[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class crcond
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | Estimate of a matrix condition number (1-norm)
|
---|
| 35 |
|
---|
| 36 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
| 37 | the algorithm does not return a lower bound of the condition number, but an
|
---|
| 38 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 39 |
|
---|
| 40 | Input parameters:
|
---|
| 41 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 42 | N - size of matrix A.
|
---|
| 43 |
|
---|
| 44 | Result: 1/LowerBound(cond(A))
|
---|
| 45 | *************************************************************************/
|
---|
| 46 | public static double cmatrixrcond1(ref AP.Complex[,] a,
|
---|
| 47 | int n)
|
---|
| 48 | {
|
---|
| 49 | double result = 0;
|
---|
| 50 | int i = 0;
|
---|
| 51 | AP.Complex[,] a1 = new AP.Complex[0,0];
|
---|
| 52 | int i_ = 0;
|
---|
| 53 | int i1_ = 0;
|
---|
| 54 |
|
---|
| 55 | System.Diagnostics.Debug.Assert(n>=1, "CMatrixRCond1: N<1!");
|
---|
| 56 | a1 = new AP.Complex[n+1, n+1];
|
---|
| 57 | for(i=1; i<=n; i++)
|
---|
| 58 | {
|
---|
| 59 | i1_ = (0) - (1);
|
---|
| 60 | for(i_=1; i_<=n;i_++)
|
---|
| 61 | {
|
---|
| 62 | a1[i,i_] = a[i-1,i_+i1_];
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 | result = complexrcond1(a1, n);
|
---|
| 66 | return result;
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 |
|
---|
| 70 | /*************************************************************************
|
---|
| 71 | Estimate of the condition number of a matrix given by its LU decomposition (1-norm)
|
---|
| 72 |
|
---|
| 73 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
| 74 | the algorithm does not return a lower bound of the condition number, but an
|
---|
| 75 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 76 |
|
---|
| 77 | Input parameters:
|
---|
| 78 | LUDcmp - LU decomposition of a matrix in compact form. Output of
|
---|
| 79 | the CMatrixLU subroutine.
|
---|
| 80 | N - size of matrix A.
|
---|
| 81 |
|
---|
| 82 | Result: 1/LowerBound(cond(A))
|
---|
| 83 | *************************************************************************/
|
---|
| 84 | public static double cmatrixlurcond1(ref AP.Complex[,] ludcmp,
|
---|
| 85 | int n)
|
---|
| 86 | {
|
---|
| 87 | double result = 0;
|
---|
| 88 | int i = 0;
|
---|
| 89 | AP.Complex[,] a1 = new AP.Complex[0,0];
|
---|
| 90 | int i_ = 0;
|
---|
| 91 | int i1_ = 0;
|
---|
| 92 |
|
---|
| 93 | System.Diagnostics.Debug.Assert(n>=1, "CMatrixLURCond1: N<1!");
|
---|
| 94 | a1 = new AP.Complex[n+1, n+1];
|
---|
| 95 | for(i=1; i<=n; i++)
|
---|
| 96 | {
|
---|
| 97 | i1_ = (0) - (1);
|
---|
| 98 | for(i_=1; i_<=n;i_++)
|
---|
| 99 | {
|
---|
| 100 | a1[i,i_] = ludcmp[i-1,i_+i1_];
|
---|
| 101 | }
|
---|
| 102 | }
|
---|
| 103 | result = complexrcond1lu(ref a1, n);
|
---|
| 104 | return result;
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 |
|
---|
| 108 | /*************************************************************************
|
---|
| 109 | Estimate of a matrix condition number (infinity-norm).
|
---|
| 110 |
|
---|
| 111 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
| 112 | the algorithm does not return a lower bound of the condition number, but an
|
---|
| 113 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 114 |
|
---|
| 115 | Input parameters:
|
---|
| 116 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 117 | N - size of matrix A.
|
---|
| 118 |
|
---|
| 119 | Result: 1/LowerBound(cond(A))
|
---|
| 120 | *************************************************************************/
|
---|
| 121 | public static double cmatrixrcondinf(ref AP.Complex[,] a,
|
---|
| 122 | int n)
|
---|
| 123 | {
|
---|
| 124 | double result = 0;
|
---|
| 125 | int i = 0;
|
---|
| 126 | AP.Complex[,] a1 = new AP.Complex[0,0];
|
---|
| 127 | int i_ = 0;
|
---|
| 128 | int i1_ = 0;
|
---|
| 129 |
|
---|
| 130 | System.Diagnostics.Debug.Assert(n>=1, "CMatrixRCondInf: N<1!");
|
---|
| 131 | a1 = new AP.Complex[n+1, n+1];
|
---|
| 132 | for(i=1; i<=n; i++)
|
---|
| 133 | {
|
---|
| 134 | i1_ = (0) - (1);
|
---|
| 135 | for(i_=1; i_<=n;i_++)
|
---|
| 136 | {
|
---|
| 137 | a1[i,i_] = a[i-1,i_+i1_];
|
---|
| 138 | }
|
---|
| 139 | }
|
---|
| 140 | result = complexrcondinf(a1, n);
|
---|
| 141 | return result;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 |
|
---|
| 145 | /*************************************************************************
|
---|
| 146 | Estimate of the condition number of a matrix given by its LU decomposition
|
---|
| 147 | (infinity norm).
|
---|
| 148 |
|
---|
| 149 | The algorithm calculates a lower bound of the condition number. In this case,
|
---|
| 150 | the algorithm does not return a lower bound of the condition number, but an
|
---|
| 151 | inverse number (to avoid an overflow in case of a singular matrix).
|
---|
| 152 |
|
---|
| 153 | Input parameters:
|
---|
| 154 | LUDcmp - LU decomposition of a matrix in compact form. Output of
|
---|
| 155 | the CMatrixLU subroutine.
|
---|
| 156 | N - size of matrix A.
|
---|
| 157 |
|
---|
| 158 | Result: 1/LowerBound(cond(A))
|
---|
| 159 | *************************************************************************/
|
---|
| 160 | public static double cmatrixlurcondinf(ref AP.Complex[,] ludcmp,
|
---|
| 161 | int n)
|
---|
| 162 | {
|
---|
| 163 | double result = 0;
|
---|
| 164 | int i = 0;
|
---|
| 165 | AP.Complex[,] a1 = new AP.Complex[0,0];
|
---|
| 166 | int i_ = 0;
|
---|
| 167 | int i1_ = 0;
|
---|
| 168 |
|
---|
| 169 | System.Diagnostics.Debug.Assert(n>=1, "CMatrixLURCondInf: N<1!");
|
---|
| 170 | a1 = new AP.Complex[n+1, n+1];
|
---|
| 171 | for(i=1; i<=n; i++)
|
---|
| 172 | {
|
---|
| 173 | i1_ = (0) - (1);
|
---|
| 174 | for(i_=1; i_<=n;i_++)
|
---|
| 175 | {
|
---|
| 176 | a1[i,i_] = ludcmp[i-1,i_+i1_];
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | result = complexrcondinflu(ref a1, n);
|
---|
| 180 | return result;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 |
|
---|
| 184 | public static double complexrcond1(AP.Complex[,] a,
|
---|
| 185 | int n)
|
---|
| 186 | {
|
---|
| 187 | double result = 0;
|
---|
| 188 | int i = 0;
|
---|
| 189 | int j = 0;
|
---|
| 190 | double v = 0;
|
---|
| 191 | double nrm = 0;
|
---|
| 192 | int[] pivots = new int[0];
|
---|
| 193 |
|
---|
| 194 | a = (AP.Complex[,])a.Clone();
|
---|
| 195 |
|
---|
| 196 | nrm = 0;
|
---|
| 197 | for(j=1; j<=n; j++)
|
---|
| 198 | {
|
---|
| 199 | v = 0;
|
---|
| 200 | for(i=1; i<=n; i++)
|
---|
| 201 | {
|
---|
| 202 | v = v+AP.Math.AbsComplex(a[i,j]);
|
---|
| 203 | }
|
---|
| 204 | nrm = Math.Max(nrm, v);
|
---|
| 205 | }
|
---|
| 206 | clu.complexludecomposition(ref a, n, n, ref pivots);
|
---|
| 207 | internalestimatecomplexrcondlu(ref a, n, true, true, nrm, ref v);
|
---|
| 208 | result = v;
|
---|
| 209 | return result;
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 |
|
---|
| 213 | public static double complexrcond1lu(ref AP.Complex[,] lu,
|
---|
| 214 | int n)
|
---|
| 215 | {
|
---|
| 216 | double result = 0;
|
---|
| 217 | double v = 0;
|
---|
| 218 |
|
---|
| 219 | internalestimatecomplexrcondlu(ref lu, n, true, false, 0, ref v);
|
---|
| 220 | result = v;
|
---|
| 221 | return result;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 |
|
---|
| 225 | public static double complexrcondinf(AP.Complex[,] a,
|
---|
| 226 | int n)
|
---|
| 227 | {
|
---|
| 228 | double result = 0;
|
---|
| 229 | int i = 0;
|
---|
| 230 | int j = 0;
|
---|
| 231 | double v = 0;
|
---|
| 232 | double nrm = 0;
|
---|
| 233 | int[] pivots = new int[0];
|
---|
| 234 |
|
---|
| 235 | a = (AP.Complex[,])a.Clone();
|
---|
| 236 |
|
---|
| 237 | nrm = 0;
|
---|
| 238 | for(i=1; i<=n; i++)
|
---|
| 239 | {
|
---|
| 240 | v = 0;
|
---|
| 241 | for(j=1; j<=n; j++)
|
---|
| 242 | {
|
---|
| 243 | v = v+AP.Math.AbsComplex(a[i,j]);
|
---|
| 244 | }
|
---|
| 245 | nrm = Math.Max(nrm, v);
|
---|
| 246 | }
|
---|
| 247 | clu.complexludecomposition(ref a, n, n, ref pivots);
|
---|
| 248 | internalestimatecomplexrcondlu(ref a, n, false, true, nrm, ref v);
|
---|
| 249 | result = v;
|
---|
| 250 | return result;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 |
|
---|
| 254 | public static double complexrcondinflu(ref AP.Complex[,] lu,
|
---|
| 255 | int n)
|
---|
| 256 | {
|
---|
| 257 | double result = 0;
|
---|
| 258 | double v = 0;
|
---|
| 259 |
|
---|
| 260 | internalestimatecomplexrcondlu(ref lu, n, false, false, 0, ref v);
|
---|
| 261 | result = v;
|
---|
| 262 | return result;
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 |
|
---|
| 266 | public static void internalestimatecomplexrcondlu(ref AP.Complex[,] lu,
|
---|
| 267 | int n,
|
---|
| 268 | bool onenorm,
|
---|
| 269 | bool isanormprovided,
|
---|
| 270 | double anorm,
|
---|
| 271 | ref double rcond)
|
---|
| 272 | {
|
---|
| 273 | AP.Complex[] cwork1 = new AP.Complex[0];
|
---|
| 274 | AP.Complex[] cwork2 = new AP.Complex[0];
|
---|
| 275 | AP.Complex[] cwork3 = new AP.Complex[0];
|
---|
| 276 | AP.Complex[] cwork4 = new AP.Complex[0];
|
---|
| 277 | int[] isave = new int[0];
|
---|
| 278 | double[] rsave = new double[0];
|
---|
| 279 | int kase = 0;
|
---|
| 280 | int kase1 = 0;
|
---|
| 281 | double ainvnm = 0;
|
---|
| 282 | double smlnum = 0;
|
---|
| 283 | bool cw = new bool();
|
---|
| 284 | AP.Complex v = 0;
|
---|
| 285 | int i = 0;
|
---|
| 286 | int i_ = 0;
|
---|
| 287 |
|
---|
| 288 | if( n<=0 )
|
---|
| 289 | {
|
---|
| 290 | return;
|
---|
| 291 | }
|
---|
| 292 | cwork1 = new AP.Complex[n+1];
|
---|
| 293 | cwork2 = new AP.Complex[n+1];
|
---|
| 294 | cwork3 = new AP.Complex[n+1];
|
---|
| 295 | cwork4 = new AP.Complex[n+1];
|
---|
| 296 | isave = new int[4+1];
|
---|
| 297 | rsave = new double[3+1];
|
---|
| 298 | rcond = 0;
|
---|
| 299 | if( n==0 )
|
---|
| 300 | {
|
---|
| 301 | rcond = 1;
|
---|
| 302 | return;
|
---|
| 303 | }
|
---|
| 304 | smlnum = AP.Math.MinRealNumber;
|
---|
| 305 |
|
---|
| 306 | //
|
---|
| 307 | // Estimate the norm of inv(A).
|
---|
| 308 | //
|
---|
| 309 | if( !isanormprovided )
|
---|
| 310 | {
|
---|
| 311 | anorm = 0;
|
---|
| 312 | if( onenorm )
|
---|
| 313 | {
|
---|
| 314 | kase1 = 1;
|
---|
| 315 | }
|
---|
| 316 | else
|
---|
| 317 | {
|
---|
| 318 | kase1 = 2;
|
---|
| 319 | }
|
---|
| 320 | kase = 0;
|
---|
| 321 | do
|
---|
| 322 | {
|
---|
| 323 | internalcomplexrcondestimatenorm(n, ref cwork4, ref cwork1, ref anorm, ref kase, ref isave, ref rsave);
|
---|
| 324 | if( kase!=0 )
|
---|
| 325 | {
|
---|
| 326 | if( kase==kase1 )
|
---|
| 327 | {
|
---|
| 328 |
|
---|
| 329 | //
|
---|
| 330 | // Multiply by U
|
---|
| 331 | //
|
---|
| 332 | for(i=1; i<=n; i++)
|
---|
| 333 | {
|
---|
| 334 | v = 0.0;
|
---|
| 335 | for(i_=i; i_<=n;i_++)
|
---|
| 336 | {
|
---|
| 337 | v += lu[i,i_]*cwork1[i_];
|
---|
| 338 | }
|
---|
| 339 | cwork1[i] = v;
|
---|
| 340 | }
|
---|
| 341 |
|
---|
| 342 | //
|
---|
| 343 | // Multiply by L
|
---|
| 344 | //
|
---|
| 345 | for(i=n; i>=1; i--)
|
---|
| 346 | {
|
---|
| 347 | v = 0;
|
---|
| 348 | if( i>1 )
|
---|
| 349 | {
|
---|
| 350 | v = 0.0;
|
---|
| 351 | for(i_=1; i_<=i-1;i_++)
|
---|
| 352 | {
|
---|
| 353 | v += lu[i,i_]*cwork1[i_];
|
---|
| 354 | }
|
---|
| 355 | }
|
---|
| 356 | cwork1[i] = v+cwork1[i];
|
---|
| 357 | }
|
---|
| 358 | }
|
---|
| 359 | else
|
---|
| 360 | {
|
---|
| 361 |
|
---|
| 362 | //
|
---|
| 363 | // Multiply by L'
|
---|
| 364 | //
|
---|
| 365 | for(i=1; i<=n; i++)
|
---|
| 366 | {
|
---|
| 367 | cwork2[i] = 0;
|
---|
| 368 | }
|
---|
| 369 | for(i=1; i<=n; i++)
|
---|
| 370 | {
|
---|
| 371 | v = cwork1[i];
|
---|
| 372 | if( i>1 )
|
---|
| 373 | {
|
---|
| 374 | for(i_=1; i_<=i-1;i_++)
|
---|
| 375 | {
|
---|
| 376 | cwork2[i_] = cwork2[i_] + v*AP.Math.Conj(lu[i,i_]);
|
---|
| 377 | }
|
---|
| 378 | }
|
---|
| 379 | cwork2[i] = cwork2[i]+v;
|
---|
| 380 | }
|
---|
| 381 |
|
---|
| 382 | //
|
---|
| 383 | // Multiply by U'
|
---|
| 384 | //
|
---|
| 385 | for(i=1; i<=n; i++)
|
---|
| 386 | {
|
---|
| 387 | cwork1[i] = 0;
|
---|
| 388 | }
|
---|
| 389 | for(i=1; i<=n; i++)
|
---|
| 390 | {
|
---|
| 391 | v = cwork2[i];
|
---|
| 392 | for(i_=i; i_<=n;i_++)
|
---|
| 393 | {
|
---|
| 394 | cwork1[i_] = cwork1[i_] + v*AP.Math.Conj(lu[i,i_]);
|
---|
| 395 | }
|
---|
| 396 | }
|
---|
| 397 | }
|
---|
| 398 | }
|
---|
| 399 | }
|
---|
| 400 | while( kase!=0 );
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | //
|
---|
| 404 | // Quick return if possible
|
---|
| 405 | //
|
---|
| 406 | if( (double)(anorm)==(double)(0) )
|
---|
| 407 | {
|
---|
| 408 | return;
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | //
|
---|
| 412 | // Estimate the norm of inv(A).
|
---|
| 413 | //
|
---|
| 414 | ainvnm = 0;
|
---|
| 415 | if( onenorm )
|
---|
| 416 | {
|
---|
| 417 | kase1 = 1;
|
---|
| 418 | }
|
---|
| 419 | else
|
---|
| 420 | {
|
---|
| 421 | kase1 = 2;
|
---|
| 422 | }
|
---|
| 423 | kase = 0;
|
---|
| 424 | do
|
---|
| 425 | {
|
---|
| 426 | internalcomplexrcondestimatenorm(n, ref cwork4, ref cwork1, ref ainvnm, ref kase, ref isave, ref rsave);
|
---|
| 427 | if( kase!=0 )
|
---|
| 428 | {
|
---|
| 429 | if( kase==kase1 )
|
---|
| 430 | {
|
---|
| 431 |
|
---|
| 432 | //
|
---|
| 433 | // Multiply by inv(L).
|
---|
| 434 | //
|
---|
| 435 | cw = ctrlinsolve.complexsafesolvetriangular(ref lu, n, ref cwork1, false, 0, true, ref cwork2, ref cwork3);
|
---|
| 436 | if( !cw )
|
---|
| 437 | {
|
---|
| 438 | rcond = 0;
|
---|
| 439 | return;
|
---|
| 440 | }
|
---|
| 441 |
|
---|
| 442 | //
|
---|
| 443 | // Multiply by inv(U).
|
---|
| 444 | //
|
---|
| 445 | cw = ctrlinsolve.complexsafesolvetriangular(ref lu, n, ref cwork1, true, 0, false, ref cwork2, ref cwork3);
|
---|
| 446 | if( !cw )
|
---|
| 447 | {
|
---|
| 448 | rcond = 0;
|
---|
| 449 | return;
|
---|
| 450 | }
|
---|
| 451 | }
|
---|
| 452 | else
|
---|
| 453 | {
|
---|
| 454 |
|
---|
| 455 | //
|
---|
| 456 | // Multiply by inv(U').
|
---|
| 457 | //
|
---|
| 458 | cw = ctrlinsolve.complexsafesolvetriangular(ref lu, n, ref cwork1, true, 2, false, ref cwork2, ref cwork3);
|
---|
| 459 | if( !cw )
|
---|
| 460 | {
|
---|
| 461 | rcond = 0;
|
---|
| 462 | return;
|
---|
| 463 | }
|
---|
| 464 |
|
---|
| 465 | //
|
---|
| 466 | // Multiply by inv(L').
|
---|
| 467 | //
|
---|
| 468 | cw = ctrlinsolve.complexsafesolvetriangular(ref lu, n, ref cwork1, false, 2, true, ref cwork2, ref cwork3);
|
---|
| 469 | if( !cw )
|
---|
| 470 | {
|
---|
| 471 | rcond = 0;
|
---|
| 472 | return;
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 | while( kase!=0 );
|
---|
| 478 |
|
---|
| 479 | //
|
---|
| 480 | // Compute the estimate of the reciprocal condition number.
|
---|
| 481 | //
|
---|
| 482 | if( (double)(ainvnm)!=(double)(0) )
|
---|
| 483 | {
|
---|
| 484 | rcond = 1/ainvnm;
|
---|
| 485 | rcond = rcond/anorm;
|
---|
| 486 | }
|
---|
| 487 | }
|
---|
| 488 |
|
---|
| 489 |
|
---|
| 490 | private static void internalcomplexrcondestimatenorm(int n,
|
---|
| 491 | ref AP.Complex[] v,
|
---|
| 492 | ref AP.Complex[] x,
|
---|
| 493 | ref double est,
|
---|
| 494 | ref int kase,
|
---|
| 495 | ref int[] isave,
|
---|
| 496 | ref double[] rsave)
|
---|
| 497 | {
|
---|
| 498 | int itmax = 0;
|
---|
| 499 | int i = 0;
|
---|
| 500 | int iter = 0;
|
---|
| 501 | int j = 0;
|
---|
| 502 | int jlast = 0;
|
---|
| 503 | int jump = 0;
|
---|
| 504 | double absxi = 0;
|
---|
| 505 | double altsgn = 0;
|
---|
| 506 | double estold = 0;
|
---|
| 507 | double safmin = 0;
|
---|
| 508 | double temp = 0;
|
---|
| 509 | int i_ = 0;
|
---|
| 510 |
|
---|
| 511 |
|
---|
| 512 | //
|
---|
| 513 | //Executable Statements ..
|
---|
| 514 | //
|
---|
| 515 | itmax = 5;
|
---|
| 516 | safmin = AP.Math.MinRealNumber;
|
---|
| 517 | if( kase==0 )
|
---|
| 518 | {
|
---|
| 519 | for(i=1; i<=n; i++)
|
---|
| 520 | {
|
---|
| 521 | x[i] = (double)(1)/(double)(n);
|
---|
| 522 | }
|
---|
| 523 | kase = 1;
|
---|
| 524 | jump = 1;
|
---|
| 525 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 526 | return;
|
---|
| 527 | }
|
---|
| 528 | internalcomplexrcondloadall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 529 |
|
---|
| 530 | //
|
---|
| 531 | // ENTRY (JUMP = 1)
|
---|
| 532 | // FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
|
---|
| 533 | //
|
---|
| 534 | if( jump==1 )
|
---|
| 535 | {
|
---|
| 536 | if( n==1 )
|
---|
| 537 | {
|
---|
| 538 | v[1] = x[1];
|
---|
| 539 | est = AP.Math.AbsComplex(v[1]);
|
---|
| 540 | kase = 0;
|
---|
| 541 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 542 | return;
|
---|
| 543 | }
|
---|
| 544 | est = internalcomplexrcondscsum1(ref x, n);
|
---|
| 545 | for(i=1; i<=n; i++)
|
---|
| 546 | {
|
---|
| 547 | absxi = AP.Math.AbsComplex(x[i]);
|
---|
| 548 | if( (double)(absxi)>(double)(safmin) )
|
---|
| 549 | {
|
---|
| 550 | x[i] = x[i]/absxi;
|
---|
| 551 | }
|
---|
| 552 | else
|
---|
| 553 | {
|
---|
| 554 | x[i] = 1;
|
---|
| 555 | }
|
---|
| 556 | }
|
---|
| 557 | kase = 2;
|
---|
| 558 | jump = 2;
|
---|
| 559 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 560 | return;
|
---|
| 561 | }
|
---|
| 562 |
|
---|
| 563 | //
|
---|
| 564 | // ENTRY (JUMP = 2)
|
---|
| 565 | // FIRST ITERATION. X HAS BEEN OVERWRITTEN BY CTRANS(A)*X.
|
---|
| 566 | //
|
---|
| 567 | if( jump==2 )
|
---|
| 568 | {
|
---|
| 569 | j = internalcomplexrcondicmax1(ref x, n);
|
---|
| 570 | iter = 2;
|
---|
| 571 |
|
---|
| 572 | //
|
---|
| 573 | // MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
|
---|
| 574 | //
|
---|
| 575 | for(i=1; i<=n; i++)
|
---|
| 576 | {
|
---|
| 577 | x[i] = 0;
|
---|
| 578 | }
|
---|
| 579 | x[j] = 1;
|
---|
| 580 | kase = 1;
|
---|
| 581 | jump = 3;
|
---|
| 582 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 583 | return;
|
---|
| 584 | }
|
---|
| 585 |
|
---|
| 586 | //
|
---|
| 587 | // ENTRY (JUMP = 3)
|
---|
| 588 | // X HAS BEEN OVERWRITTEN BY A*X.
|
---|
| 589 | //
|
---|
| 590 | if( jump==3 )
|
---|
| 591 | {
|
---|
| 592 | for(i_=1; i_<=n;i_++)
|
---|
| 593 | {
|
---|
| 594 | v[i_] = x[i_];
|
---|
| 595 | }
|
---|
| 596 | estold = est;
|
---|
| 597 | est = internalcomplexrcondscsum1(ref v, n);
|
---|
| 598 |
|
---|
| 599 | //
|
---|
| 600 | // TEST FOR CYCLING.
|
---|
| 601 | //
|
---|
| 602 | if( (double)(est)<=(double)(estold) )
|
---|
| 603 | {
|
---|
| 604 |
|
---|
| 605 | //
|
---|
| 606 | // ITERATION COMPLETE. FINAL STAGE.
|
---|
| 607 | //
|
---|
| 608 | altsgn = 1;
|
---|
| 609 | for(i=1; i<=n; i++)
|
---|
| 610 | {
|
---|
| 611 | x[i] = altsgn*(1+((double)(i-1))/((double)(n-1)));
|
---|
| 612 | altsgn = -altsgn;
|
---|
| 613 | }
|
---|
| 614 | kase = 1;
|
---|
| 615 | jump = 5;
|
---|
| 616 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 617 | return;
|
---|
| 618 | }
|
---|
| 619 | for(i=1; i<=n; i++)
|
---|
| 620 | {
|
---|
| 621 | absxi = AP.Math.AbsComplex(x[i]);
|
---|
| 622 | if( (double)(absxi)>(double)(safmin) )
|
---|
| 623 | {
|
---|
| 624 | x[i] = x[i]/absxi;
|
---|
| 625 | }
|
---|
| 626 | else
|
---|
| 627 | {
|
---|
| 628 | x[i] = 1;
|
---|
| 629 | }
|
---|
| 630 | }
|
---|
| 631 | kase = 2;
|
---|
| 632 | jump = 4;
|
---|
| 633 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 634 | return;
|
---|
| 635 | }
|
---|
| 636 |
|
---|
| 637 | //
|
---|
| 638 | // ENTRY (JUMP = 4)
|
---|
| 639 | // X HAS BEEN OVERWRITTEN BY CTRANS(A)*X.
|
---|
| 640 | //
|
---|
| 641 | if( jump==4 )
|
---|
| 642 | {
|
---|
| 643 | jlast = j;
|
---|
| 644 | j = internalcomplexrcondicmax1(ref x, n);
|
---|
| 645 | if( (double)(AP.Math.AbsComplex(x[jlast]))!=(double)(AP.Math.AbsComplex(x[j])) & iter<itmax )
|
---|
| 646 | {
|
---|
| 647 | iter = iter+1;
|
---|
| 648 |
|
---|
| 649 | //
|
---|
| 650 | // MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
|
---|
| 651 | //
|
---|
| 652 | for(i=1; i<=n; i++)
|
---|
| 653 | {
|
---|
| 654 | x[i] = 0;
|
---|
| 655 | }
|
---|
| 656 | x[j] = 1;
|
---|
| 657 | kase = 1;
|
---|
| 658 | jump = 3;
|
---|
| 659 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 660 | return;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
| 663 | //
|
---|
| 664 | // ITERATION COMPLETE. FINAL STAGE.
|
---|
| 665 | //
|
---|
| 666 | altsgn = 1;
|
---|
| 667 | for(i=1; i<=n; i++)
|
---|
| 668 | {
|
---|
| 669 | x[i] = altsgn*(1+((double)(i-1))/((double)(n-1)));
|
---|
| 670 | altsgn = -altsgn;
|
---|
| 671 | }
|
---|
| 672 | kase = 1;
|
---|
| 673 | jump = 5;
|
---|
| 674 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 675 | return;
|
---|
| 676 | }
|
---|
| 677 |
|
---|
| 678 | //
|
---|
| 679 | // ENTRY (JUMP = 5)
|
---|
| 680 | // X HAS BEEN OVERWRITTEN BY A*X.
|
---|
| 681 | //
|
---|
| 682 | if( jump==5 )
|
---|
| 683 | {
|
---|
| 684 | temp = 2*(internalcomplexrcondscsum1(ref x, n)/(3*n));
|
---|
| 685 | if( (double)(temp)>(double)(est) )
|
---|
| 686 | {
|
---|
| 687 | for(i_=1; i_<=n;i_++)
|
---|
| 688 | {
|
---|
| 689 | v[i_] = x[i_];
|
---|
| 690 | }
|
---|
| 691 | est = temp;
|
---|
| 692 | }
|
---|
| 693 | kase = 0;
|
---|
| 694 | internalcomplexrcondsaveall(ref isave, ref rsave, ref i, ref iter, ref j, ref jlast, ref jump, ref absxi, ref altsgn, ref estold, ref temp);
|
---|
| 695 | return;
|
---|
| 696 | }
|
---|
| 697 | }
|
---|
| 698 |
|
---|
| 699 |
|
---|
| 700 | private static double internalcomplexrcondscsum1(ref AP.Complex[] x,
|
---|
| 701 | int n)
|
---|
| 702 | {
|
---|
| 703 | double result = 0;
|
---|
| 704 | int i = 0;
|
---|
| 705 |
|
---|
| 706 | result = 0;
|
---|
| 707 | for(i=1; i<=n; i++)
|
---|
| 708 | {
|
---|
| 709 | result = result+AP.Math.AbsComplex(x[i]);
|
---|
| 710 | }
|
---|
| 711 | return result;
|
---|
| 712 | }
|
---|
| 713 |
|
---|
| 714 |
|
---|
| 715 | private static int internalcomplexrcondicmax1(ref AP.Complex[] x,
|
---|
| 716 | int n)
|
---|
| 717 | {
|
---|
| 718 | int result = 0;
|
---|
| 719 | int i = 0;
|
---|
| 720 | double m = 0;
|
---|
| 721 |
|
---|
| 722 | result = 1;
|
---|
| 723 | m = AP.Math.AbsComplex(x[1]);
|
---|
| 724 | for(i=2; i<=n; i++)
|
---|
| 725 | {
|
---|
| 726 | if( (double)(AP.Math.AbsComplex(x[i]))>(double)(m) )
|
---|
| 727 | {
|
---|
| 728 | result = i;
|
---|
| 729 | m = AP.Math.AbsComplex(x[i]);
|
---|
| 730 | }
|
---|
| 731 | }
|
---|
| 732 | return result;
|
---|
| 733 | }
|
---|
| 734 |
|
---|
| 735 |
|
---|
| 736 | private static void internalcomplexrcondsaveall(ref int[] isave,
|
---|
| 737 | ref double[] rsave,
|
---|
| 738 | ref int i,
|
---|
| 739 | ref int iter,
|
---|
| 740 | ref int j,
|
---|
| 741 | ref int jlast,
|
---|
| 742 | ref int jump,
|
---|
| 743 | ref double absxi,
|
---|
| 744 | ref double altsgn,
|
---|
| 745 | ref double estold,
|
---|
| 746 | ref double temp)
|
---|
| 747 | {
|
---|
| 748 | isave[0] = i;
|
---|
| 749 | isave[1] = iter;
|
---|
| 750 | isave[2] = j;
|
---|
| 751 | isave[3] = jlast;
|
---|
| 752 | isave[4] = jump;
|
---|
| 753 | rsave[0] = absxi;
|
---|
| 754 | rsave[1] = altsgn;
|
---|
| 755 | rsave[2] = estold;
|
---|
| 756 | rsave[3] = temp;
|
---|
| 757 | }
|
---|
| 758 |
|
---|
| 759 |
|
---|
| 760 | private static void internalcomplexrcondloadall(ref int[] isave,
|
---|
| 761 | ref double[] rsave,
|
---|
| 762 | ref int i,
|
---|
| 763 | ref int iter,
|
---|
| 764 | ref int j,
|
---|
| 765 | ref int jlast,
|
---|
| 766 | ref int jump,
|
---|
| 767 | ref double absxi,
|
---|
| 768 | ref double altsgn,
|
---|
| 769 | ref double estold,
|
---|
| 770 | ref double temp)
|
---|
| 771 | {
|
---|
| 772 | i = isave[0];
|
---|
| 773 | iter = isave[1];
|
---|
| 774 | j = isave[2];
|
---|
| 775 | jlast = isave[3];
|
---|
| 776 | jump = isave[4];
|
---|
| 777 | absxi = rsave[0];
|
---|
| 778 | altsgn = rsave[1];
|
---|
| 779 | estold = rsave[2];
|
---|
| 780 | temp = rsave[3];
|
---|
| 781 | }
|
---|
| 782 | }
|
---|
| 783 | }
|
---|