1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class cqr
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | QR decomposition of a rectangular complex matrix of size MxN
|
---|
35 |
|
---|
36 | Input parameters:
|
---|
37 | A - matrix A whose indexes range within [0..M-1, 0..N-1]
|
---|
38 | M - number of rows in matrix A.
|
---|
39 | N - number of columns in matrix A.
|
---|
40 |
|
---|
41 | Output parameters:
|
---|
42 | A - matrices Q and R in compact form
|
---|
43 | Tau - array of scalar factors which are used to form matrix Q. Array
|
---|
44 | whose indexes range within [0.. Min(M,N)-1]
|
---|
45 |
|
---|
46 | Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
|
---|
47 | MxM, R - upper triangular (or upper trapezoid) matrix of size MxN.
|
---|
48 |
|
---|
49 | -- LAPACK routine (version 3.0) --
|
---|
50 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
51 | Courant Institute, Argonne National Lab, and Rice University
|
---|
52 | September 30, 1994
|
---|
53 | *************************************************************************/
|
---|
54 | public static void cmatrixqr(ref AP.Complex[,] a,
|
---|
55 | int m,
|
---|
56 | int n,
|
---|
57 | ref AP.Complex[] tau)
|
---|
58 | {
|
---|
59 | AP.Complex[] work = new AP.Complex[0];
|
---|
60 | AP.Complex[] t = new AP.Complex[0];
|
---|
61 | int i = 0;
|
---|
62 | int k = 0;
|
---|
63 | int mmi = 0;
|
---|
64 | int minmn = 0;
|
---|
65 | AP.Complex tmp = 0;
|
---|
66 | int i_ = 0;
|
---|
67 | int i1_ = 0;
|
---|
68 |
|
---|
69 | minmn = Math.Min(m, n);
|
---|
70 | if( minmn<=0 )
|
---|
71 | {
|
---|
72 | return;
|
---|
73 | }
|
---|
74 | work = new AP.Complex[n-1+1];
|
---|
75 | t = new AP.Complex[m+1];
|
---|
76 | tau = new AP.Complex[minmn-1+1];
|
---|
77 |
|
---|
78 | //
|
---|
79 | // Test the input arguments
|
---|
80 | //
|
---|
81 | k = Math.Min(m, n);
|
---|
82 | for(i=0; i<=k-1; i++)
|
---|
83 | {
|
---|
84 |
|
---|
85 | //
|
---|
86 | // Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
---|
87 | //
|
---|
88 | mmi = m-i;
|
---|
89 | i1_ = (i) - (1);
|
---|
90 | for(i_=1; i_<=mmi;i_++)
|
---|
91 | {
|
---|
92 | t[i_] = a[i_+i1_,i];
|
---|
93 | }
|
---|
94 | creflections.complexgeneratereflection(ref t, mmi, ref tmp);
|
---|
95 | tau[i] = tmp;
|
---|
96 | i1_ = (1) - (i);
|
---|
97 | for(i_=i; i_<=m-1;i_++)
|
---|
98 | {
|
---|
99 | a[i_,i] = t[i_+i1_];
|
---|
100 | }
|
---|
101 | t[1] = 1;
|
---|
102 | if( i<n-1 )
|
---|
103 | {
|
---|
104 |
|
---|
105 | //
|
---|
106 | // Apply H'(i) to A(i:m,i+1:n) from the left
|
---|
107 | //
|
---|
108 | creflections.complexapplyreflectionfromtheleft(ref a, AP.Math.Conj(tau[i]), ref t, i, m-1, i+1, n-1, ref work);
|
---|
109 | }
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | /*************************************************************************
|
---|
115 | Partial unpacking of matrix Q from QR decomposition of a complex matrix A.
|
---|
116 |
|
---|
117 | Input parameters:
|
---|
118 | QR - matrices Q and R in compact form.
|
---|
119 | Output of CMatrixQR subroutine .
|
---|
120 | M - number of rows in matrix A. M>=0.
|
---|
121 | N - number of rows in matrix A. N>=0.
|
---|
122 | Tau - scalar factors which are used to form Q.
|
---|
123 | Output of CMatrixQR subroutine .
|
---|
124 | QColumns - required number of columns in matrix Q. M>=QColumns>=0.
|
---|
125 |
|
---|
126 | Output parameters:
|
---|
127 | Q - first QColumns columns of matrix Q.
|
---|
128 | Array whose index ranges within [0..M-1, 0..QColumns-1].
|
---|
129 | If QColumns=0, array isn't changed.
|
---|
130 |
|
---|
131 | -- ALGLIB --
|
---|
132 | Copyright 2005 by Bochkanov Sergey
|
---|
133 | *************************************************************************/
|
---|
134 | public static void cmatrixqrunpackq(ref AP.Complex[,] qr,
|
---|
135 | int m,
|
---|
136 | int n,
|
---|
137 | ref AP.Complex[] tau,
|
---|
138 | int qcolumns,
|
---|
139 | ref AP.Complex[,] q)
|
---|
140 | {
|
---|
141 | int i = 0;
|
---|
142 | int j = 0;
|
---|
143 | int k = 0;
|
---|
144 | int minmn = 0;
|
---|
145 | AP.Complex[] v = new AP.Complex[0];
|
---|
146 | AP.Complex[] work = new AP.Complex[0];
|
---|
147 | int vm = 0;
|
---|
148 | int i_ = 0;
|
---|
149 | int i1_ = 0;
|
---|
150 |
|
---|
151 | System.Diagnostics.Debug.Assert(qcolumns<=m, "UnpackQFromQR: QColumns>M!");
|
---|
152 | if( m<=0 | n<=0 | qcolumns<=0 )
|
---|
153 | {
|
---|
154 | return;
|
---|
155 | }
|
---|
156 |
|
---|
157 | //
|
---|
158 | // init
|
---|
159 | //
|
---|
160 | minmn = Math.Min(m, n);
|
---|
161 | k = Math.Min(minmn, qcolumns);
|
---|
162 | q = new AP.Complex[m-1+1, qcolumns-1+1];
|
---|
163 | v = new AP.Complex[m+1];
|
---|
164 | work = new AP.Complex[qcolumns-1+1];
|
---|
165 | for(i=0; i<=m-1; i++)
|
---|
166 | {
|
---|
167 | for(j=0; j<=qcolumns-1; j++)
|
---|
168 | {
|
---|
169 | if( i==j )
|
---|
170 | {
|
---|
171 | q[i,j] = 1;
|
---|
172 | }
|
---|
173 | else
|
---|
174 | {
|
---|
175 | q[i,j] = 0;
|
---|
176 | }
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 | //
|
---|
181 | // unpack Q
|
---|
182 | //
|
---|
183 | for(i=k-1; i>=0; i--)
|
---|
184 | {
|
---|
185 |
|
---|
186 | //
|
---|
187 | // Apply H(i)
|
---|
188 | //
|
---|
189 | vm = m-i;
|
---|
190 | i1_ = (i) - (1);
|
---|
191 | for(i_=1; i_<=vm;i_++)
|
---|
192 | {
|
---|
193 | v[i_] = qr[i_+i1_,i];
|
---|
194 | }
|
---|
195 | v[1] = 1;
|
---|
196 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, i, m-1, 0, qcolumns-1, ref work);
|
---|
197 | }
|
---|
198 | }
|
---|
199 |
|
---|
200 |
|
---|
201 | /*************************************************************************
|
---|
202 | Unpacking of matrix R from the QR decomposition of a matrix A
|
---|
203 |
|
---|
204 | Input parameters:
|
---|
205 | A - matrices Q and R in compact form.
|
---|
206 | Output of CMatrixQR subroutine.
|
---|
207 | M - number of rows in given matrix A. M>=0.
|
---|
208 | N - number of columns in given matrix A. N>=0.
|
---|
209 |
|
---|
210 | Output parameters:
|
---|
211 | R - matrix R, array[0..M-1, 0..N-1].
|
---|
212 |
|
---|
213 | -- ALGLIB --
|
---|
214 | Copyright 2005 by Bochkanov Sergey
|
---|
215 | *************************************************************************/
|
---|
216 | public static void cmatrixqrunpackr(ref AP.Complex[,] a,
|
---|
217 | int m,
|
---|
218 | int n,
|
---|
219 | ref AP.Complex[,] r)
|
---|
220 | {
|
---|
221 | int i = 0;
|
---|
222 | int k = 0;
|
---|
223 | int i_ = 0;
|
---|
224 |
|
---|
225 | if( m<=0 | n<=0 )
|
---|
226 | {
|
---|
227 | return;
|
---|
228 | }
|
---|
229 | k = Math.Min(m, n);
|
---|
230 | r = new AP.Complex[m-1+1, n-1+1];
|
---|
231 | for(i=0; i<=n-1; i++)
|
---|
232 | {
|
---|
233 | r[0,i] = 0;
|
---|
234 | }
|
---|
235 | for(i=1; i<=m-1; i++)
|
---|
236 | {
|
---|
237 | for(i_=0; i_<=n-1;i_++)
|
---|
238 | {
|
---|
239 | r[i,i_] = r[0,i_];
|
---|
240 | }
|
---|
241 | }
|
---|
242 | for(i=0; i<=k-1; i++)
|
---|
243 | {
|
---|
244 | for(i_=i; i_<=n-1;i_++)
|
---|
245 | {
|
---|
246 | r[i,i_] = a[i,i_];
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|
250 |
|
---|
251 |
|
---|
252 | public static void complexqrdecomposition(ref AP.Complex[,] a,
|
---|
253 | int m,
|
---|
254 | int n,
|
---|
255 | ref AP.Complex[] tau)
|
---|
256 | {
|
---|
257 | AP.Complex[] work = new AP.Complex[0];
|
---|
258 | AP.Complex[] t = new AP.Complex[0];
|
---|
259 | int i = 0;
|
---|
260 | int k = 0;
|
---|
261 | int mmip1 = 0;
|
---|
262 | int minmn = 0;
|
---|
263 | AP.Complex tmp = 0;
|
---|
264 | int i_ = 0;
|
---|
265 | int i1_ = 0;
|
---|
266 |
|
---|
267 | minmn = Math.Min(m, n);
|
---|
268 | work = new AP.Complex[n+1];
|
---|
269 | t = new AP.Complex[m+1];
|
---|
270 | tau = new AP.Complex[minmn+1];
|
---|
271 |
|
---|
272 | //
|
---|
273 | // Test the input arguments
|
---|
274 | //
|
---|
275 | k = Math.Min(m, n);
|
---|
276 | for(i=1; i<=k; i++)
|
---|
277 | {
|
---|
278 |
|
---|
279 | //
|
---|
280 | // Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
---|
281 | //
|
---|
282 | mmip1 = m-i+1;
|
---|
283 | i1_ = (i) - (1);
|
---|
284 | for(i_=1; i_<=mmip1;i_++)
|
---|
285 | {
|
---|
286 | t[i_] = a[i_+i1_,i];
|
---|
287 | }
|
---|
288 | creflections.complexgeneratereflection(ref t, mmip1, ref tmp);
|
---|
289 | tau[i] = tmp;
|
---|
290 | i1_ = (1) - (i);
|
---|
291 | for(i_=i; i_<=m;i_++)
|
---|
292 | {
|
---|
293 | a[i_,i] = t[i_+i1_];
|
---|
294 | }
|
---|
295 | t[1] = 1;
|
---|
296 | if( i<n )
|
---|
297 | {
|
---|
298 |
|
---|
299 | //
|
---|
300 | // Apply H'(i) to A(i:m,i+1:n) from the left
|
---|
301 | //
|
---|
302 | creflections.complexapplyreflectionfromtheleft(ref a, AP.Math.Conj(tau[i]), ref t, i, m, i+1, n, ref work);
|
---|
303 | }
|
---|
304 | }
|
---|
305 | }
|
---|
306 |
|
---|
307 |
|
---|
308 | public static void complexunpackqfromqr(ref AP.Complex[,] qr,
|
---|
309 | int m,
|
---|
310 | int n,
|
---|
311 | ref AP.Complex[] tau,
|
---|
312 | int qcolumns,
|
---|
313 | ref AP.Complex[,] q)
|
---|
314 | {
|
---|
315 | int i = 0;
|
---|
316 | int j = 0;
|
---|
317 | int k = 0;
|
---|
318 | int minmn = 0;
|
---|
319 | AP.Complex[] v = new AP.Complex[0];
|
---|
320 | AP.Complex[] work = new AP.Complex[0];
|
---|
321 | int vm = 0;
|
---|
322 | int i_ = 0;
|
---|
323 | int i1_ = 0;
|
---|
324 |
|
---|
325 | System.Diagnostics.Debug.Assert(qcolumns<=m, "UnpackQFromQR: QColumns>M!");
|
---|
326 | if( m==0 | n==0 | qcolumns==0 )
|
---|
327 | {
|
---|
328 | return;
|
---|
329 | }
|
---|
330 |
|
---|
331 | //
|
---|
332 | // init
|
---|
333 | //
|
---|
334 | minmn = Math.Min(m, n);
|
---|
335 | k = Math.Min(minmn, qcolumns);
|
---|
336 | q = new AP.Complex[m+1, qcolumns+1];
|
---|
337 | v = new AP.Complex[m+1];
|
---|
338 | work = new AP.Complex[qcolumns+1];
|
---|
339 | for(i=1; i<=m; i++)
|
---|
340 | {
|
---|
341 | for(j=1; j<=qcolumns; j++)
|
---|
342 | {
|
---|
343 | if( i==j )
|
---|
344 | {
|
---|
345 | q[i,j] = 1;
|
---|
346 | }
|
---|
347 | else
|
---|
348 | {
|
---|
349 | q[i,j] = 0;
|
---|
350 | }
|
---|
351 | }
|
---|
352 | }
|
---|
353 |
|
---|
354 | //
|
---|
355 | // unpack Q
|
---|
356 | //
|
---|
357 | for(i=k; i>=1; i--)
|
---|
358 | {
|
---|
359 |
|
---|
360 | //
|
---|
361 | // Apply H(i)
|
---|
362 | //
|
---|
363 | vm = m-i+1;
|
---|
364 | i1_ = (i) - (1);
|
---|
365 | for(i_=1; i_<=vm;i_++)
|
---|
366 | {
|
---|
367 | v[i_] = qr[i_+i1_,i];
|
---|
368 | }
|
---|
369 | v[1] = 1;
|
---|
370 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, i, m, 1, qcolumns, ref work);
|
---|
371 | }
|
---|
372 | }
|
---|
373 |
|
---|
374 |
|
---|
375 | public static void complexqrdecompositionunpacked(AP.Complex[,] a,
|
---|
376 | int m,
|
---|
377 | int n,
|
---|
378 | ref AP.Complex[,] q,
|
---|
379 | ref AP.Complex[,] r)
|
---|
380 | {
|
---|
381 | int i = 0;
|
---|
382 | int j = 0;
|
---|
383 | int k = 0;
|
---|
384 | int l = 0;
|
---|
385 | int vm = 0;
|
---|
386 | AP.Complex[] tau = new AP.Complex[0];
|
---|
387 | AP.Complex[] work = new AP.Complex[0];
|
---|
388 | AP.Complex[] v = new AP.Complex[0];
|
---|
389 | double tmp = 0;
|
---|
390 | int i_ = 0;
|
---|
391 |
|
---|
392 | a = (AP.Complex[,])a.Clone();
|
---|
393 |
|
---|
394 | k = Math.Min(m, n);
|
---|
395 | if( n<=0 )
|
---|
396 | {
|
---|
397 | return;
|
---|
398 | }
|
---|
399 | work = new AP.Complex[m+1];
|
---|
400 | v = new AP.Complex[m+1];
|
---|
401 | q = new AP.Complex[m+1, m+1];
|
---|
402 | r = new AP.Complex[m+1, n+1];
|
---|
403 |
|
---|
404 | //
|
---|
405 | // QRDecomposition
|
---|
406 | //
|
---|
407 | complexqrdecomposition(ref a, m, n, ref tau);
|
---|
408 |
|
---|
409 | //
|
---|
410 | // R
|
---|
411 | //
|
---|
412 | for(i=1; i<=n; i++)
|
---|
413 | {
|
---|
414 | r[1,i] = 0;
|
---|
415 | }
|
---|
416 | for(i=2; i<=m; i++)
|
---|
417 | {
|
---|
418 | for(i_=1; i_<=n;i_++)
|
---|
419 | {
|
---|
420 | r[i,i_] = r[1,i_];
|
---|
421 | }
|
---|
422 | }
|
---|
423 | for(i=1; i<=k; i++)
|
---|
424 | {
|
---|
425 | for(i_=i; i_<=n;i_++)
|
---|
426 | {
|
---|
427 | r[i,i_] = a[i,i_];
|
---|
428 | }
|
---|
429 | }
|
---|
430 |
|
---|
431 | //
|
---|
432 | // Q
|
---|
433 | //
|
---|
434 | complexunpackqfromqr(ref a, m, n, ref tau, m, ref q);
|
---|
435 | }
|
---|
436 | }
|
---|
437 | }
|
---|