328 | }
|
---|
1329 | System.Diagnostics.Debug.Assert((double)(sl)!=(double)(0) & (double)(sr)!=(double)(0), "DFBuildTreeRec: something strange!");
|
---|
1330 | currms = 0;
|
---|
1331 | for(j=0; j<=nclasses-1; j++)
|
---|
1332 | {
|
---|
1333 | w = bufs.classibuf[j];
|
---|
1334 | currms = currms+w*AP.Math.Sqr(w/sl-1);
|
---|
1335 | currms = currms+(sl-w)*AP.Math.Sqr(w/sl);
|
---|
1336 | w = bufs.classibuf[nclasses+j];
|
---|
1337 | currms = currms+w*AP.Math.Sqr(w/sr-1);
|
---|
1338 | currms = currms+(sr-w)*AP.Math.Sqr(w/sr);
|
---|
1339 | }
|
---|
1340 | currms = Math.Sqrt(currms/(nclasses*(idx2-idx1+1)));
|
---|
1341 | }
|
---|
1342 | else
|
---|
1343 | {
|
---|
1344 |
|
---|
1345 | //
|
---|
1346 | // regression-specific code
|
---|
1347 | //
|
---|
1348 | sl = 0;
|
---|
1349 | sr = 0;
|
---|
1350 | v1 = 0;
|
---|
1351 | v2 = 0;
|
---|
1352 | for(j=0; j<=idx2-idx1; j++)
|
---|
1353 | {
|
---|
1354 | if( (double)(bufs.tmpbufr[j])<(double)(threshold) )
|
---|
1355 | {
|
---|
1356 | v1 = v1+bufs.tmpbufr2[j];
|
---|
1357 | sl = sl+1;
|
---|
1358 | }
|
---|
1359 | else
|
---|
1360 | {
|
---|
1361 | v2 = v2+bufs.tmpbufr2[j];
|
---|
1362 | sr = sr+1;
|
---|
1363 | }
|
---|
1364 | }
|
---|
1365 | System.Diagnostics.Debug.Assert((double)(sl)!=(double)(0) & (double)(sr)!=(double)(0), "DFBuildTreeRec: something strange!");
|
---|
1366 | v1 = v1/sl;
|
---|
1367 | v2 = v2/sr;
|
---|
1368 | currms = 0;
|
---|
1369 | for(j=0; j<=idx2-idx1; j++)
|
---|
1370 | {
|
---|
1371 | if( (double)(bufs.tmpbufr[j])<(double)(threshold) )
|
---|
1372 | {
|
---|
1373 | currms = currms+AP.Math.Sqr(v1-bufs.tmpbufr2[j]);
|
---|
1374 | }
|
---|
1375 | else
|
---|
1376 | {
|
---|
1377 | currms = currms+AP.Math.Sqr(v2-bufs.tmpbufr2[j]);
|
---|
1378 | }
|
---|
1379 | }
|
---|
1380 | currms = Math.Sqrt(currms/(idx2-idx1+1));
|
---|
1381 | }
|
---|
1382 | info = 1;
|
---|
1383 | }
|
---|
1384 | else
|
---|
1385 | {
|
---|
1386 |
|
---|
1387 | //
|
---|
1388 | // Generic splits
|
---|
1389 | //
|
---|
1390 | if( nclasses>1 )
|
---|
1391 | {
|
---|
1392 | dfsplitc(ref bufs.tmpbufr, ref bufs.tmpbufi, ref bufs.classibuf, idx2-idx1+1, nclasses, dfusestrongsplits, ref info, ref threshold, ref currms);
|
---|
1393 | }
|
---|
1394 | else
|
---|
1395 | {
|
---|
1396 | dfsplitr(ref bufs.tmpbufr, ref bufs.tmpbufr2, idx2-idx1+1, dfusestrongsplits, ref info, ref threshold, ref currms);
|
---|
1397 | }
|
---|
1398 | }
|
---|
1399 | if( info>0 )
|
---|
1400 | {
|
---|
1401 | if( (double)(currms)<=(double)(ebest) )
|
---|
1402 | {
|
---|
1403 | ebest = currms;
|
---|
1404 | idxbest = varcur;
|
---|
1405 | tbest = threshold;
|
---|
1406 | }
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 | //
|
---|
1410 | // Next iteration
|
---|
1411 | //
|
---|
1412 | i = i+1;
|
---|
1413 | }
|
---|
1414 |
|
---|
1415 | //
|
---|
1416 | // to split or not to split
|
---|
1417 | //
|
---|
1418 | if( idxbest<0 )
|
---|
1419 | {
|
---|
1420 |
|
---|
1421 | //
|
---|
1422 | // All values are same, cannot split.
|
---|
1423 | //
|
---|
1424 | bufs.treebuf[numprocessed] = -1;
|
---|
1425 | if( nclasses>1 )
|
---|
1426 | {
|
---|
1427 |
|
---|
1428 | //
|
---|
1429 | // Select random class label (randomness allows us to
|
---|
1430 | // approximate distribution of the classes)
|
---|
1431 | //
|
---|
1432 | bufs.treebuf[numprocessed+1] = (int)Math.Round(xy[bufs.idxbuf[idx1+AP.Math.RandomInteger(idx2-idx1+1)],nvars]);
|
---|
1433 | }
|
---|
1434 | else
|
---|
1435 | {
|
---|
1436 |
|
---|
1437 | //
|
---|
1438 | // Select average (for regression task).
|
---|
1439 | //
|
---|
1440 | v = 0;
|
---|
1441 | for(i=idx1; i<=idx2; i++)
|
---|
1442 | {
|
---|
1443 | v = v+xy[bufs.idxbuf[i],nvars]/(idx2-idx1+1);
|
---|
1444 | }
|
---|
1445 | bufs.treebuf[numprocessed+1] = v;
|
---|
1446 | }
|
---|
1447 | numprocessed = numprocessed+leafnodewidth;
|
---|
1448 | }
|
---|
1449 | else
|
---|
1450 | {
|
---|
1451 |
|
---|
1452 | //
|
---|
1453 | // we can split
|
---|
1454 | //
|
---|
1455 | bufs.treebuf[numprocessed] = idxbest;
|
---|
1456 | bufs.treebuf[numprocessed+1] = tbest;
|
---|
1457 | i1 = idx1;
|
---|
1458 | i2 = idx2;
|
---|
1459 | while( i1<=i2 )
|
---|
1460 | {
|
---|
1461 |
|
---|
1462 | //
|
---|
1463 | // Reorder indices so that left partition is in [Idx1..I1-1],
|
---|
1464 | // and right partition is in [I2+1..Idx2]
|
---|
1465 | //
|
---|
1466 | if( (double)(xy[bufs.idxbuf[i1],idxbest])<(double)(tbest) )
|
---|
1467 | {
|
---|
1468 | i1 = i1+1;
|
---|
1469 | continue;
|
---|
1470 | }
|
---|
1471 | if( (double)(xy[bufs.idxbuf[i2],idxbest])>=(double)(tbest) )
|
---|
1472 | {
|
---|
1473 | i2 = i2-1;
|
---|
1474 | continue;
|
---|
1475 | }
|
---|
1476 | j = bufs.idxbuf[i1];
|
---|
1477 | bufs.idxbuf[i1] = bufs.idxbuf[i2];
|
---|
1478 | bufs.idxbuf[i2] = j;
|
---|
1479 | i1 = i1+1;
|
---|
1480 | i2 = i2-1;
|
---|
1481 | }
|
---|
1482 | oldnp = numprocessed;
|
---|
1483 | numprocessed = numprocessed+innernodewidth;
|
---|
1484 | dfbuildtreerec(ref xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, ref numprocessed, idx1, i1-1, ref bufs);
|
---|
1485 | bufs.treebuf[oldnp+2] = numprocessed;
|
---|
1486 | dfbuildtreerec(ref xy, npoints, nvars, nclasses, nfeatures, nvarsinpool, flags, ref numprocessed, i2+1, idx2, ref bufs);
|
---|
1487 | }
|
---|
1488 | }
|
---|
1489 |
|
---|
1490 |
|
---|
1491 | /*************************************************************************
|
---|
1492 | Makes weak split on attribute
|
---|
1493 | *************************************************************************/
|
---|
1494 | private static void dfweakspliti(ref double[] x,
|
---|
1495 | ref int[] y,
|
---|
1496 | int n,
|
---|
1497 | int nclasses,
|
---|
1498 | ref int info,
|
---|
1499 | ref double threshold,
|
---|
1500 | ref double e)
|
---|
1501 | {
|
---|
1502 | int i = 0;
|
---|
1503 | int neq = 0;
|
---|
1504 | int nless = 0;
|
---|
1505 | int ngreater = 0;
|
---|
1506 |
|
---|
1507 | tsort.tagsortfasti(ref x, ref y, n);
|
---|
1508 | if( n%2==1 )
|
---|
1509 | {
|
---|
1510 |
|
---|
1511 | //
|
---|
1512 | // odd number of elements
|
---|
1513 | //
|
---|
1514 | threshold = x[n/2];
|
---|
1515 | }
|
---|
1516 | else
|
---|
1517 | {
|
---|
1518 |
|
---|
1519 | //
|
---|
1520 | // even number of elements.
|
---|
1521 | //
|
---|
1522 | // if two closest to the middle of the array are equal,
|
---|
1523 | // we will select one of them (to avoid possible problems with
|
---|
1524 | // floating point errors).
|
---|
1525 | // we will select halfsum otherwise.
|
---|
1526 | //
|
---|
1527 | if( (double)(x[n/2-1])==(double)(x[n/2]) )
|
---|
1528 | {
|
---|
1529 | threshold = x[n/2-1];
|
---|
1530 | }
|
---|
1531 | else
|
---|
1532 | {
|
---|
1533 | threshold = 0.5*(x[n/2-1]+x[n/2]);
|
---|
1534 | }
|
---|
1535 | }
|
---|
1536 | neq = 0;
|
---|
1537 | nless = 0;
|
---|
1538 | ngreater = 0;
|
---|
1539 | for(i=0; i<=n-1; i++)
|
---|
1540 | {
|
---|
1541 | if( (double)(x[i])<(double)(threshold) )
|
---|
1542 | {
|
---|
1543 | nless = nless+1;
|
---|
1544 | }
|
---|
1545 | if( (double)(x[i])==(double)(threshold) )
|
---|
1546 | {
|
---|
1547 | neq = neq+1;
|
---|
1548 | }
|
---|
1549 | if( (double)(x[i])>(double)(threshold) )
|
---|
1550 | {
|
---|
1551 | ngreater = ngreater+1;
|
---|
1552 | }
|
---|
1553 | }
|
---|
1554 | if( nless==0 & ngreater==0 )
|
---|
1555 | {
|
---|
1556 | info = -3;
|
---|
1557 | }
|
---|
1558 | else
|
---|
1559 | {
|
---|
1560 | if( neq!=0 )
|
---|
1561 | {
|
---|
1562 | if( nless<ngreater )
|
---|
1563 | {
|
---|
1564 | threshold = 0.5*(x[nless+neq-1]+x[nless+neq]);
|
---|
1565 | }
|
---|
1566 | else
|
---|
1567 | {
|
---|
1568 | threshold = 0.5*(x[nless-1]+x[nless]);
|
---|
1569 | }
|
---|
1570 | }
|
---|
1571 | info = 1;
|
---|
1572 | e = 0;
|
---|
1573 | }
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 |
|
---|
1577 | /*************************************************************************
|
---|
1578 | Makes split on attribute
|
---|
1579 | *************************************************************************/
|
---|
1580 | private static void dfsplitc(ref double[] x,
|
---|
1581 | ref int[] c,
|
---|
1582 | ref int[] cntbuf,
|
---|
1583 | int n,
|
---|
1584 | int nc,
|
---|
1585 | int flags,
|
---|
1586 | ref int info,
|
---|
1587 | ref double threshold,
|
---|
1588 | ref double e)
|
---|
1589 | {
|
---|
1590 | int i = 0;
|
---|
1591 | int neq = 0;
|
---|
1592 | int nless = 0;
|
---|
1593 | int ngreater = 0;
|
---|
1594 | int q = 0;
|
---|
1595 | int qmin = 0;
|
---|
1596 | int qmax = 0;
|
---|
1597 | int qcnt = 0;
|
---|
1598 | double cursplit = 0;
|
---|
1599 | int nleft = 0;
|
---|
1600 | double v = 0;
|
---|
1601 | double cure = 0;
|
---|
1602 | double w = 0;
|
---|
1603 | double sl = 0;
|
---|
1604 | double sr = 0;
|
---|
1605 |
|
---|
1606 | tsort.tagsortfasti(ref x, ref c, n);
|
---|
1607 | e = AP.Math.MaxRealNumber;
|
---|
1608 | threshold = 0.5*(x[0]+x[n-1]);
|
---|
1609 | info = -3;
|
---|
1610 | if( flags/dfusestrongsplits%2==0 )
|
---|
1611 | {
|
---|
1612 |
|
---|
1613 | //
|
---|
1614 | // weak splits, split at half
|
---|
1615 | //
|
---|
1616 | qcnt = 2;
|
---|
1617 | qmin = 1;
|
---|
1618 | qmax = 1;
|
---|
1619 | }
|
---|
1620 | else
|
---|
1621 | {
|
---|
1622 |
|
---|
1623 | //
|
---|
1624 | // strong splits: choose best quartile
|
---|
1625 | //
|
---|
1626 | qcnt = 4;
|
---|
1627 | qmin = 1;
|
---|
1628 | qmax = 3;
|
---|
1629 | }
|
---|
1630 | for(q=qmin; q<=qmax; q++)
|
---|
1631 | {
|
---|
1632 | cursplit = x[n*q/qcnt];
|
---|
1633 | neq = 0;
|
---|
1634 | nless = 0;
|
---|
1635 | ngreater = 0;
|
---|
1636 | for(i=0; i<=n-1; i++)
|
---|
1637 | {
|
---|
1638 | if( (double)(x[i])<(double)(cursplit) )
|
---|
1639 | {
|
---|
1640 | nless = nless+1;
|
---|
1641 | }
|
---|
1642 | if( (double)(x[i])==(double)(cursplit) )
|
---|
1643 | {
|
---|
1644 | neq = neq+1;
|
---|
1645 | }
|
---|
1646 | if( (double)(x[i])>(double)(cursplit) )
|
---|
1647 | {
|
---|
1648 | ngreater = ngreater+1;
|
---|
1649 | }
|
---|
1650 | }
|
---|
1651 | System.Diagnostics.Debug.Assert(neq!=0, "DFSplitR: NEq=0, something strange!!!");
|
---|
1652 | if( nless!=0 | ngreater!=0 )
|
---|
1653 | {
|
---|
1654 |
|
---|
1655 | //
|
---|
1656 | // set threshold between two partitions, with
|
---|
1657 | // some tweaking to avoid problems with floating point
|
---|
1658 | // arithmetics.
|
---|
1659 | //
|
---|
1660 | // The problem is that when you calculates C = 0.5*(A+B) there
|
---|
1661 | // can be no C which lies strictly between A and B (for example,
|
---|
1662 | // there is no floating point number which is
|
---|
1663 | // greater than 1 and less than 1+eps). In such situations
|
---|
1664 | // we choose right side as theshold (remember that
|
---|
1665 | // points which lie on threshold falls to the right side).
|
---|
1666 | //
|
---|
1667 | if( nless<ngreater )
|
---|
1668 | {
|
---|
1669 | cursplit = 0.5*(x[nless+neq-1]+x[nless+neq]);
|
---|
1670 | nleft = nless+neq;
|
---|
1671 | if( (double)(cursplit)<=(double)(x[nless+neq-1]) )
|
---|
1672 | {
|
---|
1673 | cursplit = x[nless+neq];
|
---|
1674 | }
|
---|
1675 | }
|
---|
1676 | else
|
---|
1677 | {
|
---|
1678 | cursplit = 0.5*(x[nless-1]+x[nless]);
|
---|
1679 | nleft = nless;
|
---|
1680 | if( (double)(cursplit)<=(double)(x[nless-1]) )
|
---|
1681 | {
|
---|
1682 | cursplit = x[nless];
|
---|
1683 | }
|
---|
1684 | }
|
---|
1685 | info = 1;
|
---|
1686 | cure = 0;
|
---|
1687 | for(i=0; i<=2*nc-1; i++)
|
---|
1688 | {
|
---|
1689 | cntbuf[i] = 0;
|
---|
1690 | }
|
---|
1691 | for(i=0; i<=nleft-1; i++)
|
---|
1692 | {
|
---|
1693 | cntbuf[c[i]] = cntbuf[c[i]]+1;
|
---|
1694 | }
|
---|
1695 | for(i=nleft; i<=n-1; i++)
|
---|
1696 | {
|
---|
1697 | cntbuf[nc+c[i]] = cntbuf[nc+c[i]]+1;
|
---|
1698 | }
|
---|
1699 | sl = nleft;
|
---|
1700 | sr = n-nleft;
|
---|
1701 | v = 0;
|
---|
1702 | for(i=0; i<=nc-1; i++)
|
---|
1703 | {
|
---|
1704 | w = cntbuf[i];
|
---|
1705 | v = v+w*AP.Math.Sqr(w/sl-1);
|
---|
1706 | v = v+(sl-w)*AP.Math.Sqr(w/sl);
|
---|
1707 | w = cntbuf[nc+i];
|
---|
1708 | v = v+w*AP.Math.Sqr(w/sr-1);
|
---|
1709 | v = v+(sr-w)*AP.Math.Sqr(w/sr);
|
---|
1710 | }
|
---|
1711 | cure = Math.Sqrt(v/(nc*n));
|
---|
1712 | if( (double)(cure)<(double)(e) )
|
---|
1713 | {
|
---|
1714 | threshold = cursplit;
|
---|
1715 | e = cure;
|
---|
1716 | }
|
---|
1717 | }
|
---|
1718 | }
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 |
|
---|
1722 | /*************************************************************************
|
---|
1723 | Makes split on attribute
|
---|
1724 | *************************************************************************/
|
---|
1725 | private static void dfsplitr(ref double[] x,
|
---|
1726 | ref double[] y,
|
---|
1727 | int n,
|
---|
1728 | int flags,
|
---|
1729 | ref int info,
|
---|
1730 | ref double threshold,
|
---|
1731 | ref double e)
|
---|
1732 | {
|
---|
1733 | int i = 0;
|
---|
1734 | int neq = 0;
|
---|
1735 | int nless = 0;
|
---|
1736 | int ngreater = 0;
|
---|
1737 | int q = 0;
|
---|
1738 | int qmin = 0;
|
---|
1739 | int qmax = 0;
|
---|
1740 | int qcnt = 0;
|
---|
1741 | double cursplit = 0;
|
---|
1742 | int nleft = 0;
|
---|
1743 | double v = 0;
|
---|
1744 | double cure = 0;
|
---|
1745 |
|
---|
1746 | tsort.tagsortfastr(ref x, ref y, n);
|
---|
1747 | e = AP.Math.MaxRealNumber;
|
---|
1748 | threshold = 0.5*(x[0]+x[n-1]);
|
---|
1749 | info = -3;
|
---|
1750 | if( flags/dfusestrongsplits%2==0 )
|
---|
1751 | {
|
---|
1752 |
|
---|
1753 | //
|
---|
1754 | // weak splits, split at half
|
---|
1755 | //
|
---|
1756 | qcnt = 2;
|
---|
1757 | qmin = 1;
|
---|
1758 | qmax = 1;
|
---|
1759 | }
|
---|
1760 | else
|
---|
1761 | {
|
---|
1762 |
|
---|
1763 | //
|
---|
1764 | // strong splits: choose best quartile
|
---|
1765 | //
|
---|
1766 | qcnt = 4;
|
---|
1767 | qmin = 1;
|
---|
1768 | qmax = 3;
|
---|
1769 | }
|
---|
1770 | for(q=qmin; q<=qmax; q++)
|
---|
1771 | {
|
---|
1772 | cursplit = x[n*q/qcnt];
|
---|
1773 | neq = 0;
|
---|
1774 | nless = 0;
|
---|
1775 | ngreater = 0;
|
---|
1776 | for(i=0; i<=n-1; i++)
|
---|
1777 | {
|
---|
1778 | if( (double)(x[i])<(double)(cursplit) )
|
---|
1779 | {
|
---|
1780 | nless = nless+1;
|
---|
1781 | }
|
---|
1782 | if( (double)(x[i])==(double)(cursplit) )
|
---|
1783 | {
|
---|
1784 | neq = neq+1;
|
---|
1785 | }
|
---|
1786 | if( (double)(x[i])>(double)(cursplit) )
|
---|
1787 | {
|
---|
1788 | ngreater = ngreater+1;
|
---|
1789 | }
|
---|
1790 | }
|
---|
1791 | System.Diagnostics.Debug.Assert(neq!=0, "DFSplitR: NEq=0, something strange!!!");
|
---|
1792 | if( nless!=0 | ngreater!=0 )
|
---|
1793 | {
|
---|
1794 |
|
---|
1795 | //
|
---|
1796 | // set threshold between two partitions, with
|
---|
1797 | // some tweaking to avoid problems with floating point
|
---|
1798 | // arithmetics.
|
---|
1799 | //
|
---|
1800 | // The problem is that when you calculates C = 0.5*(A+B) there
|
---|
1801 | // can be no C which lies strictly between A and B (for example,
|
---|
1802 | // there is no floating point number which is
|
---|
1803 | // greater than 1 and less than 1+eps). In such situations
|
---|
1804 | // we choose right side as theshold (remember that
|
---|
1805 | // points which lie on threshold falls to the right side).
|
---|
1806 | //
|
---|
1807 | if( nless<ngreater )
|
---|
1808 | {
|
---|
1809 | cursplit = 0.5*(x[nless+neq-1]+x[nless+neq]);
|
---|
1810 | nleft = nless+neq;
|
---|
1811 | if( (double)(cursplit)<=(double)(x[nless+neq-1]) )
|
---|
1812 | {
|
---|
1813 | cursplit = x[nless+neq];
|
---|
1814 | }
|
---|
1815 | }
|
---|
1816 | else
|
---|
1817 | {
|
---|
1818 | cursplit = 0.5*(x[nless-1]+x[nless]);
|
---|
1819 | nleft = nless;
|
---|
1820 | if( (double)(cursplit)<=(double)(x[nless-1]) )
|
---|
1821 | {
|
---|
1822 | cursplit = x[nless];
|
---|
1823 | }
|
---|
1824 | }
|
---|
1825 | info = 1;
|
---|
1826 | cure = 0;
|
---|
1827 | v = 0;
|
---|
1828 | for(i=0; i<=nleft-1; i++)
|
---|
1829 | {
|
---|
1830 | v = v+y[i];
|
---|
1831 | }
|
---|
1832 | v = v/nleft;
|
---|
1833 | for(i=0; i<=nleft-1; i++)
|
---|
1834 | {
|
---|
1835 | cure = cure+AP.Math.Sqr(y[i]-v);
|
---|
1836 | }
|
---|
1837 | v = 0;
|
---|
1838 | for(i=nleft; i<=n-1; i++)
|
---|
1839 | {
|
---|
1840 | v = v+y[i];
|
---|
1841 | }
|
---|
1842 | v = v/(n-nleft);
|
---|
1843 | for(i=nleft; i<=n-1; i++)
|
---|
1844 | {
|
---|
1845 | cure = cure+AP.Math.Sqr(y[i]-v);
|
---|
1846 | }
|
---|
1847 | cure = Math.Sqrt(cure/n);
|
---|
1848 | if( (double)(cure)<(double)(e) )
|
---|
1849 | {
|
---|
1850 | threshold = cursplit;
|
---|
1851 | e = cure;
|
---|
1852 | }
|
---|
1853 | }
|
---|
1854 | }
|
---|
1855 | }
|
---|
1856 | }
|
---|
1857 | }
|
---|