[2445] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class descriptivestatistics
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Calculation of the distribution moments: mean, variance, slewness, kurtosis.
|
---|
| 29 |
|
---|
| 30 | Input parameters:
|
---|
| 31 | X - sample. Array with whose indexes range within [0..N-1]
|
---|
| 32 | N - sample size.
|
---|
| 33 |
|
---|
| 34 | Output parameters:
|
---|
| 35 | Mean - mean.
|
---|
| 36 | Variance- variance.
|
---|
| 37 | Skewness- skewness (if variance<>0; zero otherwise).
|
---|
| 38 | Kurtosis- kurtosis (if variance<>0; zero otherwise).
|
---|
| 39 |
|
---|
| 40 | -- ALGLIB --
|
---|
| 41 | Copyright 06.09.2006 by Bochkanov Sergey
|
---|
| 42 | *************************************************************************/
|
---|
| 43 | public static void calculatemoments(ref double[] x,
|
---|
| 44 | int n,
|
---|
| 45 | ref double mean,
|
---|
| 46 | ref double variance,
|
---|
| 47 | ref double skewness,
|
---|
| 48 | ref double kurtosis)
|
---|
| 49 | {
|
---|
| 50 | int i = 0;
|
---|
| 51 | double v = 0;
|
---|
| 52 | double v1 = 0;
|
---|
| 53 | double v2 = 0;
|
---|
| 54 | double stddev = 0;
|
---|
| 55 |
|
---|
| 56 | mean = 0;
|
---|
| 57 | variance = 0;
|
---|
| 58 | skewness = 0;
|
---|
| 59 | kurtosis = 0;
|
---|
| 60 | stddev = 0;
|
---|
| 61 | if( n<=0 )
|
---|
| 62 | {
|
---|
| 63 | return;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | //
|
---|
| 67 | // Mean
|
---|
| 68 | //
|
---|
| 69 | for(i=0; i<=n-1; i++)
|
---|
| 70 | {
|
---|
| 71 | mean = mean+x[i];
|
---|
| 72 | }
|
---|
| 73 | mean = mean/n;
|
---|
| 74 |
|
---|
| 75 | //
|
---|
| 76 | // Variance (using corrected two-pass algorithm)
|
---|
| 77 | //
|
---|
| 78 | if( n!=1 )
|
---|
| 79 | {
|
---|
| 80 | v1 = 0;
|
---|
| 81 | for(i=0; i<=n-1; i++)
|
---|
| 82 | {
|
---|
| 83 | v1 = v1+AP.Math.Sqr(x[i]-mean);
|
---|
| 84 | }
|
---|
| 85 | v2 = 0;
|
---|
| 86 | for(i=0; i<=n-1; i++)
|
---|
| 87 | {
|
---|
| 88 | v2 = v2+(x[i]-mean);
|
---|
| 89 | }
|
---|
| 90 | v2 = AP.Math.Sqr(v2)/n;
|
---|
| 91 | variance = (v1-v2)/(n-1);
|
---|
| 92 | if( variance<0 )
|
---|
| 93 | {
|
---|
| 94 | variance = 0;
|
---|
| 95 | }
|
---|
| 96 | stddev = Math.Sqrt(variance);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | //
|
---|
| 100 | // Skewness and kurtosis
|
---|
| 101 | //
|
---|
| 102 | if( stddev!=0 )
|
---|
| 103 | {
|
---|
| 104 | for(i=0; i<=n-1; i++)
|
---|
| 105 | {
|
---|
| 106 | v = (x[i]-mean)/stddev;
|
---|
| 107 | v2 = AP.Math.Sqr(v);
|
---|
| 108 | skewness = skewness+v2*v;
|
---|
| 109 | kurtosis = kurtosis+AP.Math.Sqr(v2);
|
---|
| 110 | }
|
---|
| 111 | skewness = skewness/n;
|
---|
| 112 | kurtosis = kurtosis/n-3;
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 |
|
---|
| 117 | /*************************************************************************
|
---|
| 118 | ADev
|
---|
| 119 |
|
---|
| 120 | Input parameters:
|
---|
| 121 | X - sample (array indexes: [0..N-1])
|
---|
| 122 | N - sample size
|
---|
| 123 |
|
---|
| 124 | Output parameters:
|
---|
| 125 | ADev- ADev
|
---|
| 126 |
|
---|
| 127 | -- ALGLIB --
|
---|
| 128 | Copyright 06.09.2006 by Bochkanov Sergey
|
---|
| 129 | *************************************************************************/
|
---|
| 130 | public static void calculateadev(ref double[] x,
|
---|
| 131 | int n,
|
---|
| 132 | ref double adev)
|
---|
| 133 | {
|
---|
| 134 | int i = 0;
|
---|
| 135 | double mean = 0;
|
---|
| 136 |
|
---|
| 137 | mean = 0;
|
---|
| 138 | adev = 0;
|
---|
| 139 | if( n<=0 )
|
---|
| 140 | {
|
---|
| 141 | return;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | //
|
---|
| 145 | // Mean
|
---|
| 146 | //
|
---|
| 147 | for(i=0; i<=n-1; i++)
|
---|
| 148 | {
|
---|
| 149 | mean = mean+x[i];
|
---|
| 150 | }
|
---|
| 151 | mean = mean/n;
|
---|
| 152 |
|
---|
| 153 | //
|
---|
| 154 | // ADev
|
---|
| 155 | //
|
---|
| 156 | for(i=0; i<=n-1; i++)
|
---|
| 157 | {
|
---|
| 158 | adev = adev+Math.Abs(x[i]-mean);
|
---|
| 159 | }
|
---|
| 160 | adev = adev/n;
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 |
|
---|
| 164 | /*************************************************************************
|
---|
| 165 | Median calculation.
|
---|
| 166 |
|
---|
| 167 | Input parameters:
|
---|
| 168 | X - sample (array indexes: [0..N-1])
|
---|
| 169 | N - sample size
|
---|
| 170 |
|
---|
| 171 | Output parameters:
|
---|
| 172 | Median
|
---|
| 173 |
|
---|
| 174 | -- ALGLIB --
|
---|
| 175 | Copyright 06.09.2006 by Bochkanov Sergey
|
---|
| 176 | *************************************************************************/
|
---|
| 177 | public static void calculatemedian(double[] x,
|
---|
| 178 | int n,
|
---|
| 179 | ref double median)
|
---|
| 180 | {
|
---|
| 181 | int i = 0;
|
---|
| 182 | int ir = 0;
|
---|
| 183 | int j = 0;
|
---|
| 184 | int l = 0;
|
---|
| 185 | int midp = 0;
|
---|
| 186 | int k = 0;
|
---|
| 187 | double a = 0;
|
---|
| 188 | double temp = 0;
|
---|
| 189 | double tval = 0;
|
---|
| 190 |
|
---|
| 191 | x = (double[])x.Clone();
|
---|
| 192 |
|
---|
| 193 |
|
---|
| 194 | //
|
---|
| 195 | // Some degenerate cases
|
---|
| 196 | //
|
---|
| 197 | median = 0;
|
---|
| 198 | if( n<=0 )
|
---|
| 199 | {
|
---|
| 200 | return;
|
---|
| 201 | }
|
---|
| 202 | if( n==1 )
|
---|
| 203 | {
|
---|
| 204 | median = x[0];
|
---|
| 205 | return;
|
---|
| 206 | }
|
---|
| 207 | if( n==2 )
|
---|
| 208 | {
|
---|
| 209 | median = 0.5*(x[0]+x[1]);
|
---|
| 210 | return;
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | //
|
---|
| 214 | // Common case, N>=3.
|
---|
| 215 | // Choose X[(N-1)/2]
|
---|
| 216 | //
|
---|
| 217 | l = 0;
|
---|
| 218 | ir = n-1;
|
---|
| 219 | k = (n-1)/2;
|
---|
| 220 | while( true )
|
---|
| 221 | {
|
---|
| 222 | if( ir<=l+1 )
|
---|
| 223 | {
|
---|
| 224 |
|
---|
| 225 | //
|
---|
| 226 | // 1 or 2 elements in partition
|
---|
| 227 | //
|
---|
| 228 | if( ir==l+1 & x[ir]<x[l] )
|
---|
| 229 | {
|
---|
| 230 | tval = x[l];
|
---|
| 231 | x[l] = x[ir];
|
---|
| 232 | x[ir] = tval;
|
---|
| 233 | }
|
---|
| 234 | break;
|
---|
| 235 | }
|
---|
| 236 | else
|
---|
| 237 | {
|
---|
| 238 | midp = (l+ir)/2;
|
---|
| 239 | tval = x[midp];
|
---|
| 240 | x[midp] = x[l+1];
|
---|
| 241 | x[l+1] = tval;
|
---|
| 242 | if( x[l]>x[ir] )
|
---|
| 243 | {
|
---|
| 244 | tval = x[l];
|
---|
| 245 | x[l] = x[ir];
|
---|
| 246 | x[ir] = tval;
|
---|
| 247 | }
|
---|
| 248 | if( x[l+1]>x[ir] )
|
---|
| 249 | {
|
---|
| 250 | tval = x[l+1];
|
---|
| 251 | x[l+1] = x[ir];
|
---|
| 252 | x[ir] = tval;
|
---|
| 253 | }
|
---|
| 254 | if( x[l]>x[l+1] )
|
---|
| 255 | {
|
---|
| 256 | tval = x[l];
|
---|
| 257 | x[l] = x[l+1];
|
---|
| 258 | x[l+1] = tval;
|
---|
| 259 | }
|
---|
| 260 | i = l+1;
|
---|
| 261 | j = ir;
|
---|
| 262 | a = x[l+1];
|
---|
| 263 | while( true )
|
---|
| 264 | {
|
---|
| 265 | do
|
---|
| 266 | {
|
---|
| 267 | i = i+1;
|
---|
| 268 | }
|
---|
| 269 | while( x[i]<a );
|
---|
| 270 | do
|
---|
| 271 | {
|
---|
| 272 | j = j-1;
|
---|
| 273 | }
|
---|
| 274 | while( x[j]>a );
|
---|
| 275 | if( j<i )
|
---|
| 276 | {
|
---|
| 277 | break;
|
---|
| 278 | }
|
---|
| 279 | tval = x[i];
|
---|
| 280 | x[i] = x[j];
|
---|
| 281 | x[j] = tval;
|
---|
| 282 | }
|
---|
| 283 | x[l+1] = x[j];
|
---|
| 284 | x[j] = a;
|
---|
| 285 | if( j>=k )
|
---|
| 286 | {
|
---|
| 287 | ir = j-1;
|
---|
| 288 | }
|
---|
| 289 | if( j<=k )
|
---|
| 290 | {
|
---|
| 291 | l = i;
|
---|
| 292 | }
|
---|
| 293 | }
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | //
|
---|
| 297 | // If N is odd, return result
|
---|
| 298 | //
|
---|
| 299 | if( n%2==1 )
|
---|
| 300 | {
|
---|
| 301 | median = x[k];
|
---|
| 302 | return;
|
---|
| 303 | }
|
---|
| 304 | a = x[n-1];
|
---|
| 305 | for(i=k+1; i<=n-1; i++)
|
---|
| 306 | {
|
---|
| 307 | if( x[i]<a )
|
---|
| 308 | {
|
---|
| 309 | a = x[i];
|
---|
| 310 | }
|
---|
| 311 | }
|
---|
| 312 | median = 0.5*(x[k]+a);
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 |
|
---|
| 316 | /*************************************************************************
|
---|
| 317 | Percentile calculation.
|
---|
| 318 |
|
---|
| 319 | Input parameters:
|
---|
| 320 | X - sample (array indexes: [0..N-1])
|
---|
| 321 | N - sample size, N>1
|
---|
| 322 | P - percentile (0<=P<=1)
|
---|
| 323 |
|
---|
| 324 | Output parameters:
|
---|
| 325 | V - percentile
|
---|
| 326 |
|
---|
| 327 | -- ALGLIB --
|
---|
| 328 | Copyright 01.03.2008 by Bochkanov Sergey
|
---|
| 329 | *************************************************************************/
|
---|
| 330 | public static void calculatepercentile(double[] x,
|
---|
| 331 | int n,
|
---|
| 332 | double p,
|
---|
| 333 | ref double v)
|
---|
| 334 | {
|
---|
| 335 | int i1 = 0;
|
---|
| 336 | double t = 0;
|
---|
| 337 |
|
---|
| 338 | x = (double[])x.Clone();
|
---|
| 339 |
|
---|
| 340 | System.Diagnostics.Debug.Assert(n>1, "CalculatePercentile: N<=1!");
|
---|
| 341 | System.Diagnostics.Debug.Assert(p>=0 & p<=1, "CalculatePercentile: incorrect P!");
|
---|
| 342 | internalstatheapsort(ref x, n);
|
---|
| 343 | if( p==0 )
|
---|
| 344 | {
|
---|
| 345 | v = x[0];
|
---|
| 346 | return;
|
---|
| 347 | }
|
---|
| 348 | if( p==1 )
|
---|
| 349 | {
|
---|
| 350 | v = x[n-1];
|
---|
| 351 | return;
|
---|
| 352 | }
|
---|
| 353 | t = p*(n-1);
|
---|
| 354 | i1 = (int)Math.Floor(t);
|
---|
| 355 | t = t-(int)Math.Floor(t);
|
---|
| 356 | v = x[i1]*(1-t)+x[i1+1]*t;
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 |
|
---|
| 360 | private static void internalstatheapsort(ref double[] arr,
|
---|
| 361 | int n)
|
---|
| 362 | {
|
---|
| 363 | int i = 0;
|
---|
| 364 | int j = 0;
|
---|
| 365 | int k = 0;
|
---|
| 366 | int t = 0;
|
---|
| 367 | double tmp = 0;
|
---|
| 368 |
|
---|
| 369 | if( n==1 )
|
---|
| 370 | {
|
---|
| 371 | return;
|
---|
| 372 | }
|
---|
| 373 | i = 2;
|
---|
| 374 | do
|
---|
| 375 | {
|
---|
| 376 | t = i;
|
---|
| 377 | while( t!=1 )
|
---|
| 378 | {
|
---|
| 379 | k = t/2;
|
---|
| 380 | if( arr[k-1]>=arr[t-1] )
|
---|
| 381 | {
|
---|
| 382 | t = 1;
|
---|
| 383 | }
|
---|
| 384 | else
|
---|
| 385 | {
|
---|
| 386 | tmp = arr[k-1];
|
---|
| 387 | arr[k-1] = arr[t-1];
|
---|
| 388 | arr[t-1] = tmp;
|
---|
| 389 | t = k;
|
---|
| 390 | }
|
---|
| 391 | }
|
---|
| 392 | i = i+1;
|
---|
| 393 | }
|
---|
| 394 | while( i<=n );
|
---|
| 395 | i = n-1;
|
---|
| 396 | do
|
---|
| 397 | {
|
---|
| 398 | tmp = arr[i];
|
---|
| 399 | arr[i] = arr[0];
|
---|
| 400 | arr[0] = tmp;
|
---|
| 401 | t = 1;
|
---|
| 402 | while( t!=0 )
|
---|
| 403 | {
|
---|
| 404 | k = 2*t;
|
---|
| 405 | if( k>i )
|
---|
| 406 | {
|
---|
| 407 | t = 0;
|
---|
| 408 | }
|
---|
| 409 | else
|
---|
| 410 | {
|
---|
| 411 | if( k<i )
|
---|
| 412 | {
|
---|
| 413 | if( arr[k]>arr[k-1] )
|
---|
| 414 | {
|
---|
| 415 | k = k+1;
|
---|
| 416 | }
|
---|
| 417 | }
|
---|
| 418 | if( arr[t-1]>=arr[k-1] )
|
---|
| 419 | {
|
---|
| 420 | t = 0;
|
---|
| 421 | }
|
---|
| 422 | else
|
---|
| 423 | {
|
---|
| 424 | tmp = arr[k-1];
|
---|
| 425 | arr[k-1] = arr[t-1];
|
---|
| 426 | arr[t-1] = tmp;
|
---|
| 427 | t = k;
|
---|
| 428 | }
|
---|
| 429 | }
|
---|
| 430 | }
|
---|
| 431 | i = i-1;
|
---|
| 432 | }
|
---|
| 433 | while( i>=1 );
|
---|
| 434 | }
|
---|
| 435 | }
|
---|
| 436 | }
|
---|