[2563] | 1 | /*************************************************************************
|
---|
| 2 | This file is a part of ALGLIB project.
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class ctrlinsolve
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Utility subroutine performing the "safe" solution of a system of linear
|
---|
| 29 | equations with triangular complex coefficient matrices.
|
---|
| 30 |
|
---|
| 31 | The feature of an algorithm is that it could not cause an overflow or a
|
---|
| 32 | division by zero regardless of the matrix used as the input. If an overflow
|
---|
| 33 | is possible, an error code is returned.
|
---|
| 34 |
|
---|
| 35 | The algorithm can solve systems of equations with upper/lower triangular
|
---|
| 36 | matrices, with/without unit diagonal, and systems of types A*x=b, A^T*x=b,
|
---|
| 37 | A^H*x=b.
|
---|
| 38 |
|
---|
| 39 | Input parameters:
|
---|
| 40 | A - system matrix.
|
---|
| 41 | Array whose indexes range within [1..N, 1..N].
|
---|
| 42 | N - size of matrix A.
|
---|
| 43 | X - right-hand member of a system.
|
---|
| 44 | Array whose index ranges within [1..N].
|
---|
| 45 | IsUpper - matrix type. If it is True, the system matrix is the upper
|
---|
| 46 | triangular matrix and is located in the corresponding part
|
---|
| 47 | of matrix A.
|
---|
| 48 | Trans - problem type.
|
---|
| 49 | If Trans is:
|
---|
| 50 | * 0, A*x=b
|
---|
| 51 | * 1, A^T*x=b
|
---|
| 52 | * 2, A^H*x=b
|
---|
| 53 | Isunit - matrix type. If it is True, the system matrix has a unit
|
---|
| 54 | diagonal (the elements on the main diagonal are not used
|
---|
| 55 | in the calculation process), otherwise the matrix is
|
---|
| 56 | considered to be a general triangular matrix.
|
---|
| 57 | CNORM - array which is stored in norms of rows and columns of the
|
---|
| 58 | matrix. If the array hasn't been filled up during previous
|
---|
| 59 | executions of an algorithm with the same matrix as the
|
---|
| 60 | input, it will be filled up by the subroutine. If the
|
---|
| 61 | array is filled up, the subroutine uses it without filling
|
---|
| 62 | it up again.
|
---|
| 63 | NORMIN - flag defining the state of column norms array. If True, the
|
---|
| 64 | array is filled up.
|
---|
| 65 | WORKA - working array whose index ranges within [1..N].
|
---|
| 66 | WORKX - working array whose index ranges within [1..N].
|
---|
| 67 |
|
---|
| 68 | Output parameters (if the result is True):
|
---|
| 69 | X - solution. Array whose index ranges within [1..N].
|
---|
| 70 | CNORM - array of column norms whose index ranges within [1..N].
|
---|
| 71 |
|
---|
| 72 | Result:
|
---|
| 73 | True, if the matrix is not singular and the algorithm finished its
|
---|
| 74 | work correctly without causing an overflow.
|
---|
| 75 | False, if the matrix is singular or the algorithm was cancelled
|
---|
| 76 | because of an overflow possibility.
|
---|
| 77 |
|
---|
| 78 | Note:
|
---|
| 79 | The disadvantage of an algorithm is that sometimes it overestimates
|
---|
| 80 | an overflow probability. This is not a problem when solving ordinary
|
---|
| 81 | systems. If the elements of the matrix used as the input are close to
|
---|
| 82 | MaxRealNumber, a false overflow detection is possible, but in practice
|
---|
| 83 | such matrices can rarely be found.
|
---|
| 84 | You can find more reliable subroutines in the LAPACK library
|
---|
| 85 | (xLATRS subroutine ).
|
---|
| 86 |
|
---|
| 87 | -- ALGLIB --
|
---|
| 88 | Copyright 31.03.2006 by Bochkanov Sergey
|
---|
| 89 | *************************************************************************/
|
---|
| 90 | public static bool complexsafesolvetriangular(ref AP.Complex[,] a,
|
---|
| 91 | int n,
|
---|
| 92 | ref AP.Complex[] x,
|
---|
| 93 | bool isupper,
|
---|
| 94 | int trans,
|
---|
| 95 | bool isunit,
|
---|
| 96 | ref AP.Complex[] worka,
|
---|
| 97 | ref AP.Complex[] workx)
|
---|
| 98 | {
|
---|
| 99 | bool result = new bool();
|
---|
| 100 | int i = 0;
|
---|
| 101 | int l = 0;
|
---|
| 102 | int j = 0;
|
---|
| 103 | bool dolswp = new bool();
|
---|
| 104 | double ma = 0;
|
---|
| 105 | double mx = 0;
|
---|
| 106 | double v = 0;
|
---|
| 107 | AP.Complex t = 0;
|
---|
| 108 | AP.Complex r = 0;
|
---|
| 109 | int i_ = 0;
|
---|
| 110 | int i1_ = 0;
|
---|
| 111 |
|
---|
| 112 | System.Diagnostics.Debug.Assert(trans>=0 & trans<=2, "ComplexSafeSolveTriangular: incorrect parameters!");
|
---|
| 113 | result = true;
|
---|
| 114 |
|
---|
| 115 | //
|
---|
| 116 | // Quick return if possible
|
---|
| 117 | //
|
---|
| 118 | if( n<=0 )
|
---|
| 119 | {
|
---|
| 120 | return result;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | //
|
---|
| 124 | // Main cycle
|
---|
| 125 | //
|
---|
| 126 | for(l=1; l<=n; l++)
|
---|
| 127 | {
|
---|
| 128 |
|
---|
| 129 | //
|
---|
| 130 | // Prepare subtask L
|
---|
| 131 | //
|
---|
| 132 | dolswp = false;
|
---|
| 133 | if( trans==0 )
|
---|
| 134 | {
|
---|
| 135 | if( isupper )
|
---|
| 136 | {
|
---|
| 137 | i = n+1-l;
|
---|
| 138 | i1_ = (i) - (1);
|
---|
| 139 | for(i_=1; i_<=l;i_++)
|
---|
| 140 | {
|
---|
| 141 | worka[i_] = a[i,i_+i1_];
|
---|
| 142 | }
|
---|
| 143 | i1_ = (i) - (1);
|
---|
| 144 | for(i_=1; i_<=l;i_++)
|
---|
| 145 | {
|
---|
| 146 | workx[i_] = x[i_+i1_];
|
---|
| 147 | }
|
---|
| 148 | dolswp = true;
|
---|
| 149 | }
|
---|
| 150 | if( !isupper )
|
---|
| 151 | {
|
---|
| 152 | i = l;
|
---|
| 153 | for(i_=1; i_<=l;i_++)
|
---|
| 154 | {
|
---|
| 155 | worka[i_] = a[i,i_];
|
---|
| 156 | }
|
---|
| 157 | for(i_=1; i_<=l;i_++)
|
---|
| 158 | {
|
---|
| 159 | workx[i_] = x[i_];
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | if( trans==1 )
|
---|
| 164 | {
|
---|
| 165 | if( isupper )
|
---|
| 166 | {
|
---|
| 167 | i = l;
|
---|
| 168 | for(i_=1; i_<=l;i_++)
|
---|
| 169 | {
|
---|
| 170 | worka[i_] = a[i_,i];
|
---|
| 171 | }
|
---|
| 172 | for(i_=1; i_<=l;i_++)
|
---|
| 173 | {
|
---|
| 174 | workx[i_] = x[i_];
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 | if( !isupper )
|
---|
| 178 | {
|
---|
| 179 | i = n+1-l;
|
---|
| 180 | i1_ = (i) - (1);
|
---|
| 181 | for(i_=1; i_<=l;i_++)
|
---|
| 182 | {
|
---|
| 183 | worka[i_] = a[i_+i1_,i];
|
---|
| 184 | }
|
---|
| 185 | i1_ = (i) - (1);
|
---|
| 186 | for(i_=1; i_<=l;i_++)
|
---|
| 187 | {
|
---|
| 188 | workx[i_] = x[i_+i1_];
|
---|
| 189 | }
|
---|
| 190 | dolswp = true;
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 | if( trans==2 )
|
---|
| 194 | {
|
---|
| 195 | if( isupper )
|
---|
| 196 | {
|
---|
| 197 | i = l;
|
---|
| 198 | for(i_=1; i_<=l;i_++)
|
---|
| 199 | {
|
---|
| 200 | worka[i_] = AP.Math.Conj(a[i_,i]);
|
---|
| 201 | }
|
---|
| 202 | for(i_=1; i_<=l;i_++)
|
---|
| 203 | {
|
---|
| 204 | workx[i_] = x[i_];
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | if( !isupper )
|
---|
| 208 | {
|
---|
| 209 | i = n+1-l;
|
---|
| 210 | i1_ = (i) - (1);
|
---|
| 211 | for(i_=1; i_<=l;i_++)
|
---|
| 212 | {
|
---|
| 213 | worka[i_] = AP.Math.Conj(a[i_+i1_,i]);
|
---|
| 214 | }
|
---|
| 215 | i1_ = (i) - (1);
|
---|
| 216 | for(i_=1; i_<=l;i_++)
|
---|
| 217 | {
|
---|
| 218 | workx[i_] = x[i_+i1_];
|
---|
| 219 | }
|
---|
| 220 | dolswp = true;
|
---|
| 221 | }
|
---|
| 222 | }
|
---|
| 223 | if( dolswp )
|
---|
| 224 | {
|
---|
| 225 | t = workx[l];
|
---|
| 226 | workx[l] = workx[1];
|
---|
| 227 | workx[1] = t;
|
---|
| 228 | t = worka[l];
|
---|
| 229 | worka[l] = worka[1];
|
---|
| 230 | worka[1] = t;
|
---|
| 231 | }
|
---|
| 232 | if( isunit )
|
---|
| 233 | {
|
---|
| 234 | worka[l] = 1;
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | //
|
---|
| 238 | // Test if workA[L]=0
|
---|
| 239 | //
|
---|
| 240 | if( worka[l]==0 )
|
---|
| 241 | {
|
---|
| 242 | result = false;
|
---|
| 243 | return result;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | //
|
---|
| 247 | // Now we have:
|
---|
| 248 | //
|
---|
| 249 | // workA[1:L]*workX[1:L] = b[I]
|
---|
| 250 | //
|
---|
| 251 | // with known workA[1:L] and workX[1:L-1]
|
---|
| 252 | // and unknown workX[L]
|
---|
| 253 | //
|
---|
| 254 | t = 0;
|
---|
| 255 | if( l>=2 )
|
---|
| 256 | {
|
---|
| 257 | ma = 0;
|
---|
| 258 | for(j=1; j<=l-1; j++)
|
---|
| 259 | {
|
---|
| 260 | ma = Math.Max(ma, AP.Math.AbsComplex(worka[j]));
|
---|
| 261 | }
|
---|
| 262 | mx = 0;
|
---|
| 263 | for(j=1; j<=l-1; j++)
|
---|
| 264 | {
|
---|
| 265 | mx = Math.Max(mx, AP.Math.AbsComplex(workx[j]));
|
---|
| 266 | }
|
---|
| 267 | if( (double)(Math.Max(ma, mx))>(double)(1) )
|
---|
| 268 | {
|
---|
| 269 | v = AP.Math.MaxRealNumber/Math.Max(ma, mx);
|
---|
| 270 | v = v/(l-1);
|
---|
| 271 | if( (double)(v)<(double)(Math.Min(ma, mx)) )
|
---|
| 272 | {
|
---|
| 273 | result = false;
|
---|
| 274 | return result;
|
---|
| 275 | }
|
---|
| 276 | }
|
---|
| 277 | t = 0.0;
|
---|
| 278 | for(i_=1; i_<=l-1;i_++)
|
---|
| 279 | {
|
---|
| 280 | t += worka[i_]*workx[i_];
|
---|
| 281 | }
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | //
|
---|
| 285 | // Now we have:
|
---|
| 286 | //
|
---|
| 287 | // workA[L]*workX[L] + T = b[I]
|
---|
| 288 | //
|
---|
| 289 | if( (double)(Math.Max(AP.Math.AbsComplex(t), AP.Math.AbsComplex(x[i])))>=(double)(0.5*AP.Math.MaxRealNumber) )
|
---|
| 290 | {
|
---|
| 291 | result = false;
|
---|
| 292 | return result;
|
---|
| 293 | }
|
---|
| 294 | r = x[i]-t;
|
---|
| 295 |
|
---|
| 296 | //
|
---|
| 297 | // Now we have:
|
---|
| 298 | //
|
---|
| 299 | // workA[L]*workX[L] = R
|
---|
| 300 | //
|
---|
| 301 | if( r!=0 )
|
---|
| 302 | {
|
---|
| 303 | if( (double)(Math.Log(AP.Math.AbsComplex(r))-Math.Log(AP.Math.AbsComplex(worka[l])))>=(double)(Math.Log(AP.Math.MaxRealNumber)) )
|
---|
| 304 | {
|
---|
| 305 | result = false;
|
---|
| 306 | return result;
|
---|
| 307 | }
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | //
|
---|
| 311 | // X[I]
|
---|
| 312 | //
|
---|
| 313 | x[i] = r/worka[l];
|
---|
| 314 | }
|
---|
| 315 | return result;
|
---|
| 316 | }
|
---|
| 317 | }
|
---|
| 318 | }
|
---|