1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class densesolver
|
---|
26 | {
|
---|
27 | public struct densesolverreport
|
---|
28 | {
|
---|
29 | public double r1;
|
---|
30 | public double rinf;
|
---|
31 | };
|
---|
32 |
|
---|
33 |
|
---|
34 | public struct densesolverlsreport
|
---|
35 | {
|
---|
36 | public double r2;
|
---|
37 | public double[,] cx;
|
---|
38 | public int n;
|
---|
39 | public int k;
|
---|
40 | };
|
---|
41 |
|
---|
42 |
|
---|
43 |
|
---|
44 |
|
---|
45 | /*************************************************************************
|
---|
46 | Dense solver.
|
---|
47 |
|
---|
48 | This subroutine solves a system A*X=B, where A is NxN non-denegerate
|
---|
49 | real matrix, X and B are NxM real matrices.
|
---|
50 |
|
---|
51 | Additional features include:
|
---|
52 | * automatic detection of degenerate cases
|
---|
53 | * iterative improvement
|
---|
54 |
|
---|
55 | INPUT PARAMETERS
|
---|
56 | A - array[0..N-1,0..N-1], system matrix
|
---|
57 | N - size of A
|
---|
58 | B - array[0..N-1,0..M-1], right part
|
---|
59 | M - size of right part
|
---|
60 |
|
---|
61 | OUTPUT PARAMETERS
|
---|
62 | Info - return code:
|
---|
63 | * -3 if A is singular, or VERY close to singular.
|
---|
64 | X is filled by zeros in such cases.
|
---|
65 | * -1 if N<=0 or M<=0 was passed
|
---|
66 | * 1 if task is solved (matrix A may be near singular,
|
---|
67 | check R1/RInf parameters for condition numbers).
|
---|
68 | Rep - solver report, see below for more info
|
---|
69 | X - array[0..N-1,0..M-1], it contains:
|
---|
70 | * solution of A*X=B if A is non-singular (well-conditioned
|
---|
71 | or ill-conditioned, but not very close to singular)
|
---|
72 | * zeros, if A is singular or VERY close to singular
|
---|
73 | (in this case Info=-3).
|
---|
74 |
|
---|
75 | SOLVER REPORT
|
---|
76 |
|
---|
77 | Subroutine sets following fields of the Rep structure:
|
---|
78 | * R1 reciprocal of condition number: 1/cond(A), 1-norm.
|
---|
79 | * RInf reciprocal of condition number: 1/cond(A), inf-norm.
|
---|
80 |
|
---|
81 | SEE ALSO:
|
---|
82 | DenseSolverR() - solves A*x = b, where x and b are Nx1 matrices.
|
---|
83 |
|
---|
84 | -- ALGLIB --
|
---|
85 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
86 | *************************************************************************/
|
---|
87 | public static void rmatrixsolvem(ref double[,] a,
|
---|
88 | int n,
|
---|
89 | ref double[,] b,
|
---|
90 | int m,
|
---|
91 | ref int info,
|
---|
92 | ref densesolverreport rep,
|
---|
93 | ref double[,] x)
|
---|
94 | {
|
---|
95 | int i = 0;
|
---|
96 | int j = 0;
|
---|
97 | int k = 0;
|
---|
98 | int rfs = 0;
|
---|
99 | int nrfs = 0;
|
---|
100 | int[] p = new int[0];
|
---|
101 | double[] xc = new double[0];
|
---|
102 | double[] y = new double[0];
|
---|
103 | double[] bc = new double[0];
|
---|
104 | double[] xa = new double[0];
|
---|
105 | double[] xb = new double[0];
|
---|
106 | double[] tx = new double[0];
|
---|
107 | double[,] da = new double[0,0];
|
---|
108 | double v = 0;
|
---|
109 | double verr = 0;
|
---|
110 | bool smallerr = new bool();
|
---|
111 | bool terminatenexttime = new bool();
|
---|
112 | int i_ = 0;
|
---|
113 |
|
---|
114 |
|
---|
115 | //
|
---|
116 | // prepare: check inputs, allocate space...
|
---|
117 | //
|
---|
118 | if( n<=0 | m<=0 )
|
---|
119 | {
|
---|
120 | info = -1;
|
---|
121 | return;
|
---|
122 | }
|
---|
123 | da = new double[n, n];
|
---|
124 | x = new double[n, m];
|
---|
125 | y = new double[n];
|
---|
126 | xc = new double[n];
|
---|
127 | bc = new double[n];
|
---|
128 | tx = new double[n+1];
|
---|
129 | xa = new double[n+1];
|
---|
130 | xb = new double[n+1];
|
---|
131 |
|
---|
132 | //
|
---|
133 | // factorize matrix, test for exact/near singularity
|
---|
134 | //
|
---|
135 | for(i=0; i<=n-1; i++)
|
---|
136 | {
|
---|
137 | for(i_=0; i_<=n-1;i_++)
|
---|
138 | {
|
---|
139 | da[i,i_] = a[i,i_];
|
---|
140 | }
|
---|
141 | }
|
---|
142 | lu.rmatrixlu(ref da, n, n, ref p);
|
---|
143 | rep.r1 = rcond.rmatrixlurcond1(ref da, n);
|
---|
144 | rep.rinf = rcond.rmatrixlurcondinf(ref da, n);
|
---|
145 | if( (double)(rep.r1)<(double)(10*AP.Math.MachineEpsilon) | (double)(rep.rinf)<(double)(10*AP.Math.MachineEpsilon) )
|
---|
146 | {
|
---|
147 | for(i=0; i<=n-1; i++)
|
---|
148 | {
|
---|
149 | for(j=0; j<=m-1; j++)
|
---|
150 | {
|
---|
151 | x[i,j] = 0;
|
---|
152 | }
|
---|
153 | }
|
---|
154 | rep.r1 = 0;
|
---|
155 | rep.rinf = 0;
|
---|
156 | info = -3;
|
---|
157 | return;
|
---|
158 | }
|
---|
159 | info = 1;
|
---|
160 |
|
---|
161 | //
|
---|
162 | // solve
|
---|
163 | //
|
---|
164 | for(k=0; k<=m-1; k++)
|
---|
165 | {
|
---|
166 |
|
---|
167 | //
|
---|
168 | // First, non-iterative part of solution process:
|
---|
169 | // * pivots
|
---|
170 | // * L*y = b
|
---|
171 | // * U*x = y
|
---|
172 | //
|
---|
173 | for(i_=0; i_<=n-1;i_++)
|
---|
174 | {
|
---|
175 | bc[i_] = b[i_,k];
|
---|
176 | }
|
---|
177 | for(i=0; i<=n-1; i++)
|
---|
178 | {
|
---|
179 | if( p[i]!=i )
|
---|
180 | {
|
---|
181 | v = bc[i];
|
---|
182 | bc[i] = bc[p[i]];
|
---|
183 | bc[p[i]] = v;
|
---|
184 | }
|
---|
185 | }
|
---|
186 | y[0] = bc[0];
|
---|
187 | for(i=1; i<=n-1; i++)
|
---|
188 | {
|
---|
189 | v = 0.0;
|
---|
190 | for(i_=0; i_<=i-1;i_++)
|
---|
191 | {
|
---|
192 | v += da[i,i_]*y[i_];
|
---|
193 | }
|
---|
194 | y[i] = bc[i]-v;
|
---|
195 | }
|
---|
196 | xc[n-1] = y[n-1]/da[n-1,n-1];
|
---|
197 | for(i=n-2; i>=0; i--)
|
---|
198 | {
|
---|
199 | v = 0.0;
|
---|
200 | for(i_=i+1; i_<=n-1;i_++)
|
---|
201 | {
|
---|
202 | v += da[i,i_]*xc[i_];
|
---|
203 | }
|
---|
204 | xc[i] = (y[i]-v)/da[i,i];
|
---|
205 | }
|
---|
206 |
|
---|
207 | //
|
---|
208 | // Iterative improvement of xc:
|
---|
209 | // * calculate r = bc-A*xc using extra-precise dot product
|
---|
210 | // * solve A*y = r
|
---|
211 | // * update x:=x+r
|
---|
212 | //
|
---|
213 | // This cycle is executed until one of two things happens:
|
---|
214 | // 1. maximum number of iterations reached
|
---|
215 | // 2. last iteration decreased error to the lower limit
|
---|
216 | //
|
---|
217 | nrfs = densesolverrfsmax(n, rep.r1, rep.rinf);
|
---|
218 | terminatenexttime = false;
|
---|
219 | for(rfs=0; rfs<=nrfs-1; rfs++)
|
---|
220 | {
|
---|
221 | if( terminatenexttime )
|
---|
222 | {
|
---|
223 | break;
|
---|
224 | }
|
---|
225 |
|
---|
226 | //
|
---|
227 | // generate right part
|
---|
228 | //
|
---|
229 | smallerr = true;
|
---|
230 | for(i=0; i<=n-1; i++)
|
---|
231 | {
|
---|
232 | for(i_=0; i_<=n-1;i_++)
|
---|
233 | {
|
---|
234 | xa[i_] = a[i,i_];
|
---|
235 | }
|
---|
236 | xa[n] = -1;
|
---|
237 | for(i_=0; i_<=n-1;i_++)
|
---|
238 | {
|
---|
239 | xb[i_] = xc[i_];
|
---|
240 | }
|
---|
241 | xb[n] = b[i,k];
|
---|
242 | xblas.xdot(ref xa, ref xb, n+1, ref tx, ref v, ref verr);
|
---|
243 | bc[i] = -v;
|
---|
244 | smallerr = smallerr & (double)(Math.Abs(v))<(double)(4*verr);
|
---|
245 | }
|
---|
246 | if( smallerr )
|
---|
247 | {
|
---|
248 | terminatenexttime = true;
|
---|
249 | }
|
---|
250 |
|
---|
251 | //
|
---|
252 | // solve
|
---|
253 | //
|
---|
254 | for(i=0; i<=n-1; i++)
|
---|
255 | {
|
---|
256 | if( p[i]!=i )
|
---|
257 | {
|
---|
258 | v = bc[i];
|
---|
259 | bc[i] = bc[p[i]];
|
---|
260 | bc[p[i]] = v;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | y[0] = bc[0];
|
---|
264 | for(i=1; i<=n-1; i++)
|
---|
265 | {
|
---|
266 | v = 0.0;
|
---|
267 | for(i_=0; i_<=i-1;i_++)
|
---|
268 | {
|
---|
269 | v += da[i,i_]*y[i_];
|
---|
270 | }
|
---|
271 | y[i] = bc[i]-v;
|
---|
272 | }
|
---|
273 | tx[n-1] = y[n-1]/da[n-1,n-1];
|
---|
274 | for(i=n-2; i>=0; i--)
|
---|
275 | {
|
---|
276 | v = 0.0;
|
---|
277 | for(i_=i+1; i_<=n-1;i_++)
|
---|
278 | {
|
---|
279 | v += da[i,i_]*tx[i_];
|
---|
280 | }
|
---|
281 | tx[i] = (y[i]-v)/da[i,i];
|
---|
282 | }
|
---|
283 |
|
---|
284 | //
|
---|
285 | // update
|
---|
286 | //
|
---|
287 | for(i_=0; i_<=n-1;i_++)
|
---|
288 | {
|
---|
289 | xc[i_] = xc[i_] + tx[i_];
|
---|
290 | }
|
---|
291 | }
|
---|
292 |
|
---|
293 | //
|
---|
294 | // Store xc
|
---|
295 | //
|
---|
296 | for(i_=0; i_<=n-1;i_++)
|
---|
297 | {
|
---|
298 | x[i_,k] = xc[i_];
|
---|
299 | }
|
---|
300 | }
|
---|
301 | }
|
---|
302 |
|
---|
303 |
|
---|
304 | /*************************************************************************
|
---|
305 | Dense solver.
|
---|
306 |
|
---|
307 | This subroutine finds solution of the linear system A*X=B with non-square,
|
---|
308 | possibly degenerate A. System is solved in the least squares sense, and
|
---|
309 | general least squares solution X = X0 + CX*y which minimizes |A*X-B| is
|
---|
310 | returned. If A is non-degenerate, solution in the usual sense is returned
|
---|
311 |
|
---|
312 | Additional features include:
|
---|
313 | * iterative improvement
|
---|
314 |
|
---|
315 | INPUT PARAMETERS
|
---|
316 | A - array[0..NRows-1,0..NCols-1], system matrix
|
---|
317 | NRows - vertical size of A
|
---|
318 | NCols - horizontal size of A
|
---|
319 | B - array[0..NCols-1], right part
|
---|
320 | Threshold- a number in [0,1]. Singular values beyond Threshold are
|
---|
321 | considered zero. Set it to 0.0, if you don't understand
|
---|
322 | what it means, so the solver will choose good value on its
|
---|
323 | own.
|
---|
324 |
|
---|
325 | OUTPUT PARAMETERS
|
---|
326 | Info - return code:
|
---|
327 | * -4 SVD subroutine failed
|
---|
328 | * -1 if NRows<=0 or NCols<=0 or Threshold<0 was passed
|
---|
329 | * 1 if task is solved
|
---|
330 | Rep - solver report, see below for more info
|
---|
331 | X - array[0..N-1,0..M-1], it contains:
|
---|
332 | * solution of A*X=B if A is non-singular (well-conditioned
|
---|
333 | or ill-conditioned, but not very close to singular)
|
---|
334 | * zeros, if A is singular or VERY close to singular
|
---|
335 | (in this case Info=-3).
|
---|
336 |
|
---|
337 | SOLVER REPORT
|
---|
338 |
|
---|
339 | Subroutine sets following fields of the Rep structure:
|
---|
340 | * R2 reciprocal of condition number: 1/cond(A), 2-norm.
|
---|
341 | * N = NCols
|
---|
342 | * K dim(Null(A))
|
---|
343 | * CX array[0..N-1,0..K-1], kernel of A.
|
---|
344 | Columns of CX store such vectors that A*CX[i]=0.
|
---|
345 |
|
---|
346 | -- ALGLIB --
|
---|
347 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
348 | *************************************************************************/
|
---|
349 | public static void rmatrixsolvels(ref double[,] a,
|
---|
350 | int nrows,
|
---|
351 | int ncols,
|
---|
352 | ref double[] b,
|
---|
353 | double threshold,
|
---|
354 | ref int info,
|
---|
355 | ref densesolverlsreport rep,
|
---|
356 | ref double[] x)
|
---|
357 | {
|
---|
358 | double[] sv = new double[0];
|
---|
359 | double[,] u = new double[0,0];
|
---|
360 | double[,] vt = new double[0,0];
|
---|
361 | double[] rp = new double[0];
|
---|
362 | double[] utb = new double[0];
|
---|
363 | double[] sutb = new double[0];
|
---|
364 | double[] tmp = new double[0];
|
---|
365 | double[] ta = new double[0];
|
---|
366 | double[] tx = new double[0];
|
---|
367 | double[] buf = new double[0];
|
---|
368 | double[] w = new double[0];
|
---|
369 | int i = 0;
|
---|
370 | int j = 0;
|
---|
371 | int nsv = 0;
|
---|
372 | int kernelidx = 0;
|
---|
373 | double v = 0;
|
---|
374 | double verr = 0;
|
---|
375 | bool svdfailed = new bool();
|
---|
376 | bool zeroa = new bool();
|
---|
377 | int rfs = 0;
|
---|
378 | int nrfs = 0;
|
---|
379 | bool terminatenexttime = new bool();
|
---|
380 | bool smallerr = new bool();
|
---|
381 | int i_ = 0;
|
---|
382 |
|
---|
383 | if( nrows<=0 | ncols<=0 | (double)(threshold)<(double)(0) )
|
---|
384 | {
|
---|
385 | info = -1;
|
---|
386 | return;
|
---|
387 | }
|
---|
388 | if( (double)(threshold)==(double)(0) )
|
---|
389 | {
|
---|
390 | threshold = 1000*AP.Math.MachineEpsilon;
|
---|
391 | }
|
---|
392 |
|
---|
393 | //
|
---|
394 | // Factorize A first
|
---|
395 | //
|
---|
396 | svdfailed = !svd.rmatrixsvd(a, nrows, ncols, 1, 2, 2, ref sv, ref u, ref vt);
|
---|
397 | zeroa = (double)(sv[0])==(double)(0);
|
---|
398 | if( svdfailed | zeroa )
|
---|
399 | {
|
---|
400 | if( svdfailed )
|
---|
401 | {
|
---|
402 | info = -4;
|
---|
403 | }
|
---|
404 | else
|
---|
405 | {
|
---|
406 | info = 1;
|
---|
407 | }
|
---|
408 | x = new double[ncols];
|
---|
409 | for(i=0; i<=ncols-1; i++)
|
---|
410 | {
|
---|
411 | x[i] = 0;
|
---|
412 | }
|
---|
413 | rep.n = ncols;
|
---|
414 | rep.k = ncols;
|
---|
415 | rep.cx = new double[ncols, ncols];
|
---|
416 | for(i=0; i<=ncols-1; i++)
|
---|
417 | {
|
---|
418 | for(j=0; j<=ncols-1; j++)
|
---|
419 | {
|
---|
420 | if( i==j )
|
---|
421 | {
|
---|
422 | rep.cx[i,j] = 1;
|
---|
423 | }
|
---|
424 | else
|
---|
425 | {
|
---|
426 | rep.cx[i,j] = 0;
|
---|
427 | }
|
---|
428 | }
|
---|
429 | }
|
---|
430 | rep.r2 = 0;
|
---|
431 | return;
|
---|
432 | }
|
---|
433 | nsv = Math.Min(ncols, nrows);
|
---|
434 | if( nsv==ncols )
|
---|
435 | {
|
---|
436 | rep.r2 = sv[nsv-1]/sv[0];
|
---|
437 | }
|
---|
438 | else
|
---|
439 | {
|
---|
440 | rep.r2 = 0;
|
---|
441 | }
|
---|
442 | rep.n = ncols;
|
---|
443 | info = 1;
|
---|
444 |
|
---|
445 | //
|
---|
446 | // Iterative improvement of xc combined with solution:
|
---|
447 | // 1. xc = 0
|
---|
448 | // 2. calculate r = bc-A*xc using extra-precise dot product
|
---|
449 | // 3. solve A*y = r
|
---|
450 | // 4. update x:=x+r
|
---|
451 | // 5. goto 2
|
---|
452 | //
|
---|
453 | // This cycle is executed until one of two things happens:
|
---|
454 | // 1. maximum number of iterations reached
|
---|
455 | // 2. last iteration decreased error to the lower limit
|
---|
456 | //
|
---|
457 | utb = new double[nsv];
|
---|
458 | sutb = new double[nsv];
|
---|
459 | x = new double[ncols];
|
---|
460 | tmp = new double[ncols];
|
---|
461 | ta = new double[ncols+1];
|
---|
462 | tx = new double[ncols+1];
|
---|
463 | buf = new double[ncols+1];
|
---|
464 | for(i=0; i<=ncols-1; i++)
|
---|
465 | {
|
---|
466 | x[i] = 0;
|
---|
467 | }
|
---|
468 | kernelidx = nsv;
|
---|
469 | for(i=0; i<=nsv-1; i++)
|
---|
470 | {
|
---|
471 | if( (double)(sv[i])<=(double)(threshold*sv[0]) )
|
---|
472 | {
|
---|
473 | kernelidx = i;
|
---|
474 | break;
|
---|
475 | }
|
---|
476 | }
|
---|
477 | rep.k = ncols-kernelidx;
|
---|
478 | nrfs = densesolverrfsmaxv2(ncols, rep.r2);
|
---|
479 | terminatenexttime = false;
|
---|
480 | rp = new double[nrows];
|
---|
481 | for(rfs=0; rfs<=nrfs; rfs++)
|
---|
482 | {
|
---|
483 | if( terminatenexttime )
|
---|
484 | {
|
---|
485 | break;
|
---|
486 | }
|
---|
487 |
|
---|
488 | //
|
---|
489 | // calculate right part
|
---|
490 | //
|
---|
491 | if( rfs==0 )
|
---|
492 | {
|
---|
493 | for(i_=0; i_<=nrows-1;i_++)
|
---|
494 | {
|
---|
495 | rp[i_] = b[i_];
|
---|
496 | }
|
---|
497 | }
|
---|
498 | else
|
---|
499 | {
|
---|
500 | smallerr = true;
|
---|
501 | for(i=0; i<=nrows-1; i++)
|
---|
502 | {
|
---|
503 | for(i_=0; i_<=ncols-1;i_++)
|
---|
504 | {
|
---|
505 | ta[i_] = a[i,i_];
|
---|
506 | }
|
---|
507 | ta[ncols] = -1;
|
---|
508 | for(i_=0; i_<=ncols-1;i_++)
|
---|
509 | {
|
---|
510 | tx[i_] = x[i_];
|
---|
511 | }
|
---|
512 | tx[ncols] = b[i];
|
---|
513 | xblas.xdot(ref ta, ref tx, ncols+1, ref buf, ref v, ref verr);
|
---|
514 | rp[i] = -v;
|
---|
515 | smallerr = smallerr & (double)(Math.Abs(v))<(double)(4*verr);
|
---|
516 | }
|
---|
517 | if( smallerr )
|
---|
518 | {
|
---|
519 | terminatenexttime = true;
|
---|
520 | }
|
---|
521 | }
|
---|
522 |
|
---|
523 | //
|
---|
524 | // solve A*dx = rp
|
---|
525 | //
|
---|
526 | for(i=0; i<=ncols-1; i++)
|
---|
527 | {
|
---|
528 | tmp[i] = 0;
|
---|
529 | }
|
---|
530 | for(i=0; i<=nsv-1; i++)
|
---|
531 | {
|
---|
532 | utb[i] = 0;
|
---|
533 | }
|
---|
534 | for(i=0; i<=nrows-1; i++)
|
---|
535 | {
|
---|
536 | v = rp[i];
|
---|
537 | for(i_=0; i_<=nsv-1;i_++)
|
---|
538 | {
|
---|
539 | utb[i_] = utb[i_] + v*u[i,i_];
|
---|
540 | }
|
---|
541 | }
|
---|
542 | for(i=0; i<=nsv-1; i++)
|
---|
543 | {
|
---|
544 | if( i<kernelidx )
|
---|
545 | {
|
---|
546 | sutb[i] = utb[i]/sv[i];
|
---|
547 | }
|
---|
548 | else
|
---|
549 | {
|
---|
550 | sutb[i] = 0;
|
---|
551 | }
|
---|
552 | }
|
---|
553 | for(i=0; i<=nsv-1; i++)
|
---|
554 | {
|
---|
555 | v = sutb[i];
|
---|
556 | for(i_=0; i_<=ncols-1;i_++)
|
---|
557 | {
|
---|
558 | tmp[i_] = tmp[i_] + v*vt[i,i_];
|
---|
559 | }
|
---|
560 | }
|
---|
561 |
|
---|
562 | //
|
---|
563 | // update x: x:=x+dx
|
---|
564 | //
|
---|
565 | for(i_=0; i_<=ncols-1;i_++)
|
---|
566 | {
|
---|
567 | x[i_] = x[i_] + tmp[i_];
|
---|
568 | }
|
---|
569 | }
|
---|
570 |
|
---|
571 | //
|
---|
572 | // fill CX
|
---|
573 | //
|
---|
574 | if( rep.k>0 )
|
---|
575 | {
|
---|
576 | rep.cx = new double[ncols, rep.k];
|
---|
577 | for(i=0; i<=rep.k-1; i++)
|
---|
578 | {
|
---|
579 | for(i_=0; i_<=ncols-1;i_++)
|
---|
580 | {
|
---|
581 | rep.cx[i_,i] = vt[kernelidx+i,i_];
|
---|
582 | }
|
---|
583 | }
|
---|
584 | }
|
---|
585 | }
|
---|
586 |
|
---|
587 |
|
---|
588 | /*************************************************************************
|
---|
589 | Dense solver.
|
---|
590 |
|
---|
591 | Similar to RMatrixSolveM() but solves task with one right part (where b/x
|
---|
592 | are vectors, not matrices).
|
---|
593 |
|
---|
594 | See RMatrixSolveM() description for more information about subroutine
|
---|
595 | parameters.
|
---|
596 |
|
---|
597 | -- ALGLIB --
|
---|
598 | Copyright 24.08.2009 by Bochkanov Sergey
|
---|
599 | *************************************************************************/
|
---|
600 | public static void rmatrixsolve(ref double[,] a,
|
---|
601 | int n,
|
---|
602 | ref double[] b,
|
---|
603 | ref int info,
|
---|
604 | ref densesolverreport rep,
|
---|
605 | ref double[] x)
|
---|
606 | {
|
---|
607 | double[,] bm = new double[0,0];
|
---|
608 | double[,] xm = new double[0,0];
|
---|
609 | int i_ = 0;
|
---|
610 |
|
---|
611 | if( n<=0 )
|
---|
612 | {
|
---|
613 | info = -1;
|
---|
614 | return;
|
---|
615 | }
|
---|
616 | bm = new double[n, 1];
|
---|
617 | for(i_=0; i_<=n-1;i_++)
|
---|
618 | {
|
---|
619 | bm[i_,0] = b[i_];
|
---|
620 | }
|
---|
621 | rmatrixsolvem(ref a, n, ref bm, 1, ref info, ref rep, ref xm);
|
---|
622 | x = new double[n];
|
---|
623 | for(i_=0; i_<=n-1;i_++)
|
---|
624 | {
|
---|
625 | x[i_] = xm[i_,0];
|
---|
626 | }
|
---|
627 | }
|
---|
628 |
|
---|
629 |
|
---|
630 | /*************************************************************************
|
---|
631 | Internal subroutine.
|
---|
632 | Returns maximum count of RFS iterations as function of:
|
---|
633 | 1. machine epsilon
|
---|
634 | 2. task size.
|
---|
635 | 3. condition number
|
---|
636 | *************************************************************************/
|
---|
637 | private static int densesolverrfsmax(int n,
|
---|
638 | double r1,
|
---|
639 | double rinf)
|
---|
640 | {
|
---|
641 | int result = 0;
|
---|
642 |
|
---|
643 | result = 2;
|
---|
644 | return result;
|
---|
645 | }
|
---|
646 |
|
---|
647 |
|
---|
648 | /*************************************************************************
|
---|
649 | Internal subroutine.
|
---|
650 | Returns maximum count of RFS iterations as function of:
|
---|
651 | 1. machine epsilon
|
---|
652 | 2. task size.
|
---|
653 | 3. norm-2 condition number
|
---|
654 | *************************************************************************/
|
---|
655 | private static int densesolverrfsmaxv2(int n,
|
---|
656 | double r2)
|
---|
657 | {
|
---|
658 | int result = 0;
|
---|
659 |
|
---|
660 | result = densesolverrfsmax(n, 0, 0);
|
---|
661 | return result;
|
---|
662 | }
|
---|
663 | }
|
---|
664 | }
|
---|