[2563] | 1 | /*************************************************************************
|
---|
| 2 | This file is a part of ALGLIB project.
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class csolve
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Solving a system of linear equations with a system matrix given by its
|
---|
| 29 | LU decomposition.
|
---|
| 30 |
|
---|
| 31 | The algorithm solves a system of linear equations whose matrix is given by
|
---|
| 32 | its LU decomposition. In case of a singular matrix, the algorithm returns
|
---|
| 33 | False.
|
---|
| 34 |
|
---|
| 35 | The algorithm solves systems with a square matrix only.
|
---|
| 36 |
|
---|
| 37 | Input parameters:
|
---|
| 38 | A - LU decomposition of a system matrix in compact form (the
|
---|
| 39 | result of the RMatrixLU subroutine).
|
---|
| 40 | Pivots - row permutation table (the result of a
|
---|
| 41 | RMatrixLU subroutine).
|
---|
| 42 | B - right side of a system.
|
---|
| 43 | Array whose index ranges within [0..N-1].
|
---|
| 44 | N - size of matrix A.
|
---|
| 45 |
|
---|
| 46 | Output parameters:
|
---|
| 47 | X - solution of a system.
|
---|
| 48 | Array whose index ranges within [0..N-1].
|
---|
| 49 |
|
---|
| 50 | Result:
|
---|
| 51 | True, if the matrix is not singular.
|
---|
| 52 | False, if the matrux is singular. In this case, X doesn't contain a
|
---|
| 53 | solution.
|
---|
| 54 |
|
---|
| 55 | -- ALGLIB --
|
---|
| 56 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
| 57 | *************************************************************************/
|
---|
| 58 | public static bool cmatrixlusolve(ref AP.Complex[,] a,
|
---|
| 59 | ref int[] pivots,
|
---|
| 60 | AP.Complex[] b,
|
---|
| 61 | int n,
|
---|
| 62 | ref AP.Complex[] x)
|
---|
| 63 | {
|
---|
| 64 | bool result = new bool();
|
---|
| 65 | AP.Complex[] y = new AP.Complex[0];
|
---|
| 66 | int i = 0;
|
---|
| 67 | int j = 0;
|
---|
| 68 | AP.Complex v = 0;
|
---|
| 69 | int i_ = 0;
|
---|
| 70 |
|
---|
| 71 | b = (AP.Complex[])b.Clone();
|
---|
| 72 |
|
---|
| 73 | y = new AP.Complex[n-1+1];
|
---|
| 74 | x = new AP.Complex[n-1+1];
|
---|
| 75 | result = true;
|
---|
| 76 | for(i=0; i<=n-1; i++)
|
---|
| 77 | {
|
---|
| 78 | if( a[i,i]==0 )
|
---|
| 79 | {
|
---|
| 80 | result = false;
|
---|
| 81 | return result;
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | //
|
---|
| 86 | // pivots
|
---|
| 87 | //
|
---|
| 88 | for(i=0; i<=n-1; i++)
|
---|
| 89 | {
|
---|
| 90 | if( pivots[i]!=i )
|
---|
| 91 | {
|
---|
| 92 | v = b[i];
|
---|
| 93 | b[i] = b[pivots[i]];
|
---|
| 94 | b[pivots[i]] = v;
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | //
|
---|
| 99 | // Ly = b
|
---|
| 100 | //
|
---|
| 101 | y[0] = b[0];
|
---|
| 102 | for(i=1; i<=n-1; i++)
|
---|
| 103 | {
|
---|
| 104 | v = 0.0;
|
---|
| 105 | for(i_=0; i_<=i-1;i_++)
|
---|
| 106 | {
|
---|
| 107 | v += a[i,i_]*y[i_];
|
---|
| 108 | }
|
---|
| 109 | y[i] = b[i]-v;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | //
|
---|
| 113 | // Ux = y
|
---|
| 114 | //
|
---|
| 115 | x[n-1] = y[n-1]/a[n-1,n-1];
|
---|
| 116 | for(i=n-2; i>=0; i--)
|
---|
| 117 | {
|
---|
| 118 | v = 0.0;
|
---|
| 119 | for(i_=i+1; i_<=n-1;i_++)
|
---|
| 120 | {
|
---|
| 121 | v += a[i,i_]*x[i_];
|
---|
| 122 | }
|
---|
| 123 | x[i] = (y[i]-v)/a[i,i];
|
---|
| 124 | }
|
---|
| 125 | return result;
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 |
|
---|
| 129 | /*************************************************************************
|
---|
| 130 | Solving a system of linear equations.
|
---|
| 131 |
|
---|
| 132 | The algorithm solves a system of linear equations by using the
|
---|
| 133 | LU decomposition. The algorithm solves systems with a square matrix only.
|
---|
| 134 |
|
---|
| 135 | Input parameters:
|
---|
| 136 | A - system matrix.
|
---|
| 137 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 138 | B - right side of a system.
|
---|
| 139 | Array whose indexes range within [0..N-1].
|
---|
| 140 | N - size of matrix A.
|
---|
| 141 |
|
---|
| 142 | Output parameters:
|
---|
| 143 | X - solution of a system.
|
---|
| 144 | Array whose index ranges within [0..N-1].
|
---|
| 145 |
|
---|
| 146 | Result:
|
---|
| 147 | True, if the matrix is not singular.
|
---|
| 148 | False, if the matrix is singular. In this case, X doesn't contain a
|
---|
| 149 | solution.
|
---|
| 150 |
|
---|
| 151 | -- ALGLIB --
|
---|
| 152 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
| 153 | *************************************************************************/
|
---|
| 154 | public static bool cmatrixsolve(AP.Complex[,] a,
|
---|
| 155 | AP.Complex[] b,
|
---|
| 156 | int n,
|
---|
| 157 | ref AP.Complex[] x)
|
---|
| 158 | {
|
---|
| 159 | bool result = new bool();
|
---|
| 160 | int[] pivots = new int[0];
|
---|
| 161 | int i = 0;
|
---|
| 162 |
|
---|
| 163 | a = (AP.Complex[,])a.Clone();
|
---|
| 164 | b = (AP.Complex[])b.Clone();
|
---|
| 165 |
|
---|
| 166 | clu.cmatrixlu(ref a, n, n, ref pivots);
|
---|
| 167 | result = cmatrixlusolve(ref a, ref pivots, b, n, ref x);
|
---|
| 168 | return result;
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 |
|
---|
| 172 | public static bool complexsolvesystemlu(ref AP.Complex[,] a,
|
---|
| 173 | ref int[] pivots,
|
---|
| 174 | AP.Complex[] b,
|
---|
| 175 | int n,
|
---|
| 176 | ref AP.Complex[] x)
|
---|
| 177 | {
|
---|
| 178 | bool result = new bool();
|
---|
| 179 | AP.Complex[] y = new AP.Complex[0];
|
---|
| 180 | int i = 0;
|
---|
| 181 | AP.Complex v = 0;
|
---|
| 182 | int ip1 = 0;
|
---|
| 183 | int im1 = 0;
|
---|
| 184 | int i_ = 0;
|
---|
| 185 |
|
---|
| 186 | b = (AP.Complex[])b.Clone();
|
---|
| 187 |
|
---|
| 188 | y = new AP.Complex[n+1];
|
---|
| 189 | x = new AP.Complex[n+1];
|
---|
| 190 | result = true;
|
---|
| 191 | for(i=1; i<=n; i++)
|
---|
| 192 | {
|
---|
| 193 | if( a[i,i]==0 )
|
---|
| 194 | {
|
---|
| 195 | result = false;
|
---|
| 196 | return result;
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | //
|
---|
| 201 | // pivots
|
---|
| 202 | //
|
---|
| 203 | for(i=1; i<=n; i++)
|
---|
| 204 | {
|
---|
| 205 | if( pivots[i]!=i )
|
---|
| 206 | {
|
---|
| 207 | v = b[i];
|
---|
| 208 | b[i] = b[pivots[i]];
|
---|
| 209 | b[pivots[i]] = v;
|
---|
| 210 | }
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | //
|
---|
| 214 | // Ly = b
|
---|
| 215 | //
|
---|
| 216 | y[1] = b[1];
|
---|
| 217 | for(i=2; i<=n; i++)
|
---|
| 218 | {
|
---|
| 219 | im1 = i-1;
|
---|
| 220 | v = 0.0;
|
---|
| 221 | for(i_=1; i_<=im1;i_++)
|
---|
| 222 | {
|
---|
| 223 | v += a[i,i_]*y[i_];
|
---|
| 224 | }
|
---|
| 225 | y[i] = b[i]-v;
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | //
|
---|
| 229 | // Ux = y
|
---|
| 230 | //
|
---|
| 231 | x[n] = y[n]/a[n,n];
|
---|
| 232 | for(i=n-1; i>=1; i--)
|
---|
| 233 | {
|
---|
| 234 | ip1 = i+1;
|
---|
| 235 | v = 0.0;
|
---|
| 236 | for(i_=ip1; i_<=n;i_++)
|
---|
| 237 | {
|
---|
| 238 | v += a[i,i_]*x[i_];
|
---|
| 239 | }
|
---|
| 240 | x[i] = (y[i]-v)/a[i,i];
|
---|
| 241 | }
|
---|
| 242 | return result;
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 |
|
---|
| 246 | public static bool complexsolvesystem(AP.Complex[,] a,
|
---|
| 247 | AP.Complex[] b,
|
---|
| 248 | int n,
|
---|
| 249 | ref AP.Complex[] x)
|
---|
| 250 | {
|
---|
| 251 | bool result = new bool();
|
---|
| 252 | int[] pivots = new int[0];
|
---|
| 253 |
|
---|
| 254 | a = (AP.Complex[,])a.Clone();
|
---|
| 255 | b = (AP.Complex[])b.Clone();
|
---|
| 256 |
|
---|
| 257 | clu.complexludecomposition(ref a, n, n, ref pivots);
|
---|
| 258 | result = complexsolvesystemlu(ref a, ref pivots, b, n, ref x);
|
---|
| 259 | return result;
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 | }
|
---|